Intelligent identification of lithology and adverse geology: A state-of-the-art review

Zhenhao Xu , Tengfei Yu , Shucai Li , Peng Lin , Wen Ma , Tao Han , Shan Li

Smart Underground Engineering ›› 2025, Vol. 1 ›› Issue (1) : 3 -25.

PDF (9108KB)
Smart Underground Engineering ›› 2025, Vol. 1 ›› Issue (1) : 3 -25. DOI: 10.1016/j.sue.2025.04.001
Original article
research-article

Intelligent identification of lithology and adverse geology: A state-of-the-art review

Author information +
History +
PDF (9108KB)

Abstract

The accurate and timely identification of lithology and adverse geology is crucial for the safe and efficient construction of tunnels. However, traditional methods for lithology and adverse geology identification rely excessively on the experience and accumulated knowledge of geologists, making them highly subjective and prone to misjudgement and omission. This study aims to introduce the latest advancements in lithology and adverse geology identification. First, we present an innovative high-precision method for the intelligent identification of lithology based on “pure image,” “infrared spectral,” and “image and spectral fusion” analyses. Second, we propose methods of adverse geology identification, including “element and mineral anomaly analysis,” “geological and geophysical joint inversion,” and “multi-source data fusion of borehole information,” which realize comprehensive identification of the location, shape, scale, property, and type of adverse geology ahead of a tunnel working face. Finally, we present new theories and methods for the quantitative testing and inversion of elements and minerals, multi-source data fusion for intelligent lithology identification, and adverse geology identification dual-driven by knowledge and data. Integrating and analyzing multi-source data on geology, geophysical prospecting, and advanced drilling is conducive to overcoming the limitations of single-source data and is the future development direction of accurate and intelligent lithology and adverse geology identification.

Keywords

Lithology identification / Image and spectral fusion / Adverse geology identification / Multi-source data fusion / Advanced drilling

Cite this article

Download citation ▾
Zhenhao Xu, Tengfei Yu, Shucai Li, Peng Lin, Wen Ma, Tao Han, Shan Li. Intelligent identification of lithology and adverse geology: A state-of-the-art review. Smart Underground Engineering, 2025, 1(1): 3-25 DOI:10.1016/j.sue.2025.04.001

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Zhenhao Xu: Writing -review & editing, Writing -original draft, Supervision, Methodology, Funding acquisition, Data curation, Conceptualization. Tengfei Yu: Writing -review & editing, Writing -original draft, Methodology, Formal analysis, Data curation. Shucai Li: Supervision, Methodology, Conceptualization. Peng Lin: Writing -review & editing, Visualization, Methodology. Wen Ma: Writing -original draft, Methodology, Data curation. Tao Han: Writing -original draft, Methodology, Data curation. Shan Li: Writing -original draft, Methodology, Data curation.

Declaration of competing interest

Shucai Li is the Editor-in-Chief for this journal, and was not involved in the editorial review or the decision to publish this article. All authors declare that there are no competing interests.

Acknowledgements

We would like to acknowledge the support from the National Natural Science Foundation of China (Grants Nos 52021005, 52279103 and 52379103).

References

[1]

S. Li, B. Liu, H. Sun, L. Nie, S. Zhong, M. Su, X. Li, Z. Xu, State of art and trends of advanced geological prediction in tunnel construction, Chin. J. Rock Mech. Eng. 33 (2014) 1090-1113, doi: 10.13722/j.cnki.jrme.2014.06.003.

[2]

Q. Qian, Main developments and directions of geological prediction and infor-matized technology of tunnel construction, Tunn. Constr. 37 (2017) 251-263, doi: 10.3973/j.issn.1672-741X.2017.03.001.

[3]

X. Chen, F. Dong, G. Tao, Y. Li, M. She, H. Fu, Z. Ni, J. Wang, W. He, Y. Tang, R. Rao, Fast lithology identification by laser-induced breakdown spectroscopy, Chin. J. Lasers. 40 (2013) 243-248, doi: 10.3788/CJL201340.1215001.

[4]

P. Lin, G. Xu, Z. Xu, T. Yu, R. Shao, Rapid identification of alteration zone based on in-situ spectral testing of rock mineral in tunnelling, J. Basic Sci. Eng. 29 (2021) 1093-1107, doi: 10.16058/j.issn.1005-0930.2021.05.003.

