Review of Iron-Based Catalysts for Carbon Dioxide Fischer–Tropsch Synthesis

Ji-Yue Jia , Yu-Ling Shan , Yong-Xiao Tuo , Hao Yan , Xiang Feng , De Chen

Transactions of Tianjin University ›› 2024, Vol. 30 ›› Issue (2) : 178 -197.

PDF
Transactions of Tianjin University ›› 2024, Vol. 30 ›› Issue (2) : 178 -197. DOI: 10.1007/s12209-024-00392-3
Review

Review of Iron-Based Catalysts for Carbon Dioxide Fischer–Tropsch Synthesis

Author information +
History +
PDF

Abstract

Capturing and utilizing CO2 from the production process is the key to solving the excessive CO2 emission problem. CO2 hydrogenation with green hydrogen to produce olefins is an effective and promising way to utilize CO2 and produce valuable chemicals. The olefins can be produced by CO2 hydrogenation through two routes, i.e., CO2-FTS (carbon dioxide Fischer–Tropsch synthesis) and MeOH (methanol-mediated), among which CO2-FTS has significant advantages over MeOH in practical applications due to its relatively high CO2 conversion and low energy consumption potentials. However, the CO2-FTS faces challenges of difficult CO2 activation and low olefins selectivity. Iron-based catalysts are promising for CO2-FTS due to their dual functionality of catalyzing RWGS and CO-FTS reactions. This review summarizes the recent progress on iron-based catalysts for CO2 hydrogenation via the FTS route and analyzes the catalyst optimization from the perspectives of additives, active sites, and reaction mechanisms. Furthermore, we also outline principles and challenges for rational design of high-performance CO2-FTS catalysts.

Keywords

CO2 hydrogenation / Olefins / CO2-FTS / Iron-based catalysts

Cite this article

Download citation ▾
Ji-Yue Jia, Yu-Ling Shan, Yong-Xiao Tuo, Hao Yan, Xiang Feng, De Chen. Review of Iron-Based Catalysts for Carbon Dioxide Fischer–Tropsch Synthesis. Transactions of Tianjin University, 2024, 30(2): 178-197 DOI:10.1007/s12209-024-00392-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang S, Chun H-J, Lee S, et al. Comparative study of olefin production from CO and CO2 using Na- and K-promoted zinc ferrite. ACS Catal, 2020, 10(18): 10742-10759.

[2]

Guo L, Cui Y, Li H, et al. Selective formation of linear-alpha olefins (LAOs) by CO2 hydrogenation over bimetallic Fe/Co-Y catalyst. Catal Commun, 2019, 130: 105759.

[3]

Weifeng T, Chao S, Zhengzhou Z, et al. Chemical and structural properties of Na decorated Fe5C2–ZnO catalysts during hydrogenation of CO2 to linear α-olefins. Appl Catal, B, 2021, 298: 120567.

[4]

Do TN, Kim J Green C2–C4 hydrocarbon production through direct CO2 hydrogenation with renewable hydrogen: Process development and techno-economic analysis. Energy Convers Manage, 2020, 214: 112866.

[5]

Bowker M Methanol synthesis from CO2 hydrogenation. ChemCatChem, 2019, 11(17): 4238-4246.

[6]

Amrillah T, Supandi AR, Puspasari V, et al. MXene-based photocatalysts and electrocatalysts for CO2 conversion to chemicals. Trans Tianjin Univ, 2022, 28(4): 307-322.

[7]

Shen J, Tang R, Wu Z, et al. Integrated photothermal nanoreactors for efficient hydrogenation of CO2. Trans Tianjin Univ, 2022, 28(4): 236-244.

[8]

Wang Y, Zhang C, Li R Modulating the selectivity of photocatalytic CO2 reduction in barium titanate by introducing oxygen vacancies. Trans Tianjin Univ, 2022, 28(4): 227-235.

[9]

Kim Y, Song Y, Kim Y, et al. Multifunctional long-lived catalysts for direct hydrogenative conversion of CO2 to liquid hydrocarbons with upscaling C5+ productivity. J Mater Chem A, 2022, 10(41): 21862-21873.

[10]

Chen W, Lin T, Dai Y, et al. Recent advances in the investigation of nanoeffects of Fischer–Tropsch catalysts. Catal Today, 2017, 311: 8-22.

