Spatiotemporal evolution characteristics of inundation in multi-level subway stations and inter-station tunnels: A multi-stage quantitative model

Gaohan Jin , Chenglu Gao , Zongqing Zhou , Hanchen Tu , Xinbo Jiang , Dijun Wang , Zhiliang Zhang , Xiaohan Li

Smart Underground Engineering ›› 2025, Vol. 1 ›› Issue (2) : 147 -160.

PDF (6340KB)
Smart Underground Engineering ›› 2025, Vol. 1 ›› Issue (2) :147 -160. DOI: 10.1016/j.sue.2025.08.001
Research Paper
research-article

Spatiotemporal evolution characteristics of inundation in multi-level subway stations and inter-station tunnels: A multi-stage quantitative model

Author information +
History +
PDF (6340KB)

Abstract

With the accelerating pace of urbanisation, urban flooding disasters are occurring with increasing frequency due to extreme weather events. Subway stations are particularly vulnerable to such flooding, where water ingress can lead to severe casualties and significant property losses. However, the spatiotemporal characteristics of water inundation in multi-level stations and their connecting tunnels remain inadequately understood. In this study, a scaled physical model comprising two multi-level subway stations and two tunnel segments was developed, and similarity ratios for the key parameters relevant to subway flooding experiments were derived. A series of physical experiments were conducted under varying water inflow rates to explore the entire process of station inundation and to analyse the propagation dynamics of floodwater through the stations and tunnels. The inundation process was categorised into three distinct stages: energy release diffusion, stable propagation, and cumulative rise. The multi-stage characteristics of the water level rise process were identified, including a previously unreported water level chasing effect occurring in the platform level of the connected station. A multi-stage quantitative model was developed to characterise the water level rise in multi-level stations and tunnels, and its accuracy was validated through physical experiments. These findings provide valuable references for flood disaster monitoring and early warning systems, personnel evacuation planning, and drainage system design in subway systems.

Keywords

Underground flood / Physical experiment / Spatiotemporal evolution / Station-tunnel-station model / Water level prediction

Cite this article

Download citation ▾
Gaohan Jin, Chenglu Gao, Zongqing Zhou, Hanchen Tu, Xinbo Jiang, Dijun Wang, Zhiliang Zhang, Xiaohan Li. Spatiotemporal evolution characteristics of inundation in multi-level subway stations and inter-station tunnels: A multi-stage quantitative model. Smart Underground Engineering, 2025, 1(2): 147-160 DOI:10.1016/j.sue.2025.08.001

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

X. Liu, F. Pei, Y. Wen, X. Li, S. Wang, C. Wu, Y. Cai, J. Wu, J. Chen, K. Feng, J. Liu, K. Hubacek, S.J. Davis, W. Yuan, L. Yu, Z. Liu, Global urban expansion offsets climate-driven increases in terrestrial net primary productivity, Nat. Commun. 10 (2019) 1-8, doi: 10.1038/s41467-019-13462-1.

[2]

X. Dong, Z. Chen, Y. Luo, Z. Wang, Y. Lin, J. Su, Numerical investigation and dy- namics of pollutant dispersion in underground restroom ventilation, J. Build. Eng. 88 (2024) 109132, doi: 10.1016/J.JOBE.2024.109132.

[3]

K. Halicioglu, E. Erten, C. Rossi, Monitoring deformations of Istanbul metro line stations through Sentinel-1 and levelling observations, Environ. Earth Sci. 80 (2021) 1-10, doi: 10.1007/S12665-021-09644-0/FIGURES/7.

[4]

W. Chen, X.-Y. Tan, J. Yang, Review of state-of-the-art in structural health monitoring of tunnel engineering, Smart Undergr. Eng. (2025), doi: 10.1016/J.SUE.2025.05.004.

[5]

J. Niu, D. Zhou, X. Liang, T. Liu, S. Liu, Numerical study on the aerodynamic pressure of a metro train running between two adjacent platforms, Tunn. Undergr. Space Technol. 65 (2017) 187-199, doi: 10.1016/J.TUST.2017.03.006.

