Cu/TiO2 Photocatalysts for CO2 Reduction: Structure and Evolution of the Cocatalyst Active Form

Andrey A. Saraev, Anna Yu. Kurenkova, Denis D. Mishchenko, Alexandr L. Trigub, Evgeniy Yu. Gerasimov, Ekaterina A. Kozlova

Transactions of Tianjin University ›› 2024, Vol. 30 ›› Issue (2) : 140-151. DOI: 10.1007/s12209-024-00384-3
Research Article

Cu/TiO2 Photocatalysts for CO2 Reduction: Structure and Evolution of the Cocatalyst Active Form

Author information +
History +

Abstract

Extensive work on a Cu-modified TiO2 photocatalyst for CO2 reduction under visible light irradiation was conducted. The structure of the copper cocatalyst was established using UV–vis diffuse reflectance spectroscopy, high-resolution transmission electron microscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy. It was found that copper exists in different states (Cu0, Cu+, and Cu2+), the content of which depends on the TiO2 calcination temperature and copper loading. The optimum composition of the cocatalyst has a photocatalyst based on TiO2 calcined at 700 °C and modified with 5 wt% copper, the activity of which is 22 µmol/(h·gcat) (409 nm). Analysis of the photocatalysts after the photocatalytic reaction disclosed that the copper metal on the surface of the calcined TiO2 was gradually converted into Cu2O during the photocatalytic reaction. Meanwhile, the metallic copper on the surface of the noncalcined TiO2 did not undergo any transformation during the reaction.

Keywords

Photocatalysis / Photocatalytic CO2 conversion / Visible light / Titanium dioxide / Copper / Copper oxides / Methane formation / Photocatalyst transformation

Cite this article

Download citation ▾
Andrey A. Saraev, Anna Yu. Kurenkova, Denis D. Mishchenko, Alexandr L. Trigub, Evgeniy Yu. Gerasimov, Ekaterina A. Kozlova. Cu/TiO2 Photocatalysts for CO2 Reduction: Structure and Evolution of the Cocatalyst Active Form. Transactions of Tianjin University, 2024, 30(2): 140‒151 https://doi.org/10.1007/s12209-024-00384-3

