Impact of connectivity characteristics on the permeability of three-dimensional fracture networks

Weijie Zhang , Yuanlin Bai , Chenghao Han , Pengfei Wang , Danyang Zhang , Jicheng Zhang

Smart Underground Engineering ›› 2025, Vol. 1 ›› Issue (1) : 64 -75.

PDF (4090KB)
Smart Underground Engineering ›› 2025, Vol. 1 ›› Issue (1) : 64 -75. DOI: 10.1016/j.sue.2025.05.002
Original article
research-article

Impact of connectivity characteristics on the permeability of three-dimensional fracture networks

Author information +
History +
PDF (4090KB)

Abstract

A program for rapid modelling, connectivity evaluation, and seepage simulation of a three-dimensional fracture network was developed based on COMSOL using MATLAB to accurately evaluate the seepage characteristics of a rock fracture network. A Monte Carlo algorithm was used to generate the fracture geometry parameters, and the Euler angle was introduced to establish a three-dimensional fracture model. The bounding box method was used to calculate the fracture network connectivity, and the Darcy module was used to simulate the seepage process. The fracture density, dip direction, dip angle, and length were selected as the experimental factors. Orthogonal numerical experiments were conducted to explore the primary factors controlling the connectivity, permeability, and permeability anisotropy of a three-dimensional fracture network. The results show that connectivity and permeability were primarily affected by the fracture density, length, and dip direction. Moreover, the permeability anisotropy was primarily affected by the fracture dip direction. The quantitative relationship among the connectivity index, permeability coefficient, and permeability anisotropy coefficient was determined based on numerical analysis. The results show that the permeability coefficients in various directions increased with the connectivity index and gradually stabilized. The permeability anisotropy weakened rapidly with increasing connectivity. It stabilized when the connectivity index exceeded 15. The research results have positive significance for revealing the seepage mechanism of complex three-dimensional fracture networks and for preventing and controlling water disasters in fractured rock masses.

Keywords

Three-dimensional fracture network / Connectivity / Permeability / Anisotropy / Numerical simulation

Cite this article

Download citation ▾
Weijie Zhang, Yuanlin Bai, Chenghao Han, Pengfei Wang, Danyang Zhang, Jicheng Zhang. Impact of connectivity characteristics on the permeability of three-dimensional fracture networks. Smart Underground Engineering, 2025, 1(1): 64-75 DOI:10.1016/j.sue.2025.05.002

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Weijie Zhang: Writing -review & editing, Writing -original draft, Project administration, Investigation, Funding acquisition, Conceptualization. Yuanlin Bai: Writing -original draft, Visualization, Validation, Data curation. Chenghao Han: Writing -review & editing, Writing -original draft, Resources, Methodology, Formal analysis. Pengfei Wang: Visualization, Data curation, Conceptualization. Danyang Zhang: Supervision, Formal analysis. Jicheng Zhang: Writing -original draft, Software.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 52304239) and Shandong Provincial Natural Science Foundation (Grant No. ZR2023QD026 and Grant No. ZR2021MD016). The authors thank the anonymous reviewers for their helpful comments and suggestions.

References

[1]

J. Boussinesq, Mémoire sur l’influence de frottement dans les mouvements réguliers des fluides, J. de Mathématiques Pureset Appl. 13 (1868) 377-424.

[2]

G.M. Lomize, Flow in Fractured Rocks, Gosenergoizdat, Moscow, 1951.

[3]

G. Xu, Y. Zhang, Q. Ha, Super-cubic and sub-cubic law of rough fracture seepage and its experiments study, J. Hydraul. Eng. 3 (2003) 74-79.

[4]

Y.W. Tsang, C.F. Tsang, Channel model of flow through fractured media, Water Re-sour. Res. 23 (1987) 467-479, doi: 10.1029/WR023i003p00467.

[5]

M.C. Cacas, E. Ledoux, G. de Marsily, B. Tillie, A. Barbreau, E. Durand, B. Feuga, P. Peaudecerf, Modeling fracture flow with a stochastic discrete fracture network: calibration and validation: 1. The flow model, Water Resour. Res. 26 (1990) 479-489, doi: 10.1029/WR026i003p00479.

[6]

A.W. Nordqvist, Y.W. Tsang, C.F. Tsang, B. Dverstorp, J. Andersson, A variable aper-ture fracture network model for flow and transport in fractured rocks, Water Resour. Res. 28 (1992) 1703-1713, doi: 10.1029/92WR00216.

[7]

O. Kolditz, Modelling flow and heat transfer in fractured rocks: conceptual model of a 3-D deterministic fracture network, Geothermics. 24 (1995) 451-470, doi: 10.1016/0375-6505(95)00020-Q.

[8]

J. Maryš ka, O. Severýn, M. Vohralík, Numerical simulation of fracture flow with a mixed-hybrid FEM stochastic discrete fracture network model, Comput. Geosci. 8 (2005) 217-234, doi: 10.1007/s10596-005-0152-3.

