Multi-objective Design of Blending Fuel by Intelligent Optimization Algorithms
Ruichen Liu, Cong Li, Li Wang, Xiangwen Zhang, Guozhu Li
Multi-objective Design of Blending Fuel by Intelligent Optimization Algorithms
Fuel design is a complex multi-objective optimization problem in which facile and robust methods are urgently demanded. Herein, a complete workflow for designing a fuel blending scheme is presented, which is theoretically supported, efficient, and reliable. Based on the data distribution of the composition and properties of the blending fuels, a model of polynomial regression with appropriate hypothesis space was established. The parameters of the model were further optimized by different intelligence algorithms to achieve high-precision regression. Then, the design of a blending fuel was described as a multi-objective optimization problem, which was solved using a Nelder–Mead algorithm based on the concept of Pareto domination. Finally, the design of a target fuel was fully validated by experiments. This study provides new avenues for designing various blending fuels to meet the needs of next-generation engines.
Multi-objective optimization / Machine learning / Blending fuel
[1.] |
|
[2.] |
|
[3.] |
|
[4.] |
|
[5.] |
|
[6.] |
|
[7.] |
|
[8.] |
|
[9.] |
|
[10.] |
|
[11.] |
Gilmer J, Schoenholz SS, Riley PF et al (2017) Neural message passing for quantum chemistry. In: Proceedings of the 34th international conference on machine learning, Sydney, Australia, vol 70, pp 1263–1272
|
[12.] |
|
[13.] |
|
[14.] |
|
[15.] |
|
[16.] |
|
[17.] |
|
[18.] |
|
[19.] |
|
[20.] |
|
[21.] |
|
[22.] |
|
[23.] |
|
[24.] |
|
[25.] |
|
[26.] |
|
[27.] |
|
[28.] |
|
[29.] |
|
[30.] |
|
[31.] |
|
[32.] |
|
[33.] |
|
/
〈 | 〉 |