[6]

K. Wu, Y. Yu, S. Cui, Q. Zhang, Construction mechanical mechanism of shallow subway tunnel group with large-span variable cross section, Geotech. Geol. Eng. 36 (2018) 3879-3891, doi: 10.1007/S10706-018-0579-7/FIGURES/16.

[7]

F. Wu, Y. Huang, R. Xu, C. Yu, X. Lin, X. Pan, J. Lu, The characteristics of passen- ger heat loss and thermal environment in a subway cabin, Phys. Fluids. 37 (2025) 083309, 10.1063/5.0256344/3339132.

[8]

M. Wang, G. Chen, W. Liu, C. Cui, Numerical simulation and disaster prevention strategies for flood intrusion process in subway stations, Int. J. Disaster Risk Reduct. 114 (2024) 104984, doi: 10.1016/J.IJDRR.2024.104984.

[9]

H. Cui, J. Li, Q. Mao, Q. Hu, C. Dong, Y. Tao, STSD: A large-scale benchmark for semantic segmentation of subway tunnel point cloud, Tunn. Under Space Technol. 150 (2024) 105829, doi: 10.1016/J.TUST.2024.105829.

[10]

M. Juraeva, K.J. Ryu, S.H. Jeong, D.J. Song, Influences of the train-wind and air- curtain to reduce the particle concentration inside a subway tunnel, Tunn. Undergr. Space Technol. 52 (2016) 23-29, doi: 10.1016/J.TUST.2015.11.008.

[11]

W. Du, J. Wang, J. Liu, H. Wang, J. Zhou, C. Mei, S. Nazli, Quantitative assessment of urban flood disaster damages using the S-curve - A case study of Zhengzhou City, J. Hydrol. (Amst) 658 (2025) 133169, doi: 10.1016/J.JHYDROL.2025.133169.

[12]

Y. Li, C. Zhang, G. Zhang, The development characteristics and formation modes of rainstorm-triggered flash flood disasters in the Hengduan Mountains, J. Geogr. Sci. 35 (2025) 619-640, doi: 10.1007/S11442-025-2337-0.

[13]

X. Guan, Y. Liu, Y. Meng, H. Wang, M. Liu, Risk assessment of flood disaster in cities based on “disaster-pregnant, disaster-causing, disaster-forming and disaster-curing, Water Resour. Manag. 39 (2024) 1521-1549, doi: 10.1007/S11269-024-04035-Z.

[14]

M. Wang, G. Chen, W. Liu, C. Cui, Numerical simulation of the water flow field on subway stairs and evaluation of people safety evacuation, J. Hydroinformatics 26 (2024) 2557-2580, doi: 10.2166/HYDRO.2024.105.

[15]

H. Sun, M. Li, H. Jiang, X. Ruan, W. Shou, Inundation resilience analysis of Metro- network from a complex system perspective using the grid hydrodynamic model and FBWM approach: A case study of Wuhan, Remote Sens. 14 (2022) 3451, https://doi.org/10.3390/RS14143451.

[16]

Q. Li, J. Xia, B. Dong, M. Zhou, Near-field flow dynamics of grate inlets during urban floods, Phys. Fluids 34 (2022) 104102, 10.1063/5.0100438/2847826.

[17]

E. Sosa, G. Thompson, E. Barbero, Testing of full-scale inflatable plug for flood mit- igation in tunnels, Transp. Res. Rec. 2407 (2014) 59-67, doi: 10.3141/2407-06.

[18]

D. Watson, C. Lawrence, R. Essex, M. Shultz, B. Larsen, Design and construction of a water supply tunnel under New York Harbor, USA, Proc. Inst. Civ. Eng. Civ. Eng. 173 (2020) 177-186, doi: 10.1680/JCIEN.19.00041.

