Approaches to Improving Selectivity During Photoelectrochemical Transformation of Small Molecules

Sipeng Yang , Jie Yang , Mengyu Duan , Shirong Kang , Shaohua He , Chuncheng Chen

Transactions of Tianjin University ›› 2024, Vol. 30 ›› Issue (2) : 167 -177.

PDF
Transactions of Tianjin University ›› 2024, Vol. 30 ›› Issue (2) : 167 -177. DOI: 10.1007/s12209-024-00387-0
Mini Review

Approaches to Improving Selectivity During Photoelectrochemical Transformation of Small Molecules

Author information +
History +
PDF

Abstract

Photoelectrochemical (PEC) small-molecule oxidation can selectively transform substrates into high-value-added fine chemicals and increase the rate of cathode hydrogen evolution. Nevertheless, achieving high-selectivity PEC oxidation of small molecules to produce specific products is a very challenging task. In general, selectivity can be improved by changing the surface catalytic sites of the photoanode and modulating the interfacial environments of the reactions. Herein, recent advances in approaches to improving selective PEC oxidation of small molecules are introduced. We first briefly discuss the basic concept and fundamentals of small-molecule PEC oxidation. The reported approaches to improving the performance of selective PEC oxidation of small molecules are highlighted from two aspects: (1) changing the surface properties of photoanodes by selecting suitable materials or modifying the photoanodes and (2) mediating the oxidation reactions using redox mediators. The PEC oxidation mechanism of these studies is emphasized. We also discuss the challenges in this research direction and offer a perspective on the further development of selective PEC-based small-molecule transformation.

Keywords

Photoelectrocatalytic / Small-molecule oxidation / Improving selectivity / Surface properties / Mediating process

Cite this article

Download citation ▾
Sipeng Yang, Jie Yang, Mengyu Duan, Shirong Kang, Shaohua He, Chuncheng Chen. Approaches to Improving Selectivity During Photoelectrochemical Transformation of Small Molecules. Transactions of Tianjin University, 2024, 30(2): 167-177 DOI:10.1007/s12209-024-00387-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu B, Wang S, Zhang G, et al. Tandem cells for unbiased photoelectrochemical water splitting. Chem Soc Rev, 2023, 52(14): 4644-4671.

[2]

Qi Y, Zhang J, Kong Y, et al. Unraveling of cocatalysts photodeposited selectively on facets of BiVO4 to boost solar water splitting. Nat Commun, 2022, 13(1): 484.

[3]

Yang W, Prabhakar RR, Tan J, et al. Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting. Chem Soc Rev, 2019, 48(19): 4979-5015.

[4]

Jiang C, Moniz SJA, Wang A, et al. Photoelectrochemical devices for solar water splitting–materials and challenges. Chem Soc Rev, 2017, 46(15): 4645-4660.

[5]

Lin W, Lin J, Zhang X, et al. Decoupled artificial photosynthesis via a catalysis-redox coupled COF||BiVO4 photoelectrochemical device. J Am Chem Soc, 2023, 145(32): 18141-18147.

[6]

Zhang H, Chen Y, Wang H, et al. Carbon encapsulation of organic–inorganic hybrid perovskite toward efficient and stable photo-electrochemical carbon dioxide reduction. Adv Energy Mater, 2020, 10(44): 2002105.

[7]

Roy S, Miller M, Warnan J, et al. Electrocatalytic and solar-driven reduction of aqueous CO2 with molecular cobalt phthalocyanine–metal oxide hybrid materials. ACS Catal, 2021, 11(3): 1868-1876.

[8]

Song JT, Ryoo H, Cho M, et al. Nanoporous Au thin films on Si photoelectrodes for selective and efficient photoelectrochemical CO2 reduction. Adv Energy Mater, 2017, 7(3): 1601103.

[9]

Liu J, Li J, Li Y, et al. Photoelectrochemical water splitting coupled with degradation of organic pollutants enhanced by surface and interface engineering of BiVO4 photoanode. Appl Catal B Environ, 2020, 278: 119268.