[11]

Wang D, Xie Z, Porosoff MD, et al. Recent advances in carbon dioxide hydrogenation to produce olefins and aromatics. Chem, 2021, 7(9): 2277-2311.

[12]

Wang X, Wu D, Zhang J, et al. Highly selective conversion of CO2 to light olefins via Fischer–Tropsch synthesis over stable layered K-Fe–Ti catalysts. Appl Catal, A, 2019, 573: 32-40.

[13]

Yang H, Dang Y, Cui X, et al. Selective synthesis of olefins via CO2 hydrogenation over transition-metal-doped iron-based catalysts. Appl Catal, B, 2023, 321: 122050.

[14]

Junhui L, Yakun S, Xuming G, et al. Recent advances in application of iron-based catalysts for COx hydrogenation to value-added hydrocarbons. Chin J Catal, 2022, 43(3): 731-754.

[15]

Yongjun J, Kangzhou W, Yuan W, et al. Recent advances in thermocatalytic hydrogenation of carbon dioxide to light olefins and liquid fuels via modified Fischer-Tropsch pathway. J CO Util, 2022, 67: 102321.

[16]

Gao P, Zhang L, Li S, et al. Novel heterogeneous catalysts for CO2 hydrogenation to liquid fuels. ACS Cent Sci, 2020, 6(10): 1657-1670.

[17]

Yahyazadeh A, Dalai AK, Ma W, et al. Fischer–Tropsch synthesis for light olefins from syngas: a review of catalyst development. Reactions, 2021, 2(3): 227-257.

[18]

Jiang F, Liu B, Geng S, et al. Hydrogenation of CO2 into hydrocarbons: enhanced catalytic activity over Fe-based Fischer–Tropsch catalysts†. Catal Sci Technol, 2018, 8(16): 4097-4107.

[19]

Yang H, Zhang C, Gao P, et al. A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons. Catal Sci Technol, 2017, 7(20): 4580-4598.

[20]

Goud D, Gupta R, Maligal-Ganesh R, et al. Review of catalyst design and mechanistic studies for the production of olefins from anthropogenic CO2. ACS Catal, 2020, 10(23): 14258-14282.

[21]

Nasriddinov K, Min J-E, Park H-G, et al. Effect of Co, Cu, and Zn on FeAlK catalysts in CO2 hydrogenation to C5+ hydrocarbons. Catal Sci Technol, 2021, 12(3): 906-915.

[22]

Zhenyu C, Fenglei Z, Sibing Y, et al. PBA-derived high-efficiency iron-based catalysts for CO2 hydrogenation. Catal Sci Technol, 2022, 12(12): 3826-3835.

[23]

Liu J, Zhang A, Jiang X, et al. Overcoating the surface of Fe-based catalyst with ZnO and nitrogen-doped carbon toward high selectivity of light olefins in CO2 hydrogenation. Ind Eng Chem Res, 2019, 58(10): 4017-4023.

[24]

Wei J, Ge Q, Yao R, et al. Directly converting CO2 into a gasoline fuel. Nat Commun, 2017, 8: 15174.

[25]

Xu M, Liu X, Cao C, et al. Ternary Fe–Zn–Al spinel catalyst for CO2 hydrogenation to linear α-Olefins: synergy Effects between Al and Zn. ACS Sustain Chem Eng, 2021, 9(41): 13818-13830.

[26]

Liang B, Duan H, Sun T, Ma J, Liu X, Xu J, Su X, Huang Y, Zhang T Effect of Na promoter on Fe-based catalyst for CO2 hydrogenation to alkenes. ACS Sustain Chem Eng, 2019, 7(1): 925-932.

[27]

Zhai P, Xu C, Gao R, et al. Highly tunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe5C2 catalyst. Angew Chem Int Ed, 2016, 55(34): 9902-9907.

[28]

Xu Y, Zhai P, Deng Y, et al. Highly selective olefin production from CO2 hydrogenation on iron catalysts: a subtle synergy between manganese and sodium additives. Angew Chem Int Ed, 2020, 59(48): 21736-21744.

[29]

Wei C, Tu W, Jia L, et al. The evolutions of carbon and iron species modified by Na and their tuning effect on the hydrogenation of CO2 to olefins. Appl Surf Sci, 2020, 525: 146622.

