Rockburst prediction using machine learning: Comparative study of algorithms and features

Ruilang Cao , Haohan Xiao , Jiuping Li , Zuyu Chen , Siyang Chen , Xiaonan Wang

Smart Underground Engineering ›› 2025, Vol. 1 ›› Issue (2) : 77 -91.

PDF (6168KB)
Smart Underground Engineering ›› 2025, Vol. 1 ›› Issue (2) :77 -91. DOI: 10.1016/j.sue.2025.09.001
Research Paper
research-article

Rockburst prediction using machine learning: Comparative study of algorithms and features

Author information +
History +
PDF (6168KB)

Abstract

Rockbursts represent a critical dynamic hazard in deep tunnel construction; however, the scarcity of labeled data poses significant challenges for accurate predictions. Hence, we reformulate the conventional four-class rockburst classification task into a binary-classification problem. A comprehensive rockburst dataset was compiled based on an extensive literature review. Six machine-learning algorithms-support vector machine (SVM), K-nearest neighbor (KNN), decision tree (DT), multilayer perceptron (MLP), random forest (RF), and extremely randomized trees (ETs)-were implemented and evaluated across multiple feature set configurations. The results are as follows: (1) feature set selection substantially affects predictive accuracy, with higher-dimensional feature combinations yielding superior performance; (2) ensemble methods(RF and ETs) outperform SVM and MLP by reducing variance and enhancing generalization on complex rockburst data; and (3) the binary-classification framework consistently outperforms the conventional four-class scheme, achieving accuracies above 0.80 by simplifying decision boundaries and reducing interclass ambiguity. These findings contribute to the development of a real-time online framework for rockburst risk prediction and offer valuable insights into proactive hazard mitigation in underground engineering.

Keywords

Machine learning / Rockburst prediction / Binary classification / Feature selection / Ensemble methods

Cite this article

Download citation ▾
Ruilang Cao, Haohan Xiao, Jiuping Li, Zuyu Chen, Siyang Chen, Xiaonan Wang. Rockburst prediction using machine learning: Comparative study of algorithms and features. Smart Underground Engineering, 2025, 1(2): 77-91 DOI:10.1016/j.sue.2025.09.001

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. Zhou, X. Li, H. Mitri, Evaluation method of rockburst: state-of-the- art literature review, Tunn. Undergr. Space Technol. 81 (2018) 632-659, doi: 10.1016/j.tust.2018.08.029.

[2]

X. Feng, J. Liu, B. Chen, Y. Xiao, G. Feng, F. Zhang, Monitoring, warning, and control of rockburst in deep metal mines, Engineering 3 (2017) 538-545, doi: 10.1016/J.ENG.2017.04.013.

[3]

S. Wu, J. Zhang, Z. Song, W. Fan, Y. Zhang, X. Dong, Y. Zhang, B. Kan, J. Zhang Z.Chen, S. Ma, Review of the development status of rock burst dis- aster prevention system in China, J. Cent. South Univ. 30 (2023) 3763-3789, doi: 10.1007/s11771-023-5478-2.

[4]

M. He, T. Cheng, Y. Qiao, H. Li, A review of rockburst: experiments, theories, and simulations, J. Rock Mech. Geotech. 15 (2023) 1312-1353, doi: 10.1016/j.jrmge.2022.07.014.

[5]

X. Gao, M. Shi, X. Song, C. Zhang, H. Zhang, Recurrent neural networks for real- time prediction of TBM operating parameters, Automat. Constr. 98 (2019) 225-235, doi: 10.1016/j.autcon.2018.11.013.

[6]

H. Xiao, Z. Chen, R. Cao, Y. Cao, L. Zhao, Y. Zhao, Prediction of shield machine pos- ture using the GRU algorithm with adaptive boosting: A case study of Chengdu Sub- way project, Transp. Geotech. 37 (2022) 100837, doi: 10.1016/j.trgeo.2022.100837.

[7]

Z. Xu, T. Yu, P. Lin, S. Li, Adverse geology identification through mineral anomaly analysis during tunneling: methodology and case study, Engineering 27 (2023) 150-160, doi: 10.1016/j.eng.2022.09.013.