[5]

Z. Xu, W. Ma, P. Lin, H. Shi, T. Liu, D. Pan, Intelligent lithology identification based on transfer learning of rock images, J. Basic Sci. Eng. 29 (2021) 1075-1092, doi: 10.16058/j.issn.1005-0930.2021.05.002.

[6]

Z. Xu, W. Ma, P. Lin, H. Shi, D. Pan, T. Liu, Deep learning of rock im-ages for intelligent lithology identification, Comput. Geosci. 154 (2021) 104799, doi: 10.1016/j.cageo.2021.104799.

[7]

W. Ma, T. Han, Z. Xu, P. Lin, Feature fusion of single and orthogonal polar-ized rock images for intelligent lithology identification, AI Civ. Eng. 4 (2025) 5, 10.1007/s43503-025-00049-7.

[8]

M. She, Y. Li, X. Xia, B. Mao, Comparison and development direction of identifying lithology technology with spectrographic detection, Mud Logging Eng. 29 (2018) 16-21, doi: 10.3969/j.issn.1672-9803.2018.03.004.

[9]

Z. Xu, H. Shi, P. Lin, H. Liu, Integrated lithology identification based on im-ages and elemental data from rocks, J. Pet. Sci. Eng. 205 (2021) 108853, doi: 10.1016/j.petrol.2021.108853.

[10]

N. Lin, J. Fu, R. Jiang, G. Li, Q. Yang, Lithological classification by hyperspectral images based on a two-layer XGBoost model, combined with a greedy algorithm, Remote Sens. 15 (2023) 3764, 10.3390/rs15153764.

[11]

Y. Sun, S. Pang, Y. Zhang, Application of adaboost-transformer algorithm for lithol-ogy identification based on well logging data, IEEE Geosci. Remote Sens. Lett. 21 (2024) 1-5, doi: 10.1109/LGRS.2024.3372513.

[12]

X. Liu, H. Wang, H. Jing, A. Shao, L. Wang, Research on intelligent identification of rock types based on faster R-CNN method, IEEE Access. 8 (2020) 21804-21812, doi: 10.1109/ACCESS.2020.2968515.

[13]

Z. Xu, W. Ma, P. Lin, Y. Hua, Deep learning of rock microscopic images for intelligent lithology identification: neural network comparison and selection, J. Rock Mech. Geotech. Eng. 14 (2022) 1140-1152, doi: 10.1016/j.jrmge.2022.05.009.

[14]

W. Zhang, W. Zhang, G. Zhang, J. Huang, M. Li, X. Wang, F. Ye, X. Guan, Hard-rock tunnel lithology identification using multi-scale dilated convolutional attention network based on tunnel face images, Front. Struct. Civ. Eng. 17 (2023) 1796-1812, doi: 10.1007/s11709-023-0002-1.

[15]

C. Zhang, J. Yu, L. Hao, S. Wang, Lithology extraction from synergies muti-scale texture and muti-spectra images, Bull. Geol. Sci. Technol. 36 (2017) 236-243, doi: 10.19509/j.cnki.dzkq.2017.0431.

[16]

J. Lai, X. Wang, J. Qiu, J. Chen, Z. Hu, H. Wang, Extreme deformation characteristics and countermeasures for a tunnel in difficult grounds in southern Shaanxi, China, Environ. Earth Sci. 77 (2018) 706, 10.1007/s12665-018-7888-2.

[17]

S. Li, L. Nie, B. Liu, The practice of forward prospecting of adverse geology ap-plied to hard rock TBM tunnel construction: the case of the Songhua River Wa-ter Conveyance Project in the middle of Jilin Province, Eng. 4 (2018) 131-137, doi: 10.1016/j.eng.2017.12.010.

[18]

P. Lin, R. Shao, Z. Xu, T. Yu, Integrated fault identification in granite tunnel based on the analysis of structural and mineral characteristics of rock masses: a case study, Q. J. Eng. Geol. Hydrogeol. 56 (2023) qjegh2022-053, doi: 10.1144/qjegh2022-053.

[19]

Y. Ashida, Seismic imaging ahead of a tunnel face with three-component geophones, Int. J. Rock Mech. Min. 38 (2001) 823-831, doi: 10.1016/S1365-1609(01)00047-8.

