Multi-objective Design of Blending Fuel by Intelligent Optimization Algorithms
Ruichen Liu , Cong Li , Li Wang , Xiangwen Zhang , Guozhu Li
Transactions of Tianjin University ›› 2024, Vol. 30 ›› Issue (3) : 221 -237.
Multi-objective Design of Blending Fuel by Intelligent Optimization Algorithms
Fuel design is a complex multi-objective optimization problem in which facile and robust methods are urgently demanded. Herein, a complete workflow for designing a fuel blending scheme is presented, which is theoretically supported, efficient, and reliable. Based on the data distribution of the composition and properties of the blending fuels, a model of polynomial regression with appropriate hypothesis space was established. The parameters of the model were further optimized by different intelligence algorithms to achieve high-precision regression. Then, the design of a blending fuel was described as a multi-objective optimization problem, which was solved using a Nelder–Mead algorithm based on the concept of Pareto domination. Finally, the design of a target fuel was fully validated by experiments. This study provides new avenues for designing various blending fuels to meet the needs of next-generation engines.
Multi-objective optimization / Machine learning / Blending fuel
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
Gilmer J, Schoenholz SS, Riley PF et al (2017) Neural message passing for quantum chemistry. In: Proceedings of the 34th international conference on machine learning, Sydney, Australia, vol 70, pp 1263–1272 |
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
/
| 〈 |
|
〉 |