[10]

Zhang YN, Dai W, Wen Y, et al. Efficient enantioselective degradation of the inactive (S)-herbicide dichlorprop on chiral molecular-imprinted TiO2. Appl Catal B Environ, 2017, 212: 185-192.

[11]

Fujishima A, Honda K Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37-38.

[12]

Yang Y, Forster M, Ling Y, et al. Acid treatment enables suppression of electron-hole recombination in hematite for photoelectrochemical water splitting. Angew Chem Int Ed, 2016, 55(10): 3403-3407.

[13]

Peerakiatkhajohn P, Yun JH, Chen H, et al. Stable hematite nanosheet photoanodes for enhanced photoelectrochemical water splitting. Adv Mater, 2016, 28(30): 6405-6410.

[14]

Liu J, Xu SM, Li Y, et al. Facet engineering of WO3 arrays toward highly efficient and stable photoelectrochemical hydrogen generation from natural seawater. Appl Catal B Environ, 2020, 264: 118540.

[15]

Ning F, Shao M, Xu S, et al. TiO2/graphene/NiFe-layered double hydroxide nanorod array photoanodes for efficient photoelectrochemical water splitting. Energy Environ Sci, 2016, 9(8): 2633-2643.

[16]

Liu B, Wang X, Zhang Y, et al. A BiVO4 photoanode with a VOx layer bearing oxygen vacancies offers improved charge transfer and oxygen evolution kinetics in photoelectrochemical water splitting. Angew Chem Int Ed Engl, 2023, 62(10): e202217346.

[17]

Zhang B, Wang L, Zhang Y, et al. Ultrathin FeOOH nanolayers with abundant oxygen vacancies on BiVO4 photoanodes for efficient water oxidation. Angew Chem Int Ed, 2018, 57(8): 2248-2252.

[18]

Kim JH, Lee JS Elaborately modified BiVO4 photoanodes for solar water splitting. Adv Mater, 2019, 31(20): e1806938.

[19]

Fu J, Wang F, Xiao Y, et al. Identifying performance-limiting deep traps in Ta3N5 for solar water splitting. ACS Catal, 2020, 10(18): 10316-10324.

[20]

Kanan MW, Nocera DG In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2 +. Science, 2008, 321(5892): 1072-1075.

[21]

Kim D, Sakimoto KK, Hong D, et al. Artificial photosynthesis for sustainable fuel and chemical production. Angew Chem Int Ed, 2015, 54(11): 3259-3266.

[22]

Tian Z, Da Y, Wang M, et al. Selective photoelectrochemical oxidation of glucose to glucaric acid by single atom Pt decorated defective TiO2. Nat Commun, 2023, 14(1): 142.

[23]

Luo L, Liu Y, Chen W, et al. Photoelectrocatalytic synthesis of aromatic azo compounds over porous nanoarrays of bismuth vanadate. Chem Catal, 2023, 3(1): 100472.

[24]

Wang XD, Huang YH, Liao JF, et al. Surface passivated halide perovskite single-crystal for efficient photoelectrochemical synthesis of dimethoxydihydrofuran. Nat Commun, 2021, 12(1): 1202.

[25]

Lin C, Shan Z, Dong C, et al. Covalent organic frameworks bearing Ni active sites for free radical-mediated photoelectrochemical organic transformations. Sci Adv, 2023, 9(45): eadi9442.

[26]

Li S, Shang H, Tao Y, et al. Hydroxyl radical-mediated efficient photoelectrocatalytic NO oxidation with simultaneous nitrate storage using a flow photoanode reactor. Angew Chem Int Ed, 2023, 62(28): e202305538.

[27]

Herman A, Mathias JL, Neumann R Electrochemical formation and activation of hydrogen peroxide from water on fluorinated tin oxide for baeyer–villiger oxidation reactions. ACS Catal, 2022, 12(7): 4149-4155.