[8]

P. Wang, S. Zhang, W. Chen, Y. Xue, Z. Qu, H. Xiao, M. Su, K. Zhang, A com- prehensive analysis method for adverse geology in tunnels based on geological information and multi-source geophysical data, Appl. Geophys. 22 (2025) 1-10, doi: 10.1007/s11770-025-1174-3.

[9]

T. Lei, F. Lv, J. Liu, J. Feng, Research on electrical equipment monitoring and early warning system based on internet of things technology, Math. Probl. Eng. 2022 (2022) 6255277, 10.1155/2022/6255277.

[10]

M. Askaripour, A. Saeidi, A. Rouleau, P. Mercier-Langevin, Rockburst in under- ground excavations: A review of mechanism, classification, and prediction methods, Undergr. Space. 7 (2022) 577-607, doi: 10.1016/j.undsp.2021.11.008.

[11]

Y. Pu, D. Apel, V. Liu, H. Mitri, Machine learning methods for rockburst prediction-state-of-the-art review, Int. J. Min. Sci. Technol. 29 (2019) 565-570, doi: 10.1016/j.ijmst.2019.06.009.

[12]

Y. Zhang, K. Fang, M. He, D. Liu, J. Wang, Z. Guo, Rockburst prediction using artificial intelligence techniques: A review, Rock Mech. Bull. 3 (2024) 100-129, doi: 10.1016/j.rockmb.2024.100129.

[13]

Y. Qiu, J. Zhou, Short-term rockburst prediction in underground project: insights from an explainable and interpretable ensemble learning model, Acta Geotech. 18 (2023) 6655-6685, doi:10.1007/s11440-023-01988-0.

[14]

M.J. Rahaman, A comprehensive review to understand the definitions, advantages, disadvantages and applications of machine learning algorithms, Int. J. Comput. Appl. 186 (2024) 43-47, doi: 10.5120/ijca2024923868.

[15]

A. Keneti, B.A. Sainsbury, Review of published rockburst events and their contribut- ing factors, Eng. Geol. 246 (2018) 361-373, doi: 10.1016/j.enggeo.2018.10.005.

[16]

J. Chen, J. Gao, Y. Pu, M. Gao, L. Wei, C. Wang, B. Peng, X. Zhao, G. Zhang, Z. Zhang, The rock burst hazard evaluation using statistical learning approaches, Shock Vib. 2021 (2021) 5576480, doi:10.1155/2021/5576480.

[17]

H. Xiao, W. Yang, J. Hu, Y. Zhang, L. Jing, Z. Chen, Significance and methodol- ogy: preprocessing the big data for machine learning on TBM performance, Undergr. Space. 7 (2022) 680-701, doi: 10.1016/j.undsp.2021.12.003.

[18]

W. Liang, A. Sari, G. Zhao, S.D. McKinnon, H. Wu, Short-term rockburst risk pre- diction using ensemble learning methods, Nat. Hazards. 104 (2020) 1923-1946, doi: 10.1007/s11069-020-04255-7.

[19]

J. Zhou, X. Li, H.S. Mitri, Classification of rockburst in underground projects: comparison of ten supervised learning methods, J. Comput. Civil Eng. 30 (2016) 04016003, doi: 10.1061/(ASCE)CP.1943-5487.0000553.

[20]

H. Chen, N. Li, D. Nie, Y. Shang, A model for prediction of rockburst by artificial neural network, Chin. J. Geotech. Eng. 24 (2002) 229-232, doi: 10.3321/j.issn:1000-4548.2002.02.023.

[21]

Y. Bai, J. Deng, L. Dong, X. Li, Fisher discriminant analysis model of rock burst prediction and its application in deep hard rock engineering, J. Cent. South Univ. 40 (2009) 1417-1422, doi: 10.1007/s12404-010-0207-5.

[22]

L. Dong, X. Li, P. Kang, Prediction of rockburst classification using Random Forest, T. Nonferr. Metal. Soc. 23 (2013) 472-477, doi: 10.1016/S1003-6326(13)62487-5.