References

[1.]
Velvizhi G, Jacqueline PJ, Shetti NP, et al.. Emerging trends and advances in valorization of lignocellulosic biomass to biofuels. J Environ Manage, 2023, 345,
CrossRef Google scholar
[2.]
Höök M, Tang X. Depletion of fossil fuels and anthropogenic climate change: a review. Energy Policy, 2013, 52: 797-809,
CrossRef Google scholar
[3.]
Lamb WF, Wiedmann T, Pongratz J, et al.. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environ Res Lett, 2021, 16(7): 073005,
CrossRef Google scholar
[4.]
Kumar A, Singh P, Raizada P, et al.. Impact of COVID-19 on greenhouse gases emissions: a critical review. Sci Total Environ, 2022, 806(Pt 1),
CrossRef Google scholar
[5.]
Shi W, Yan C, Ren Z, et al.. Review on the development of marine floating photovoltaic systems. Ocean Eng, 2023, 286: 115560,
CrossRef Google scholar
[6.]
Seneviratne SI, Donat MG, Pitman AJ, et al.. Allowable CO2 emissions based on regional and impact-related climate targets. Nature, 2016, 529(7587): 477-483,
CrossRef Google scholar
[7.]
Morseletto P, Biermann F, Pattberg P. Governing by targets: reductio ad unum and evolution of the two-degree climate target. Int Environ Agreem Polit Law Econ, 2017, 17(5): 655-676
[8.]
Murali G, Iwamura T, Shai M, et al.. Future temperature extremes threaten land vertebrates. Nature, 2023, 615(7952): 461-467,
CrossRef Google scholar
[9.]
Steeneveldt R, Berger B, Torp TA. CO2 capture and storage. Chem Eng Res Des, 2006, 84(9): 739-763,
CrossRef Google scholar
[10.]
Anwar MN, Fayyaz A, Sohail NF, et al.. CO2 capture and storage: a way forward for sustainable environment. J Environ Manag, 2018, 226: 131-144,
CrossRef Google scholar
[11.]
Ma J, Miao TJ, Tang J. Charge carrier dynamics and reaction intermediates in heterogeneous photocatalysis by time-resolved spectroscopies. Chem Soc Rev, 2022, 51(14): 5777-5794,
CrossRef Google scholar
[12.]
Fang S, Rahaman M, Bharti J, et al.. Photocatalytic CO2 reduction. Nat Rev Meth Primers, 2023, 3: 61,
CrossRef Google scholar
[13.]
Nakata K, Fujishima A. TiO2 photocatalysis: design and applications. J Photochem Photobiol C Photochem Rev, 2012, 13(3): 169-189,
CrossRef Google scholar
[14.]
Leong S, Razmjou A, Wang K, et al.. TiO2 based photocatalytic membranes: a review. J Membr Sci, 2014, 472: 167-184,
CrossRef Google scholar
[15.]
Li Z, Wang S, Wu J, et al.. Recent progress in defective TiO2 photocatalysts for energy and environmental applications. Renew Sustain Energy Rev, 2022, 156: 111980,
CrossRef Google scholar
[16.]
Du S, Lian J, Zhang F. Visible light-responsive N-doped TiO2 photocatalysis: synthesis, characterizations, and applications. Trans Tianjin Univ, 2022, 28(1): 33-52,
CrossRef Google scholar
[17.]
Nur ASM, Sultana M, Mondal A, et al.. A review on the development of elemental and codoped TiO2 photocatalysts for enhanced dye degradation under UV–vis irradiation. J Water Process Eng, 2022, 47: 102728,
CrossRef Google scholar
[18.]
Wang J, Jing L, Xue L, et al.. Enhanced activity of bismuth-compounded TiO2 nanoparticles for photocatalytically degrading rhodamine B solution. J Hazard Mater, 2008, 160(1): 208-212,
CrossRef Google scholar
[19.]
Jing L, Wang J, Qu Y, et al.. Effects of surface-modification with Bi2O3 on the thermal stability and photoinduced charge property of nanocrystalline anatase TiO2 and its enhanced photocatalytic activity. Appl Surf Sci, 2009, 256(3): 657-663,
CrossRef Google scholar
[20.]
Goei R, Lim TT. Ag-decorated TiO2 photocatalytic membrane with hierarchical architecture: photocatalytic and anti-bacterial activities. Water Res, 2014, 59: 207-218,
CrossRef Google scholar
[21.]