[9]

T. Kalbacher, R. Mettier, C. McDermott, W. Wang, G. Kosakowski, T. Taniguchi, O. Kolditz, Geometric modelling and object-oriented software concepts applied to a heterogeneous fractured network from the Grimsel rock laboratory, Comput. Geosci. 11 (2007) 9-26, doi: 10.1007/s10596-006-9032-8.

[10]

J. Erhel, J.R. de Dreuzy, B. Poirriez, Flow simulation in three-dimensional discrete fracture networks, SIAM J. Sci. Comput. 31 (2009) 2688-2705, doi: 10.1137/080729244.

[11]

G. Pichot, J. Erhel, J.R. de Dreuzy, A mixed hybrid mortar method for solv-ing flow in discrete fracture networks, Appl. Anal. 89 (2010) 1629-1643, doi: 10.1080/00036811.2010.495333.

[12]

Q. Jiang, Z. Ye, C. Zhou, A numerical procedure for transient free sur-face seepage through fracture networks, J. Hydrol. 519 (2014) 881-891, doi: 10.1016/j.jhydrol.2014.07.066.

[13]

X. Song, W. Xu, Numerical model of three-dimensional discrete fracture network for seepage in fractured rocks (Ⅰ ):generation of fracture network, Chin. J. Rock Mech. Eng. 12 (2004) 2015-2020.

[14]

X. Song, W. Xu, Numerical model of three-dimensional discrete fracture network for seepage in fractured rocks ( Ⅱ ):computation of steady flow, Chin. J. Rock Mech. Eng. 12 (2004) 2021-2026.

[15]

J. Zhan, Research on Fine Descriptive Method of Geometric Characteristics of Com-plex Rock Mass Structures, Ph.D. Thesis, Jilin University, 2019.

[16]

A. Jafari, T. Babadagli, A sensitivity analysis for effective parameters on 2D fracture-network permeability, SPE Reservoir Eval. Eng. 12 (2009) 455-469, doi: 10.2118/113618-PA.

[17]

P. Wang, T. Yang, Q. Yu, H. Liu, D. Xia, P. Zhang, Permeability tensor and seepage properties for jointed rock masses based on discrete fracture network model, Rock Soil Mech. 34 (2013) 448-455.

[18]

A. Jafari, T. Babadagli, Effective fracture network permeability of geothermal reser-voirs, Geothermics 40 (2011) 25-38, doi: 10.1016/j.geothermics.2010.10.003.

[19]

A. Jafari, T. Babadagli, Estimation of equivalent fracture network permeability us-ing fractal and statistical network properties, J. Pet. Sci. Eng. 92 (2012) 110-123, doi: 10.1016/j.petrol.2012.06.007.

[20]

A. Jafari, T. Babadagli, Relationship between percolation-fractal properties and per-meability of 2-D fracture networks, Int. J. Rock Mech. Min. Sci. 60 (2013) 353-362, doi: 10.1016/j.ijrmms.2013.01.007.

[21]

E. Wang, Y. Sun, Y. Huang, H. Wang, Three-dimensional discrete fracture network seepage model and experimental simulation, J. Hydraul. Eng. 05 (2002) 7-40.

[22]

G. Zhang, W. Fei, R. Zhang, J. Deng, Analytical method for estimating diameter distribution of Poisson disc joint model, Rock Soil Mech. 04 (2011) 1149-1156.

[23]

J. Xie, M. Gao, R. Zhang, W. Jin, The parameters sensibility analysis of mining-in-duced fracture network reconstructed on the fractal characteristics, J. China Univ. Min. Technol. 04 (2016) 677-683.

[24]

M. Ye, Line Element Model for Fluid Flow in Three Dimensional Fracture Network and Its Modification, M.S. Thesis, North China Electric Power University, 2014, doi: 10.1061/9780784413395.008.

[25]

Y. Du, Modeling 3D Fracture Network in Rock Masses Based on Monte Carlo Method, M. S. Thesis, Hebei University of Geosciences, 2022.

[26]

Y. Zhang, L. Peng, Study on the three-dimensional crack network model of rock mass based on Monte-Carlo, J. Gansu Sci. 2 (2022) 124-131.

[27]

S. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed: algo-rithms based on Hamilton-Jacobi formulations, J. Comput. Phys. 79 (1988) 12-49, doi: 10.1016/0021-9991(88)90002-2.

[28]

S.D. Pirest, J.A. Hudson, Estimation of discontinuity spacing trace length using scanline, Int. J. Rock Mech. Min. Sci. 18 (1981) 183-197, doi: 10.1016/0148-9062(81)90973-6.

[29]

J.A. Hudson, S.D. Priest, Discontinuity frequency in rock masses, Int. J. Rock Mech. Min. Sci. 20 (1983) 73-89, doi: 10.1016/0148-9062(83)90329-7.

[30]

S. Chen, J. Zhang, M.Z. Mohammed, F. Li, Z. Yan, Y. Ding, Seepage characteristics of mixed-wettability porous media on the phase-field model, ACS Omega 7 (2022) 30104-30112, doi: 10.1021/acsomega.2c03143.