[30]

Joshua Iseoluwa O, Jian W, Yu H, et al. Highly stable Sr and Na co-decorated Fe catalyst for high-valued olefin synthesis from CO2 hydrogenation. Appl Catal, B, 2022, 316: 121640.

[31]

Hou Y, Wang X, Chen M, et al. Sr1 xK xFeO3 perovskite catalysts with enhanced RWGS reactivity for CO2 hydrogenation to light olefins. Atmosphere, 2022, 13(5): 760.

[32]

Joshua Iseoluwa O, Ghebretensae Aron K, Yang Y, et al. Emerging spinel ferrite catalysts for driving CO2 hydrogenation to high-value chemicals. Matter, 2023, 6(5): 1404-1434.

[33]

Lan Q, Jin S, Yang B, et al. Metal-oxo cluster catalysts for photocatalytic water splitting and carbon dioxide reduction. Trans Tianjin Univ, 2022, 28(3): 214-225.

[34]

Visconti CG, Martinelli M, Falbo L, et al. CO2 hydrogenation to lower olefins on a high surface area K-promoted bulk Fe-catalyst. Appl Catal, B, 2016, 200: 530-542.

[35]

Shafer WD, Jacobs G, Graham UM, et al. Increased CO2 hydrogenation to liquid products using promoted iron catalysts. J Catal, 2018, 369: 239-248.

[36]

Guo L, Sun J, Ji X, et al. Directly converting carbon dioxide to linear α-olefins on bio-promoted catalysts. Commun Chem, 2018, 1: 11.

[37]

Tian P, Gu M, Qiu R, et al. Tunable carbon dioxide activation pathway over iron oxide catalysts: effects of potassium. Ind Eng Chem Res, 2021, 60(24): 8705-8713.

[38]

Li Z, Wu W, Wang M, et al. Ambient-pressure hydrogenation of CO2 into long-chain olefins. Nat Commun, 2022, 13: 2396.

[39]

Liu J, Zhang A, Jiang X, et al. Selective CO2 hydrogenation to hydrocarbons on Cu-promoted Fe-based catalysts: dependence on Cu–Fe interaction. ACS Sustain Chem Eng, 2018, 6(8): 10182-10190.

[40]

Jiang G, Han D, Han Z, et al. Rational manipulation of intermediates on copper for CO2 electroreduction toward multicarbon products. Trans Tianjin Univ, 2022, 28(4): 265-291.

[41]

Choi YH, Jang YJ, Park H, et al. Carbon dioxide Fischer–Tropsch synthesis: A new path to carbon-neutral fuels. Appl Catal, B, 2017, 202: 605-610.

[42]

Guo L, Li J, Cui Y, et al. Spinel-structure catalyst catalyzing CO2 hydrogenation to full spectrum alkenes with an ultra-high yield. Chem Commun, 2020, 56(65): 9372-9375.

[43]

Wu D-K, Wang X, Gao X-H, et al. Preparation of layered K–Fe–Zn–Ti catalyst and its performance in the hydrogenation of carbon dioxide to light olefins. J Fuel Chem Technol, 2019, 47(8): 949-956.

[44]

Yang S, Lee S, Kang SC, et al. Linear α-olefin production with Na-promoted Fe–Zn catalysts via Fischer–Tropsch synthesis. RSC Adv, 2019, 9(25): 14176-14187.

[45]

Liu S, Zhao Q, Han X, et al. Proximity effect of Fe–Zn bimetallic catalysts on CO2 hydrogenation performance. Trans Tianjin Univ, 2023, 29(4): 293-303.

[46]

Zhang C, Xu M, Yang Z, et al. Uncovering the electronic effects of zinc on the structure of Fe5C2-ZnO catalysts for CO2 hydrogenation to linear α-olefins. Appl Catal, B, 2021, 295: 120287.

[47]

Dorner RW, Hardy DR, Williams FW, et al. C2–C5+ olefin production from CO2 hydrogenation using ceria modified Fe/Mn/K catalysts. Catal Commun, 2011, 15(1): 88-92.

[48]

Kangvansura P, Chew LM, Saengsui W, et al. Product distribution of CO2 hydrogenation by K- and Mn-promoted Fe catalysts supported on N-functionalized carbon nanotubes. Catal Today, 2016, 275: 59-65.

[49]

Liang B, Sun T, Ma J, et al. Mn decorated Na/Fe catalysts for CO2 hydrogenation to light olefins†. Catal Sci Technol, 2018, 9(2): 456-464.