[28]

Li H, Lin C, Yang Y, et al. Boosting reactive oxygen species generation using inter-facet edge rich WO3 arrays for photoelectrochemical conversion. Angew Chem Int Ed, 2023, 62(1): e202210804.

[29]

Vo TG, Kao CC, Kuo JL, et al. Unveiling the crystallographic facet dependence of the photoelectrochemical glycerol oxidation on bismuth vanadate. Appl Catal B Environ, 2020, 278: 119303.

[30]

Miao Y, Shao M Photoelectrocatalysis for high-value-added chemicals production. Chin J Catal, 2022, 43(3): 595-610.

[31]

Li P, Zhang T, Mushtaq MA, et al. Research progress in organic synthesis by means of photoelectrocatalysis. Chem Rec, 2021, 21(4): 841-857.

[32]

Wu YC, Song RJ, Li JH Recent advances in photoelectrochemical cells (PECs) for organic synthesis. Org Chem Front, 2020, 7(14): 1895-1902.

[33]

Fan W, Zhang B, Wang X, et al. Efficient hydrogen peroxide synthesis by metal-free polyterthiophene via photoelectrocatalytic dioxygen reduction. Energy Environ Sci, 2020, 13(1): 238-245.

[34]

Pulignani C, Mesa CA, Hillman SAJ, et al. Rational design of carbon nitride photoelectrodes with high activity toward organic oxidations. Angew Chem Int Ed Engl, 2022, 61(50): e202211587.

[35]

Tayebi M, Masoumi Z, Tayyebi A, et al. Photoelectrochemical epoxidation of cyclohexene on an α-Fe2O3 photoanode using water as the oxygen source. ACS Appl Mater Interfaces, 2023, 15(16): 20053-20063.

[36]

Wang B, Biesold GM, Zhang M, et al. Amorphous inorganic semiconductors for the development of solar cell, photoelectrocatalytic and photocatalytic applications. Chem Soc Rev, 2021, 50(12): 6914-6949.

[37]

Fazekas TJ, Alty JW, Neidhart EK, et al. Diversification of aliphatic C–H bonds in small molecules and polyolefins through radical chain transfer. Science, 2022, 375(6580): 545-550.

[38]

Qin Y, Zhu L, Luo S Organocatalysis in inert C–H bond functionalization. Chem Rev, 2017, 117(13): 9433-9520.

[39]

Schuchardt U, Cardoso D, Sercheli R, et al. Cyclohexane oxidation continues to be a challenge. Appl Catal A Gen, 2001, 211(1): 1-17.

[40]

Tateno H, Iguchi S, Miseki Y, et al. Photo-electrochemical C–H bond activation of cyclohexane using a WO3 photoanode and visible light. Angew Chem Int Ed, 2018, 57(35): 11238-11241.

[41]

Ma J, Mao K, Low J, et al. Efficient photoelectrochemical conversion of methane into ethylene glycol by WO3 nanobar arrays. Angew Chem Int Ed, 2021, 60(17): 9357-9361.

[42]

Zhang L, Liardet L, Luo J, et al. Photoelectrocatalytic Arene C–H amination. Nat Catal, 2019, 2(4): 266-373.

[43]

Upul Wijayantha KG, Saremi-Yarahmadi S, Peter LM Kinetics of oxygen evolution at α-Fe2O3 photoanodes: a study by photoelectrochemical impedance spectroscopy. Phys Chem Chem Phys, 2011, 13(12): 5264-5270.

[44]

Zhang Y, Zhang H, Ji H, et al. Pivotal role and regulation of proton transfer in water oxidation on hematite photoanodes. J Am Chem Soc, 2016, 138(8): 2705-2711.

[45]

Zhang Y, Zhang H, Liu A, et al. Rate-limiting O–O bond formation pathways for water oxidation on hematite photoanode. J Am Chem Soc, 2018, 140(9): 3264-3269.