[31]

S. Chen, J. Zhang, D. Yin, X. Cheng, N. Jiang, Relative permeability measurement of coal microchannels using advanced microchip technology, Fuel 312 (2022) 122633, doi: 10.1016/j.fuel.2021.122633.

[32]

S. Chen, J. Zhang, M.M. ZAKI, D. Yin, S. Wang, S. Sheng, A.A. KHORESHOK, Sim-ilarity experimental study on the law of CBM-water microscale slug flow, Chin. J. Rock Mech. Eng. 41 (2022) 1338-1346.

[33]

D. Liu, L. Wei, G. Xu, Y. Xiang, Simulation of seepage and heat transfer in 3D frac-tured rock mass based on fracture continuum method, Rock Soil Mech. 44 (2023) 2143-2150, doi: 10.16285/j.rsm.2022.1230.

[34]

W. Zhang, Z. Peng, C. Han, S. Chen, Numerical investigation of an equivalent hy-draulic aperture for rough rock fractures based on cosimulation, Comput. Geotech. 156 (2023) 105281, doi: 10.1016/j.compgeo.2023.105281.

[35]

V.M. Ivanova, R. Sousa, B. Murrihy, H.H. Einstein, Mathematical algorithm de-velopment and parametric studies with the GEOFRAC three-dimensional stochas-tic model of natural rock fracture systems, Comput. Geosci. 67 (2014) 100-109, doi: 10.1016/j.cageo.2013.12.004.

[36]

D.W. Holmes, P. Pivonka, Novel pressure inlet and outlet boundary conditions for smoothed particle hydrodynamics, applied to real problems in porous media flow, J. Comput. Phys. 429 (2021) 110029, doi: 10.1016/j.jcp.2020.110029.

[37]

Z. Wang, Study on mechanism and discontinuous deformation analysis of hydraulic fracturing of rock, Ph.D. Thesis, Shandong University, 2019.

[38]

Y. Chang, S. Chen, Z. Li, Y. Feng, W. Fang, H. Li, Numerical simulation of coal seam water injection seepage law based on COMSOL, Min. Technol. 02 (2022) 189-192.

[39]

C. He, B. Su, J. Sheng, Local discontinuous Galerkin finite element method for steady seepage analysis, J. Hohai Univ. (Nat. Sci.) 02 (2012) 206-210.

[40]

Z. Sun, X. Yan, W. Han, G. Ma, Y. Zhang, Simulating the filtration effects of cement-grout in fractured porous media with the 3D unified pipe-network method, Processes 7 (2019) 46, 10.3390/pr7010046.

[41]

X. Zhong, Numerical Simulation of Seepage Field Based on Porous Media Model and VOF Method, M.S. Thesis, Xi’an University of Technology, 2010.

[42]

J.C.S. Long, J.S. Remer, C.R. Wilson, P.A. Witherspoon, Porous media equivalents for networks of discontinuous fractures, Water Resour. Res. 18 (1982) 645-658, doi: 10.1029/WR018i003p00645.

[43]

G. Baecher, N.A. Lanney, H.H. Einstein, Statistical description of rock properties and sampling, The 18th US Symposium on Rock Mechanics (USRMS), ASCE, New York, 1977.

[44]

S.D. Priest, J.A. Hudson, Discontinuity spacings in rock, Int. J. Rock Mech. Min. Sci. 13 (1976) 135-148, doi: 10.1016/0148-9062(76)90818-4.

[45]

Q. Jiang, C. Yao, Z. Ye, C. Zhou, Seepage flow with free surface in fracture networks, Water Resour. Res. 49 (2013) 176-186, doi: 10.1029/2012WR011991.

[46]

D.T. Snow, A parallel plate model of fractured permeable media, Ph.D. Thesis, Uni-versity of California, Berkeley, 1965.

[47]

P.A. Witherspoon, J.S.Y. Wang, K. Iwai, J.E. Gale, Validity of cubic law for fluid flow in a deformable rock fracture, Water Resour. Res. 16 (1980) 1016-1024, doi: 10.1029/WR016i006p01016.

[48]

N. Huang, Y. Jiang, R. Liu, B. Li, S. Sugimoto, A novel three-dimensional discrete fracture network model for investigating the role of aperture heterogeneity on fluid flow through fractured rock masses, Int. J. Rock Mech. Min. Sci. 116 (2019) 25-37, doi: 10.1016/j.ijrmms.2019.03.014.

[49]

T. Chen, Equivalent permeability distribution for fractured porous rocks: the influence of fracture network properties, Geofluids. 2020 (2020) 6751349, 10.1155/2020/6751349.

[50]

T. Chen, J. Borgomano, The impact of fracture geometries on heterogeneity and accuracy of upscaled equivalent fracture models, Lithosphere 2022 (2022) 5070481, 10.2113/2022/5070481.

[51]

B. Gao, D. Pan, Z. Xu, L. Zhang, S. Zhao, Effect of density, trace length, aperture, and direction angle on permeability performance of fracture networks, Int. J. Geomech. 20 (2020) 04020116, doi: 10.1061/(ASCE)GM.1943-5622.0001718.

AI Summary AI Mindmap
PDF (4090KB)

481

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/