[50]

Li M, Shen L, Yang M-Q Cobalt-based cocatalysts for photocatalytic CO2 reduction. Trans Tianjin Univ, 2022, 28(6): 506-532.

[51]

Numpilai T, Witoon T, Chanlek N, et al. Structure–activity relationships of Fe–Co/K–Al2O3 catalysts calcined at different temperatures for CO2 hydrogenation to light olefins. Appl Catal, A, 2017, 547: 219-229.

[52]

Lisheng G, Xinhua G, Weizhe G, et al. High-yield production of liquid fuels in CO2 hydrogenation on a zeolite-free Fe-based catalyst. Chem Sci, 2022, 4(1): 171-178.

[53]

Li S, Ren P, Yang C, et al. Fe5C2 nanoparticles as low-cost HER electrocatalyst: the importance of Co substitution. Sci Bull, 2018, 63(20): 1358-1363.

[54]

Calizzi M, Mutschler R, Patelli N, et al. CO2 hydrogenation over unsupported Fe–Co nanoalloy catalysts. Nanomaterials, 2020, 10(7): 1360.

[55]

Hwang S-M, Han SJ, Park H-G, et al. Atomically alloyed Fe–Co catalyst derived from a N-Coordinated Co single-atom structure for CO2 hydrogenation. ACS Catal, 2021, 11(4): 2267-2278.

[56]

Kim KY, Lee H, Noh WY, et al. Cobalt ferrite nanoparticles to form a catalytic Co–Fe alloy carbide phase for Selective CO2 hydrogenation to light olefins. ACS Catal, 2020, 10(15): 8660-8671.

[57]

Visconti CG, Martinelli M, Falbo L, et al. CO2 hydrogenation to hydrocarbons over Co and Fe-based Fischer-Tropsch catalysts. Catal Today, 2016, 277: 161-170.

[58]

Sonal N, Kondamudi K, Pant KK, et al. Synergistic effect of Fe–Co bimetallic catalyst on FTS and WGS activity in the Fische–Tropsch process: a kinetic study. Ind Eng Chem Res, 2017, 56(16): 4659-4671.

[59]

Pengze Z, Fei H, Jingyu Y, et al. N-doped ordered mesoporous carbon (N-OMC) confined Fe3O4-FeCx heterojunction for efficient conversion of CO2 to light olefins. Appl Catal, B, 2021, 299: 120639.

[60]

Ji Y, Du J, Chen A Review on heteroatom doping carbonaceous materials toward electrocatalytic carbon dioxide reduction. Trans Tianjin Univ, 2022, 28(4): 292-306.

[61]

Chew LM, Kangvansura P, Ruland H, et al. Effect of nitrogen doping on the reducibility, activity and selectivity of carbon nanotube-supported iron catalysts applied in CO2 hydrogenation. Appl Catal, A, 2014, 482: 163-170.

[62]

Kosol R, Guo L, Kodama N, et al. Iron catalysts supported on nitrogen functionalized carbon for improved CO2 hydrogenation performance. Catal Commun, 2020, 149: 106216.

[63]

Chen W, Fan Z, Pan X, et al. Effect of confinement in carbon nanotubes on the activity of Fischer−Tropsch iron catalyst. J Am Chem Soc, 2008, 130(29): 9414-9419.

[64]

Guo L, Zhang P, Cui Y, et al. One-pot hydrothermal synthesis of nitrogen functionalized carbonaceous material catalysts with embedded iron nanoparticles for CO2 hydrogenation. ACS Sustainable Chem Eng, 2019, 7(9): 8331-8339.

[65]

Torres Galvis HM, Koeken ACJ, Bitter JH, et al. Effects of sodium and sulfur on catalytic performance of supported iron catalysts for the Fischer–Tropsch synthesis of lower olefins. J Catal, 2013, 303: 22-30.

[66]

Wu B, Bai L, Xiang H, et al. An active iron catalyst containing sulfur for Fischer–Tropsch synthesis. Fuel, 2004, 83(2): 205-212.

[67]

Torres Galvis HM, Bitter JH, Khare CB, et al. Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science, 2012, 335(6070): 835-838.

[68]

Xu M, Cao C, Xu J Understanding kinetically interplaying reverse water-gas shift and Fischer–Tropsch synthesis during CO2 hydrogenation over Fe-based catalysts. Appl Catal, A, 2022, 641: 118682.