Meng A, Zhang L, Cheng B, et al.. Dual cocatalysts in TiO2 photocatalysis. Adv Mater, 2019, 31(30): 1807660,
CrossRef Google scholar
[22.]
Kozlova EA, Parmon VN. Heterogeneous semiconductor photocatalysts for hydrogen production from aqueous solutions of electron donors. Russ Chem Rev, 2017, 86(9): 870-906,
CrossRef Google scholar
[23.]
Esrafili A, Salimi M, Jonidi Jafari A, et al.. Pt-based TiO2 photocatalytic systems: a systematic review. J Mol Liq, 2022, 352: 118685,
CrossRef Google scholar
[24.]
Anderson PA. The work function of copper. Phys Rev, 1949, 76(3): 388-390,
CrossRef Google scholar
[25.]
Mitchell E, Mitchell J. The work functions of copper, silver and aluminium. Proc R Soc Lond A, 1951, 210(1100): 70-84,
CrossRef Google scholar
[26.]
Xu R, Xu H, Ning S, et al.. Coupling of Cu catalyst and phosphonated Ru complex light absorber with TiO2 as bridge to achieve superior visible light CO2 photoreduction. Trans Tianjin Univ, 2020, 26(6): 470-478,
CrossRef Google scholar
[27.]
Aman N, Mishra T, Hait J, et al.. Simultaneous photoreductive removal of copper (II) and selenium (IV) under visible light over spherical binary oxide photocatalyst. J Hazard Mater, 2011, 186(1): 360-366,
CrossRef Google scholar
[28.]
Zhai Q, Xie S, Fan W, et al.. Photocatalytic conversion of carbon dioxide with water into methane: platinum and copper(I) oxide co-catalysts with a core–shell structure. Angew Chem Int Ed Engl, 2013, 52(22): 5776-5779,
CrossRef Google scholar
[29.]
Wang W, Deng C, Xie S, et al.. Photocatalytic C–C coupling from carbon dioxide reduction on copper oxide with mixed-valence copper(I)/copper(II). J Am Chem Soc, 2021, 143(7): 2984-2993,
CrossRef Google scholar
[30.]
Kurenkova AY, Kremneva AM, Saraev AA, et al.. Influence of thermal activation of titania on photoreactivity of Pt/TiO2 in hydrogen production. Catal Lett, 2021, 151(3): 748-754,
CrossRef Google scholar
[31.]
Kurenkova AY, Yakovleva AY, Saraev AA, et al.. Copper-modified titania-based photocatalysts for the efficient hydrogen production under UV and visible light from aqueous solutions of glycerol. Nanomaterials, 2022, 12(18): 3106,
CrossRef Google scholar
[32.]
Fairley N, Fernandez V, Richard-Plouet M, et al.. Systematic and collaborative approach to problem solving using X-ray photoelectron spectroscopy. Appl Surf Sci Adv, 2021, 5: 100112,
CrossRef Google scholar
[33.]
Chernyshov AA, Veligzhanin AA, Zubavichus YV. Structural materials science end-station at the kurchatov synchrotron radiation source: recent instrumentation upgrades and experimental results. Nucl Instrum Meth Phys Res Sect A Accel Spectrometers Detect Assoc Equip, 2009, 603(1–2): 95-98,
CrossRef Google scholar
[34.]
Ravel B, Newville M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat, 2005, 12(Pt 4): 537-541,
CrossRef Google scholar
[35.]
Saraev AA, Kurenkova AY, Gerasimov EY, et al.. Broadening the action spectrum of TiO2-based photocatalysts to visible region by substituting platinum with copper. Nanomaterials, 2022, 12(9): 1584,
CrossRef Google scholar
[36.]
Markovskaya DV, Zhurenok AV, Kurenkova AY, et al.. New titania-based photocatalysts for hydrogen production from aqueous-alcoholic solutions of methylene blue. RSC Adv, 2020, 10(56): 34137-34148,
CrossRef Google scholar
[37.]
Sawicka-Chudy P, Sibiński M, Wisz G, et al.. Numerical analysis and optimization of Cu2O/TiO2, CuO/TiO2, heterojunction solar cells using SCAPS. J Phys: Conf Ser, 2018, 1033: 012002
[38.]
Basnet P, Anderson E, Zhao Y. Hybrid Cu xO–TiO2 nanopowders prepared by ball milling for solar energy conversion and visible-light-induced wastewater treatment. ACS Appl Nano Mater, 2019, 2(4): 2446-2455,
CrossRef Google scholar
[39.]