[20]

Q. Zhang, S. Li, K. Sun, Z. Xu, Analysis and present state of advanced geological forecast technology of highway tunnel, Chin. J. Undergr. Space Eng. 4 (2008) 766-771, doi: 10.3969/j.issn.1673-0836.2008.04.033.

[21]

S. Li, B. Liu, S. Li, Q. Zhang, L. Nie, L. Li, Z. Xu, S. Zhong, Study of advanced detection for tunnel water-bearing geological structures with induced polarization method, Chin. J. Rock Mech. Eng. 30 (2011) 1297-1309 1000-6915(2011)7-1297-13.

[22]

L. Luo, Z. Liu, Y. Yan, The concept and development of geological prediction system, Rock Soil Mech. 32 (2011) 614-618, doi: 10.16285/j.rsm.2011.s1.094.

[23]

J. Park, K. Lee, J. Park, H. Choi, I. Lee, Predicting anomalous zone ahead of tunnel face utilizing electrical resistivity: I. Algorithm and measuring system development, Tunn. Undergr. Space Technol. 60 (2016) 141-150, doi: 10.1016/j.tust.2016.08.007.

[24]

L. Hao, N. Li, X. Xu, Q. Zhang, L. Chen, F. Sun, Detecting goaf ahead of the mine tunnel using SAP: a case study in iron mine, China, Geotech. Geol. Eng. 40 (2022) 883-897, doi: 10.1007/s10706-021-01933-6.

[25]

L. Nie, Z. Song, W. Zhou, Z. Li, X. Du, L. Ma, Full-decay induced polar-ization multi-parameter tomography method for tunnel water inrush ahead prospecting: a case study, Tunn. Undergr. Space Technol. 145 (2024) 105589, doi: 10.1016/j.tust.2024.105589.

[26]

R. Liu, H. Sun, D. Liu, X. Wang, X. Zhou, Y. Zhao, X. Zhao, Y. Yang, G. Yang, H. Sun, A joint application of semi-airborne and in-tunnel geophysical sur-vey in complex limestone geology, Bull. Eng. Geol. Environ. 82 (2023) 226, doi: 10.1007/s10064-023-03251-y.

[27]

Z. Gao, M. Zhao, J. Huang, X. Du, L. Wu, Three-dimensional nonlinear seis-mic response analysis of subway station crossing longitudinally inhomogeneous geology under obliquely incident P waves, Eng. Geol. 293 (2021) 106341, doi: 10.1016/j.enggeo.2021.106341.

[28]

P. Wang, S. Zhang, W. Chen, Y. Xue, Z. Qu, H. Xiao, M. Su, K. Zhang, A com-prehensive analysis method for adverse geology in tunnels based on geological information and multi-source geophysical data, Appl. Geophys. 22 (2025) 43-52, doi: 10.1007/s11770-025-1174-3.

[29]

M. He, N. Li, Z. Zhang, X. Yao, Y. Chen, C. Zhu, An empirical method for determining the mechanical properties of jointed rock mass using drilling energy, Int. J. Rock Mech. Min. 116 (2019) 64-74, doi: 10.1016/j.ijrmms.2019.03.010.

[30]

J. van Eldert, H. Schunnesson, D. Johansson, D. Saiang, Application of measurement while drilling technology to predict rock mass quality and rock support for tunnelling, Rock Mech. Rock Eng. 53 (2020) 1349-1358, doi: 10.1007/s00603-019-01979-2.

[31]

X. Chen, Z. Xu, X. Bao, X. Wang, Y. Fu, Challenges and technological break-throughs in tunnel construction in China, Chin. J. Highw. Transp. 33 (2020) 1-14, doi: 10.19721/j.cnki.1001-7372.2020.12.001.

[32]

Z. Xu, T. Yu, P. Lin, S. Li, Adverse geology identification through mineral anomaly analysis during tunneling: methodology and case study, Eng. 27 (2023) 150-160, doi: 10.1016/j.eng.2022.09.013.

[33]

Z. Xu, T. Yu, P. Lin, S. Li, Anomalous patterns of clay minerals in fault zones, Eng. Geol. 325 (2023) 107279, doi: 10.1016/j.enggeo.2023.107279.