[23]

Y. Jia, Q. Lu, Y. Shang, Rockburst prediction using particle swarm optimization al- gorithm and general regression neural network, Chin. J. Rock Mech. Eng. 32 (2013) 343-348 https://rockmech.whrsm.ac.cn/CN/Y2013/V32/I2/343.

[24]

Y. Pu, D.B. Apel, C. Wang, B. Wilson, Evaluation of burst liability in kim- berlite using support vector machine, Acta Geophys 66 (2018) 973-982, doi: 10.1007/s11600-018-0178-2.

[25]

Y. Lin, K. Zhou, J. Li, Application of cloud model in rock burst prediction and per- formance comparison with three machine learning algorithms, IEEE Access 6 (2018) 30958-30968, doi: 10.1109/ACCESS.2018.2839754.

[26]

R. Shirani Faradonbeh, A. Taheri, Long-term prediction of rockburst hazard in deep underground openings using three robust data mining techniques, Eng. Comput-Germany. 35 (2019) 659-675, doi: 10.1007/s00366-018-0624-4.

[27]

S. Wu, Z. Wu, C. Zhang, Rock burst prediction probability model based on case analysis, Tunn. Undergr. Space Technol. 93 (2019) 103069, doi: 10.1016/j.tust.2019.103069.

[28]

R. Shirani Faradonbeh, S. Shaffiee Haghshenas, A. Taheri, R. Mikaeil, Applica- tion of self-organizing map and fuzzy c-mean techniques for rockburst cluster-ing in deep underground projects, Neural Comput. Appl. 32 (2020) 8545-8559, doi: 10.1007/s00521-019-04353-z.

[29]

S. Wu, C. Zhang, Z. Cheng, Prediction of intensity classification of rock- burst based on PCA-PNN principle, J. China Coal Soc. 44 (2019) 2767-2776, doi: 10.13225/j.cnki.jccs.2018.1519.

[30]

E. Ghasemi, H. Gholizadeh, A.C. Adoko, Evaluation of rockburst occurrence and intensity in underground structures using decision tree approach, Eng. Comput-Germany. 36 (2020) 213-225, doi: 10.1007/s00366-018-00695-9.

[31]

J. Zhou, H. Guo, M. Koopialipoor, D.Jahed Armaghani, M.M. Tahir, Investigating the effective parameters on the risk levels of rockburst phenomena by develop- ing a hybrid heuristic algorithm, Eng. Comput-Germany. 37 (2021) 1679-1694, doi: 10.1007/s00366-019-00908-9.

[32]

Y. Xue, C. Bai, D. Qiu, F. Kong, Z. Li, Predicting rockburst with database using parti- cle swarm optimization and extreme learning machine, Tunn. Undegre. Space Tech- nol. 98 (2020) 103287, doi: 10.1016/j.tust.2020.103287.

[33]

X. Xie, D. Li, L. Kong, Y. Ye, S. Gao, Rockburst propensity prediction model based on CRITIC-XGB algorithm, Chin. J. Rock Mech. Eng. 39 (2020) 1975-1982, doi: 10.13722/j.cnki.jrme.2019.1049.

[34]

R. Tian, H. Meng, S. Chen, C. Wang, F. Zhang, Prediction of intensity classification of rockburst based on deep neural network, J. China Coal Soc. 45 (2020) 191-201, doi: 10.13225/j.cnki.jccs.2019.1763.

[35]

M. Gao, C. Zhang, H. Zhang, Z. Wu, Rockburst intensity level prediction based on SMOTEENN-CGAN-STAKCING, J. Eng. Geol. 32 (2024) 2264-2276, doi: 10.13544/j.cnki.jeg.2024-0112.

[36]

J. Zhou, X. Li, X. Shi, Long-term prediction model of rockburst in underground open- ings using heuristic algorithms and support vector machines, Safety Sci. 50 (2012) 629-644, doi: 10.1016/j.ssci.2011.08.065.

[37]

X. Liu, G. Wang, L. Song, G. Han, W. Chen, H. Chen, A new rockburst criterion of stress-strength ratio considering stress distribution of surrounding rock, Bull. Eng. Geol. Environ. 82 (2023), doi: 10.1007/s10064-022-03042-x.