[46]

Lionetti D, Suseno S, Tsui EY, et al. Effects of lewis acidic metal ions (M) on oxygen-atom transfer reactivity of heterometallic Mn3MO4 cubane and Fe3MO(OH) and Mn3MO(OH) clusters. Inorg Chem, 2019, 58(4): 2336-2345.

[47]

Jin K, Maalouf JH, Lazouski N, et al. Epoxidation of cyclooctene using water as the oxygen atom source at manganese oxide electrocatalysts. J Am Chem Soc, 2019, 141(15): 6413-6418.

[48]

Dhuri SN, Cho KB, Lee YM, et al. Interplay of experiment and theory in elucidating mechanisms of oxidation reactions by a nonheme Ru(IV)O complex. J Am Chem Soc, 2015, 137(26): 8623-8632.

[49]

Engelmann X, Malik DD, Corona T, et al. Trapping of a highly reactive oxoiron(IV) complex in the catalytic epoxidation of olefins by hydrogen peroxide. Angew Chem Int Ed, 2019, 58(12): 4012-4016.

[50]

Serrano-Plana J, Aguinaco A, Belda R, et al. Exceedingly fast oxygen atom transfer to olefins via a catalytically competent nonheme iron species. Angew Chem Int Ed, 2016, 55(21): 6310-6314.

[51]

Kang Y, Li XX, Cho KB, et al. Mutable properties of nonheme iron(III)-iodosylarene complexes result in the elusive multiple-oxidant mechanism. J Am Chem Soc, 2017, 139(22): 7444-7447.

[52]

Zhao Y, Deng C, Tang D, et al. α-Fe2O3 as a versatile and efficient oxygen atom transfer catalyst in combination with H2O as the oxygen source. Nat Catal, 2021, 4: 684-691.

[53]

Lee K, Ku H, Pak D OH radical generation in a photocatalytic reactor using TiO2 nanotube plates. Chemosphere, 2016, 149: 114-120.

[54]

Wu L, Tang D, Xue J, et al. Competitive non-radical nucleophilic attack pathways for NH3 oxidation and H2O oxidation on hematite photoanodes. Angew Chem Int Ed Engl, 2022, 61(50): e202214580.

[55]

Li Z, Luo L, Li M, et al. Photoelectrocatalytic C–H halogenation over an oxygen vacancy-rich TiO2 photoanode. Nat Commun, 2021, 12(1): 6698.

[56]

Liu D, Liu JC, Cai W, et al. Selective photoelectrochemical oxidation of glycerol to high value-added dihydroxyacetone. Nat Commun, 2019, 10(1): 1779.

[57]

Hilbrands AM, Goetz MK, Choi KS C–C bond formation coupled with C–C bond cleavage during oxidative upgrading of glycerol on a nanoporous BiVO4 photoanode. J Am Chem Soc, 2023, 145(46): 25382-25391.

[58]

Luo L, Wang ZJ, Xiang X, et al. Selective activation of benzyl alcohol coupled with photoelectrochemical water oxidation via a radical relay strategy. ACS Catal, 2020, 10(9): 4906-4913.

[59]

Zhang K, Liu J, Wang L, et al. Near-complete suppression of oxygen evolution for photoelectrochemical H2O oxidative H2O2 synthesis. J Am Chem Soc, 2020, 142(19): 8641-8648.

[60]

Novaes LFT, Liu J, Shen Y, et al. Electrocatalysis as an enabling technology for organic synthesis. Chem Soc Rev, 2021, 50(14): 7941-8002.

[61]

Francke R, Little RD Redox catalysis in organic electrosynthesis: basic principles and recent developments. Chem Soc Rev, 2014, 43(8): 2492-2521.

[62]

Bajada MA, Roy S, Warnan J, et al. A precious-metal-free hybrid electrolyzer for alcohol oxidation coupled to CO2-to-syngas conversion. Angew Chem Int Ed, 2020, 59(36): 15633-15641.