[19]

J.A. Smith, M.L. Baeck, Y. Su, M. Liu, G.A. Vecchi,Strange storms: Rainfall extremes from the remnants of Hurricane Ida (2021) in the Northeastern US, Water Resour. Res. 59 (2023) e2022WR033934, 10.1029/2022WR033934.

[20]

Y. Wang, H. Josephs, Z. Duan, J. Gong, The impact of electrical hazards from overhead power lines on urban search and rescue operations during extreme flood events, Int. J. Disaster Risk Reduct. 104 (2024) 104359, doi: 10.1016/J.IJDRR.2024.104359.

[21]

C. Mossel, S.A. Hill, N.R. Samal, J.F. Booth, N. Devineni, Increasing extreme hourly precipitation risk for New York City after Hurricane Ida, Sci. Rep. 14 (2024) 1-13, doi: 10.1038/s41598-024-78704-9.

[22]

Z. Wang, J. Dong, Y. Zhao, Z. Wang, Analysis of fluid-Structure coupling of sudden water deformation in tunnels under construction, Water (Basel) 16 (2024) 3479, 10.3390/W16233479.

[23]

Y. Gong, X. Xu, K. Tian, Z. Li, M. Wang, J. Li, Subway station flood risk management level analysis, J. Hydrol. 638 (2024) 131473, doi: 10.1016/J.JHYDROL.2024.131473.

[24]

D. Sun, H. Wang, U. Lall, J. Huang, G. Liu, Subway travel risk evaluation during flood events based on smart card data, Geomatics Nat. Hazards Risk 13 (2022) 2796-2818, doi: 10.1080/19475705.2022.2134056.

[25]

Y. Li, D. Xu, J. Wang, J. Liu, Y. Wang, J. Jiang, Simulation of subway flood evac- uation based on modified social force model, Tunn. Undergr. Space Technol. 156 (2025) 106244, doi: 10.1016/J.TUST.2024.106244.

[26]

W. Ju, J. Wu, H. Cao, Q. Kang, S.S.S. Ali, Z. Xing, Flood risk assessment of sub- way stations based on projection pursuit model optimized by whale algorithm: A case study of Changzhou, China, Int. J. Disaster Risk Reduct. 98 (2023) 104068, doi: 10.1016/J.IJDRR.2023.104068.

[27]

J. Lu, Z. Lin, H. Lin, Numerical analysis of flood invasion path and mass flow rate in subway stations under heavy rainfall conditions, Appl. Sci. 14 (2024) 7497, 10.3390/APP14177497.

[28]

S. Cao, M. Wang, G. Zeng, X. Li, Simulation of crowd evacuation in subway sta- tions under flood disasters, IEEE Trans. Intell. Transp. Syst. 25 (2024) 11858-11867, doi: 10.1109/TITS.2024.3372994.

[29]

G. Gao, M.A. Meguid, Microscale characterization of fracture growth in in- creasingly jointed rock samples, Rock Mech. Rock Eng. 55 (2022) 6033-6061, doi: 10.1007/S00603-022-02965-X.

[30]

G. Gao, M.A. Meguid, L. Zhang, Exploring the role of sample size on fracture growth mechanisms in intact rock: insights from 3D DEM-DFN analysis, Can. Geotech. J. 62 (2025) 1-24, doi: 10.1139/CGJ-2023-0707.

[31]

G. Gao, M.A. Meguid, On the role of joint roughness on the micromechanics of rock fracturing process: a numerical study, Acta Geotech. 17 (2022) 2799-2824, doi: 10.1007/S11440-021-01401-8.

[32]

L. Cea, M. Garrido, J. Puertas, Experimental validation of two-dimensional depth- averaged models for forecasting rainfall-runoff from precipitation data in urban ar- eas, J. Hydrol. 382 (2010) 88-102, doi: 10.1016/J.JHYDROL.2009.12.020.