[38]

L. Denby, C. Mallows, Variations on the histogram, J. Comput. Graph. Stat. 18 (2009) 21-31 http://www.jstor.org/stable/25703551.

[39]

A. Vabalas, E. Gowen, E. Poliakoff, A.J. Casson, Machine learning algorithm validation with a limited sample size, Plos One 14 (2019), doi: 10.1371/jour-nal.pone.0224365.

[40]

J. Zhou, Y. Zhang, C. Li, H. He, X. Li, Rockburst prediction and pre- vention in underground space excavation, Undergr. Space 14 (2024) 70-98, doi: 10.1016/j.undsp.2023.05.009.

[41]

A. Mazaira, P. Konicek, Intense rockburst impacts in deep underground construction and their prevention, Can. Geotech. J. 52 (2015) 1426-1439, doi: 10.1139/cgj-2014-0359.

[42]

L. Huang, J. Qin, Y. Zhou, F. Zhu, L. Liu, L. Shao, Normalization techniques in train- ing dnns: methodology, analysis and application, IEEE Trans. Pattern Anal. Mach. Intell. 45 (2023) 10173-10196, doi: 10.1109/TPAMI.2023.3250241.

[43]

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, A. Müller, J. Nothman, G. Louppe, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van- derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, ÉDuchesnay, Scikit- learn: machine learning in Python, J. Mach. Learn. Res. 12 (2011) 2825-2830, doi: 10.48550/arXiv.1201.0490.

[44]

R. Yacouby, D. Axman, Probabilistic extension of precision, recall, and f1 score for more thorough evaluation of classification models, in: Proceedings of the first workshop on evaluation and comparison of NLP systems, 2020, pp. 79-91, doi: 10.18653/v1/2020.eval4nlp-1.9.

[45]

M. Heydarian, T.E. Doyle, R. Samavi, MLCM: multi-label confusion matrix, IEEE Access 10 (2022) 19083-19095, doi: 10.1109/ACCESS.2022.3151048.

[46]

M.A. Chandra, S.S. Bedi, Survey on SVM and their application in image classification, Int. J. Inf. tecnol. 13 (2021) 1-11, doi: 10.1007/s41870-017-0080-1.

[47]

R. Liu, Y. Ye, N. Hu, H. Chen, X. Wang, Grading prediction model of rockburst based on rough set-multidimensional normal cloud, Metal Mine 3 (2019) 48-55, doi: 10.1007/s00521-018-3859-5.

[48]

C. Song, D. Li,Artificial neural networks for predicting rockburst in deep mining, in:International Symposium on Safety Science and Technology, 2007, pp. 846-851.

[49]

W. Yang, J. Zhao, J. Li, Z. Chen, Probabilistic machine learning approach to predict incompetent rock masses in TBM construction, Acta Geotech. 18 (2023) 4973-4991, doi: 10.1007/s11440-023-01871-y.

[50]

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, C. Aaron, Y. Bengio, Generative adversarial networks, Commun. Acm 2 (2014) 2672-2680, doi: 10.48550/arXiv.1406.2661.

[51]

F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, Q. He, A comprehensive survey on transfer learning, Proc. IEEE 109 (2020) 43-76, doi: 10.1109/JPROC.2020.3004555.

[52]

C. Finn, P. Abbeel, S. Levine, Model-agnostic meta-learning for fast adap- tation of deep networks, Int. Conf. Mach. Learn. 70 (2017) 1126-1135, doi: 10.48550/arXiv.1703.03400.

[53]

A. Parnami, M. Lee, Learning from few examples: A summary of approaches to few- shot learning, arXiv preprint arXiv (2022), doi:10.48550/arXiv.2203.04291.

[54]

M. Guo, T. Xu, J. Liu, Z. Liu, P. Jiang, T. Mu, S. Zhang, R. Martin, M. Cheng, S. Hu, Attention mechanisms in computer vision: A survey, Comput. Vis. Media 8 (2022) 331-368, doi: 10.1007/s41095-022-0271-y.

[55]

L.V.D. Maaten, G. Hinton, Visualizing data using t-SNE, J. Mach. Learn. Res. 9 (2008) 2579-2605.

AI Summary AI Mindmap
PDF (6168KB)

336

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/