[34]

Z. Wang, W. Cheng, Y. Liu, Y. Zhang, Synthetic advanced forecast technique based on geological logging for tunnel face and ground penetrating radar, Chin. J. Rock Mech. Eng. 29 (2010) 3549-3557 1000-6915(2010)2-3549-09.

[35]

S. Li, Z. Xu, X. Huang, P. Lin, X. Zhao, Q. Zhang, L. Yang, X. Zhang, H. Sun, D. Pan, Classification, geological identification, hazard mode and typical case studies of hazard-causing structures for water and mud inrush in tunnels, Chin. J. Rock Mech. Eng. 37 (2018) 1041-1069, doi: 10.13722/j.cnki.jrme.2017.1332.

[36]

Q. Zhang, H. Zhu, Collaborative 3D geological modeling analysis based on multi-source data standard, Eng. Geol. 246 (2018) 233-244, doi: 10.1016/j.enggeo.2018.10.001.

[37]

B. Yang, Y. Ding, Q. Zhu, L. Zhang, H. Wu, Y. Guo, M. Liu, W. Wang, Implicit modelling and dynamic update of tunnel unfavourable geology based on multi-source data fusion using support vector machine, Georisk. 18 (2023) 257-274, doi: 10.1080/17499518.2023.2239778.

[38]

Y. Zou, X. Dong, T. Feng, Z. Xu, H. He, Z. Wu, Research on spatial predic-tion technology for mitigating tunnel inrush disasters under complex geologi-cal conditions in China’s Hengduan Mountain Range, Sci. Rep. 15 (2025) 1850, doi: 10.1038/s41598-025-85796-4.

[39]

A.M. Schleicher, S.N. Tourscher, B.A. van der Pluijm, L.N. Warr, Constraints on mineralization, fluid-rock interaction, and mass transfer during faulting at 2-3 km depth from the SAFOD drill hole, J. Geophys. Res. 114 (2009), doi: 10.1029/2008JB006092.

[40]

Z. Xu, F. Liu, P. Lin, R. Shao, X. Shi, Non-destructive, in-situ, fast identifica-tion of adverse geology in tunnels based on anomalies analysis of element con-tent, Tunn. Undergr. Space Technol. 118 (2021) 104146, doi: 10.1016/j.tust.2021. 104146.

[41]

F. Zhang, Y. Hou, M. Zhu, W. Cui, T. Hu, G. Chen, C. Shao, Present situation and development trend prospect in volcanic reservoir evaluation based on well logging data, Prog. Geophys. 31 (2016) 1732-1751, doi: 10.6038/pg20160443.

[42]

Z. Wang, X. Zhu, Z. Sun, X. Luo, X. Dai, Y. Dai, Igneous lithology identification and lithofacies classification in the basin using logging data: taking Junggar Basin as an example, Earth Sci. Front. 22 (2015) 254-268, doi: 10.13745/j.esf.2015.03.022.

[43]

K. Jiang, S. Wang, Y. Hu, S. Pu, H. Duan, Z. Wang, Lithology identification model by well logging based on boosting tree algorithm, Well Logging Technol. 42 (2018) 395-400, doi: 10.16489/j.issn.1004-1338.2018.04.005.

[44]

Y. Sun, Y. Huang, T. Liang, H. Ji, P. Xiang, X. Xu, Identification of complex carbonate lithology by logging based on XGBoost algorithm, Lithol. Reserv. 32 (2020) 98-106, doi: 10.12108/yxyqc.20200410.

[45]

X. Cheng, J. Zhou, H. Fu, X. Luo, Applicability and application of machine learn-ing algorithm in logging interpretation, Northwest. Geol. 56 (2023) 336-348, doi: 10.12401/j.nwg.2023029.

[46]

Z. Xu, W. Ma, S. Li, P. Lin, F. Liang, G. Xu, S. Li, T. Han, H. Shi, Lithology identi-fication: method, research status and intelligent development trend, Geol. Rev. 68 (2022) 2290-2304, doi: 10.16509/j.georeview.2022.08.101.

[47]

G. Fan, F. Chen, D. Chen, Y. Dong, Recognizing multiple types of rocks quickly and accurately based on lightweight CNNs model, IEEE Access. 8 (2020) 55269-55278, doi: 10.1109/ACCESS.2020.2982017.