[33]

W. Dong, H. Huang, M. Zhong, Z. Long, Experimental study on the inundation char- acteristics of flooding in a long straight subway tunnel, Tunn. Undergr. Space Tech- nol. 144 (2024) 105566, doi: 10.1016/J.TUST.2023.105566.

[34]

L.A. LaRocque, M. Elkholy, M.H. Chaudhry, J. Imran, Experiments on urban flooding caused by a levee breach, J. Hydraul. Eng. 139 (2013) 960-973, doi: 10.1061/(ASCE)HY.1943-7900.0000754.

[35]

K. Toda, K. Kuriyama, R. Oyagi, K. Inoue, Inundation analysis of complicated under- ground space, Proc. Hydraul. Eng. 47 (2003) 877-882, doi: 10.2208/prohe.47.877.

[36]

G. Testa, D. Zuccalà, F. Alcrudo, J. Mulet, S. Soares-Frazão, Flash flood flow experiment in a simplified urban district, J. Hydraul. Res. 45 (2007) 37-44, doi: 10.1080/00221686.2007.9521831.

[37]

S. Lee, H. Nakagawa, K. Kawaike, H. Zhang, Study on inlet discharge coefficient through the different shapes of storm drains for urban inundation analysis, J. Japan Soc. Civ. Eng., Ser. B1 (Hydraul. Eng.) 68 (2012) 31-36, doi: 10.2208/jsce-jhe.68.I_31.

[38]

P. Lopes, R.F. Carvalho, J. Leandro, Numerical and experimental study of the fun- damental flow characteristics of a 3D gully box under drainage, Water Sci. Technol. 75 (2017) 2204-2215, doi: 10.2166/WST.2017.071.

[39]

E. Mignot, H. Bonakdari, P. Knothe, G.Lipeme Kouyi, A. Bessette, N. Rivière, J. L. Bertrand-Krajewski, Experiments and 3D simulations of flow structures in junc- tions and their influence on location of flowmeters, Water Sci. Technol. 66 (2012) 1325-1332, doi: 10.2166/WST.2012.319.

[40]

X. Yang, X. Zhang, S. Li, Y. Tian, C. Tan, S. Ding, G. Kalonji, L. Xu, Increas- ing urban flooding facing metro system: evidence from internet media records in China from 2001 to 2021, Int. J. Disaster Risk Reduct. 124 (2025) 105551, doi: 10.1016/J.IJDRR.2025.105551.

[41]

S. Shan, X. Guo, Z. Wei, W. Sun, H. Zheng, H. Pan, J. Lin, Simulation analysis of evacuation processes in a subway station based on multi-disaster coupling scenarios, Int. J. Disaster Risk Reduct. 96 (2023) 103998, doi: 10.1016/J.IJDRR.2023.103998.

[42]

X. Yang, W. Dai, Y. Li, X. Yang, An efficient evacuation path optimization for pas- sengers in subway stations under floods, Tunn. Undergr. Space Technol. 143 (2024) 105473, doi: 10.1016/J.TUST.2023.105473.

[43]

Y. Bai, Y. Sun, W. Liu, P. Sun, S. Xiao, Model test study on the formation of basin- shaped freezing range in sandy gravel stratum under seepage conditions, Therm. Sci. Eng. Prog. 51 (2024) 102601, doi: 10.1016/J.TSEP.2024.102601.

[44]

S. Fan, X. Yao, G. Ma, R. Wei, Q. Yin, Z. Yu, Y. Jin, Research on high- speed water entry similarity of multiscale vehicle based on two-parameter compensation of atmospheric pressure-density, Phys. Fluids 37 (2025) 013373, doi: 10.1063/5.0251086/3332055.

[45]

X. Wen, W. Li, X. Li, H. Wang, L. Zhang, S. Yang, An equivalent model of horizontal vibratory finishing process: model construction and analysis based on similarity the- ory, Powder Technol. 449 (2025) 120362, doi: 10.1016/J.POWTEC.2024.120362.

AI Summary AI Mindmap
PDF (6340KB)

238

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/