Chlorine-Substituent Regulation in Dopant-Free Small-Molecule Hole-Transport Materials Improves the Efficiency and Stability of Inverted Perovskite Solar Cells
Xinyi Liu , Xiaoye Zhang , Zhanfeng Li , Jinbo Chen , Yanting Tian , Baoyou Liu , Changfeng Si , Gang Yue , Hua Dong , Zhaoxin Wu
Transactions of Tianjin University ›› 2024, Vol. 30 ›› Issue (4) : 314 -323.
Chlorine-Substituent Regulation in Dopant-Free Small-Molecule Hole-Transport Materials Improves the Efficiency and Stability of Inverted Perovskite Solar Cells
Although doped hole-transport materials (HTMs) offer an efficiency benefit for perovskite solar cells (PSCs), they inevitably diminish the stability. Here, we describe the use of various chlorinated small molecules, specifically fluorenone-triphenylamine (FO-TPA)-x-Cl [x = para, meta, and ortho (p, m, and o)], with different chlorine-substituent positions, as dopant-free HTMs for PSCs. These chlorinated molecules feature a symmetrical donor–acceptor–donor structure and ideal intramolecular charge transfer properties, allowing for self-doping and the establishment of built-in potentials for improving charge extraction. Highly efficient hole-transfer interfaces are constructed between perovskites and these HTMs by strategically modifying the chlorine substitution. Thus, the chlorinated HTM-derived inverted PSCs exhibited superior efficiencies and air stabilities. Importantly, the dopant-free HTM FO-TPA-o-Cl not only attains a power conversion efficiency of 20.82% but also demonstrates exceptional stability, retaining 93.8% of its initial efficiency even after a 30-day aging test conducted under ambient air conditions in PSCs without encapsulation. These findings underscore the critical role of chlorine-substituent regulation in HTMs in ensuring the formation and maintenance of efficient and stable PSCs.
Hole-transport materials / Inverted perovskite solar cells / Chlorinated small molecules / Donor–acceptor–donor structure
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
/
| 〈 |
|
〉 |