[69]

Han SJ, Hwang S-M, Park H-G, et al. Identification of active sites for CO2 hydrogenation in Fe catalysts by first-principles microkinetic modelling. J Mater Chem A, 2020, 8(26): 13014-13023.

[70]

Huang J, Jiang S, Wang M, et al. Dynamic evolution of Fe and carbon species over different ZrO2 supports during CO prereduction and their effects on CO2 hydrogenation to light olefins. ACS Sustain Chem Eng, 2021, 9(23): 7891-7903.

[71]

Nie X, Han G, Song C, et al. Computational identification of facet-dependent CO2 initial activation and hydrogenation over iron carbide catalyst. J CO Util, 2022, 59: 101967.

[72]

Visconti CG, Lietti L, Tronconi E, et al. Fischer–Tropsch synthesis on a Co/Al2O3 catalyst with CO2 containing syngas. Appl Catal, A, 2008, 355(1–2): 61-68.

[73]

Wang H, Nie X, Liu Y, et al. Mechanistic insight into hydrocarbon synthesis via CO2 hydrogenation on χ-Fe5C2 catalysts. ACS Appl Mater Interfaces, 2022, 14(33): 37637-37651.

[74]

Nahuel Moreno Y, Pablo LDQ, Víctor AR A DFT study on the adsorption and dissociation of N-Nitrosodimethylamine on a Ni8 nanocluster. J Mol Graphics Modell, 2023, 125: 108578.

[75]

Gunasooriya GTKK, van Bavel AP, Kuipers HPCE, et al. Key role of surface hydroxyl groups in C–O activation during Fischer–Tropsch synthesis. ACS Catal, 2016, 6(6): 3660-3664.

[76]

Saeidi S, Najari S, Fazlollahi F, et al. Mechanisms and kinetics of CO2 hydrogenation to value-added products: a detailed review on current status and future trends. Renew Sustain Energy Rev, 2017, 80: 1292-1311.

[77]

Fischer F, Tropsch HJB-C The synthesis of petroleum at atmospheric pressures from gasification products of coal. Brennstoff-Chem, 1926, 7: 97-104.

[78]

van Santen RA, Ghouri MM, Shetty S, et al. Structure sensitivity of the Fischer–Tropsch reaction; molecular kinetics simulations. Catal Sci Technol, 2011, 1(6): 891-911.

[79]

Thanh Hai P, Xuezhi D, Gang Q, et al. CO activation pathways of Fischer–Tropsch synthesis on χ-Fe5C2 (510): direct versus hydrogen-assisted CO dissociation. J Phys Chem C, 2014, 118(19): 10170-10176.

[80]

Huo C-F, Li Y-W, Wang J, et al. Insight into CH4 formation in Iron-catalyzed Fischer−Tropsch synthesis. J Am Chem Soc, 2009, 131(41): 14713-14721.

[81]

Ojeda M, Nabar R, Nilekar AU, et al. CO activation pathways and the mechanism of Fischer–Tropsch synthesis. J Catal, 2010, 272(2): 287-297.

[82]

Cheng J, Hu P, Ellis P, et al. A first-principles study of oxygenates on co surfaces in Fischer−Tropsch synthesis. J Phys Chem C, 2008, 112(25): 9464-9473.

[83]

Cao D-B, Li Y-W, Wang J, et al. Chain growth mechanism of Fischer–Tropsch synthesis on Fe5C2(0 0 1). J Mol Catal A: Chem, 2011, 346(1–2): 55-69.

[84]

Gracia JM, Prinsloo FF, Niemantsverdriet JW Mars-van Krevelen-like mechanism of CO hydrogenation on an iron carbide surface. Catal Lett, 2009, 133(3): 257-261.

[85]

Davis BH Fischer–Tropsch synthesis: reaction mechanisms for iron catalysts. Catal Today, 2008, 141(1–2): 25-33.

[86]

Gaube J, Klein HF Further support for the two-mechanisms hypothesis of Fischer–Tropsch synthesis. Appl Catal, A, 2009, 374(1–2): 120-125.

[87]

Yin J, Liu X, Liu X-W, et al. Theoretical exploration of intrinsic facet-dependent CH4 and C2 formation on Fe5C2 particle. Appl Catal, B, 2020, 278: 119308.

AI Summary AI Mindmap
PDF

793

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/