Wang H, Xu JZ, Zhu JJ, et al.. Preparation of CuO nanoparticles by microwave irradiation. J Cryst Growth, 2002, 244(1): 88-94,
CrossRef Google scholar
[40.]
Balamurugan B, Aruna I, Mehta BR, et al.. Size-dependent conductivity-type inversion in Cu2O nanoparticles. Phys Rev B, 2004, 69(16): 165419,
CrossRef Google scholar
[41.]
Suzuki K, Tanaka N, Ando A, et al.. Optical properties and fabrication of cuprous oxide nanoparticles by microemulsion method. J Am Ceram Soc, 2011, 94(8): 2379-2385,
CrossRef Google scholar
[42.]
Karthikeyan S, Kumar S, Durndell LJ, et al.. Size-dependent visible light photocatalytic performance of Cu2O nanocubes. ChemCatChem, 2018, 10(16): 3554-3563,
CrossRef Google scholar
[43.]
Pedersen DB, Wang S. Surface plasmon resonance spectra of 2.8 ± 0.5 nm diameter copper nanoparticles in both near and far fields. J Phys Chem C, 2007, 111(47): 17493-17499,
CrossRef Google scholar
[44.]
Guo X, Hao C, Jin G, et al.. Copper nanoparticles on graphene support: an efficient photocatalyst for coupling of nitroaromatics in visible light. Angew Chem Int Ed, 2014, 53(7): 1973-1977,
CrossRef Google scholar
[45.]
Wöllner A, Lange F, Schmelz H, et al.. Characterization of mixed copper-manganese oxides supported on titania catalysts for selective oxidation of ammonia. Appl Catal A Gen, 1993, 94(2): 181-203,
CrossRef Google scholar
[46.]
Fedorov A, Saraev A, Kremneva A, et al.. Kinetic and mechanistic study of CO oxidation over nanocomposite Cu−Fe−Al oxide catalysts. ChemCatChem, 2020, 12(19): 4911-4921,
CrossRef Google scholar
[47.]
Fedorov AV, Kukushkin RG, Yeletsky PM, et al.. Temperature-programmed reduction of model CuO, NiO and mixed CuO–NiO catalysts with hydrogen. J Alloys Compd, 2020, 844: 156135,
CrossRef Google scholar
[48.]
McIntyre NS, Cook MG. X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper. Anal Chem, 1975, 47(13): 2208-2213,
CrossRef Google scholar
[49.]
Bukhtiyarov VI, Kaichev VV, Prosvirin IP. X-ray photoelectron spectroscopy as a tool for in situ study of the mechanisms of heterogeneous catalytic reactions. Top Catal, 2005, 32(1): 3-15,
CrossRef Google scholar
[50.]
Moretti G. Auger parameter and Wagner plot in the characterization of chemical states: initial and final state effects. J Electron Spectrosc Relat Phenom, 1995, 76: 365-370,
CrossRef Google scholar
[51.]
Strohmeier B. Surface spectroscopic characterization of Cu/Al2O3 catalysts. J Catal, 1985, 94(2): 514-530,
CrossRef Google scholar
[52.]
Poulston S, Parlett PM, Stone P, et al.. Surface oxidation and reduction of CuO and Cu2O studied using XPS and XAES. Surf Interface Anal, 1996, 24(12): 811-820,
CrossRef Google scholar
[53.]
Batista J, Pintar A, Mandrino D, et al.. XPS and TPR examinations of γ-alumina-supported Pd–Cu catalysts. Appl Catal A Gen, 2001, 206(1): 113-124,
CrossRef Google scholar
[54.]
Richter M, Fait MJG, Eckelt R, et al.. Gas-phase carbonylation of methanol to dimethyl carbonate on chloride-free Cu-precipitated zeolite Y at normal pressure. J Catal, 2007, 245(1): 11-24,
CrossRef Google scholar
[55.]
Kremneva AM, Fedorov AV, Saraev AA, et al.. In situ X-ray absorption spectroscopy studies of carbon monoxide oxidation in the presence of nanocomposite Cu–Fe–Al oxide catalysts. Kinet Catal, 2021, 62(1): 160-171,
CrossRef Google scholar
[56.]
Ghodselahi T, Vesaghi MA, Shafiekhani A, et al.. XPS study of the Cu@Cu2O core-shell nanoparticles. Appl Surf Sci, 2008, 255(5): 2730-2734,
CrossRef Google scholar
[57.]
Foucher AC, Yang S, Rosen DJ, et al.. Synthesis and characterization of core-shell Cu–Ru, Cu–Rh, and Cu–Ir nanoparticles. J Am Chem Soc, 2022, 144(17): 7919-7928,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/