[63]

Li T, Kasahara T, He J, et al. Photoelectrochemical oxidation of organic substrates in organic media. Nat Commun, 2017, 8(1): 390.

[64]

Zheng L, Xu P, Zhao Y, et al. Solar-driven upgrading of 5-hydroxymethylfurfural on BiVO4 photoanodes: effect of TEMPO mediator and cocatalyst on reaction kinetics. Appl Catal B Environ, 2023, 331: 122679.

[65]

Cha HG, Choi KS Combined biomass valorization and hydrogen production in a photoelectrochemical cell. Nat Chem, 2015, 7(4): 328-333.

[66]

Bozell JJ, Petersen GR Technology development for the production of biobased products from biorefinery carbohydrates–the US Department of Energy’s “Top 10” revisited. Green Chem, 2010, 12(4): 539-554.

[67]

Wang JH, Li XB, Li J, et al. Photoelectrochemical cell for P–H/C–H cross-coupling with hydrogen evolution. Chem Commun, 2019, 55(70): 10376-10379.

[68]

Tateno H, Miseki Y, Sayama K Photoelectrochemical oxidation of benzylic alcohol derivatives on BiVO4/WO3 under visible light irradiation. ChemElectroChem, 2017, 4(12): 3283-3287.

[69]

Leow WR, Lum Y, Ozden A, et al. Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density. Science, 2020, 368(6496): 1228-1233.

[70]

Qu Y, Song X, Chen X, et al. Tuning charge transfer process of MoS2 photoanode for enhanced photoelectrochemical conversion of ammonia in water into gaseous nitrogen. Chem Eng J, 2020, 382: 123048.

[71]

Fan L, Bai X, Xia C, et al. CO2/carbonate-mediated electrochemical water oxidation to hydrogen peroxide. Nat Commun, 2022, 13(1): 2668.

[72]

Chung M, Jin K, Zeng JS, et al. Mechanism of chlorine-mediated electrochemical ethylene oxidation in saline water. ACS Catal, 2020, 10(23): 14015-14023.

[73]

Tateno H, Miseki Y, Sayama K Photoelectrochemical dimethoxylation of furan via a bromide redox mediator using a BiVO4/WO3 photoanode. Chem Commun, 2017, 53(31): 4378-4381.

[74]

Liu X, Chen Z, Xu S, et al. Bromide-mediated photoelectrochemical epoxidation of alkenes using water as an oxygen source with conversion efficiency and selectivity up to 100. J Am Chem Soc, 2022, 144(43): 19770-19777.

[75]

Zhao Y, Duan M, Deng C, et al. Br/BrO-mediated highly efficient photoelectrochemical epoxidation of alkenes on α-Fe2O3. Nat Commun, 2023, 14(1): 1943.

[76]

Yang J, Zhao Y, Duan M, et al. HCO3 -mediated highly efficient photoelectrochemical dioxygenation of arylalkenes: triple roles of HCO3 -derived radicals. Energy Environ Sci, 2024, 17(1): 183-189.

[77]

Shi X, Siahrostami S, Li GL, et al. Understanding activity trends in electrochemical water oxidation to form hydrogen peroxide. Nat Commun, 2017, 8(1): 701.

[78]

Fuku K, Sayama K Efficient oxidative hydrogen peroxide production and accumulation in photoelectrochemical water splitting using a tungsten trioxide/bismuth vanadate photoanode. Chem Commun, 2016, 52(31): 5406-5409.

[79]

Gill TM, Vallez L, Zheng X The role of bicarbonate-based electrolytes in H2O2 production through two-electron water oxidation. ACS Energy Lett, 2021, 6(8): 2854-2862.

[80]

Kim S, Kim KH, Oh C, et al. Artificial photosynthesis for high-value-added chemicals: old material, new opportunity. Carbon Energy, 2022, 4(1): 21-44.

AI Summary AI Mindmap
PDF

229

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/