[48]

D. Fu, C. Su, W. Wang, R. Yuan, Deep learning based lithology classification of drill core images, PLoS ONE. 17 (2022) e0270826, doi: 10.1371/journal.pone.0270826.

[49]

Z. Hou, J. Wei, J. Shen, X. Liu, W. Zhao, Intelligent lithology identification methods for rock images based on object detection, Nat. Resour. Res. 32 (2023) 2965-2980, doi: 10.1007/s11053-023-10271-8.

[50]

Y. Feng, X. Gong, Y. Xu, Z. Xie, H. Cai, X. Lv, Lithology recognition based on fresh rock images and twins convolution neural network, Geogr. Geo-Inf. Sci. 35 (2019) 89-94, doi: 10.3969/j.issn.1672-0504.2019.05.015.

[51]

S. Dai, X. Sun, J. Zhang, Y. Zhu, B. Wang, D. Song, Multiscale convolutional neu-ral network-based lithology classification method for multisource data fusion, Laser Optoelectron. Prog. 61 (2024) 1437005, 10.3788/LOP232491.

[52]

M. Li, J. Fu, Y. Zhang, C. Liu, Intelligent recognition and analysis method of rock lithology classification based on coupled rock images and hammering au-dios, Chin. J. Rock Mech. Eng. 39 (2020) 996-1004, doi: 10.13722/j.cnki.jrme.2019. 0748.

[53]

Q. Hu, Thin Section Image Classification Method Using Deep Learning of In-tegrated Multi-Dimensional Information, Zhejiang University, 2019 M.S. Thesis, doi: 10.27461/d.cnki.gzjdx.2019.000581.

[54]

B. Zhang, Z. Zhang, S. Shuai, Y. Zhang, Lithological mapping by using the synergis-tic Landsat-8 and Worldview-2 images, Geol. Sci. Technol. Inf. 34 (2015) 208-229 1000-7849(2015)03-0208-06.

[55]

Y. Bai, L. Xue, B. Pan, X. Zhang, W. Li, Multi-methods combined iden-tify lithology of glutenite, J. Jilin Univ., Earth Sci. Ed. 42 (2012) 442-451, doi: 10.13278/j.cnki.jjuese.2012.s2.029.

[56]

L. Li, S. Fan, X. Wang, R. Li, X. Wen, L. Wang, B. Li, Classification method of coal and gangue based on hyperspectral imaging technology, Spectrosc. Spect. Anal. 42 (2022) 1250-1256, doi: 10.3964/j.issn.1000-0593(2022)04-1250-07.

[57]

S. Hajaj, A. El Harti, A. Jellouli, A.B. Pour, S. Mnissar Himyari, A. Hamzaoui, M. Hashim, Evaluating the performance of machine learning and deep learning techniques to HyMap imagery for lithological mapping in a semi-arid region: case study from Western Anti-Atlas, Morocco. Min. 13 (2023) 766, 10.3390/min13060766.

[58]

J. He, X. Ren, S. Chen, Y. Xiong, Z. Xiao, H. Zhou, Automatic classification of rock spectral features based on fusion learning model, Spectrosc. Spect. Anal. 41 (2021) 141-144, doi: 10.3964/j.issn.1000-0593(2021)01-0141-04.

[59]

M. Dirks, D. Poole, Automatic neural network hyperparameter optimiza-tion for extrapolation: lessons learned from visible and near-infrared spec-troscopy of mango fruit, Chemom. Intell. Lab. Syst. 231 (2022) 104685, doi: 10.1016/j.chemolab.2022.104685.

[60]

M.A. Hamza, F. Alrowais, J.S. Alzahrani, H. Mahgoub, N.M. Salem, R. Marzouk, Squirrel search optimization with deep transfer learning-enabled crop classifica-tion model on hyperspectral remote sensing imagery, Appl. Sci. 12 (2022) 5650, 10.3390/app12115650.

[61]

Y. Hattori, Y. Hoshi, N. Hashimoto, Y. Ichimura, Y. Sugiura, M. Otsuka, Algorithm and hyperparameter optimizations for hetero-device classification by near-infrared spectra of falsified and substandard amoxicillin capsules, Anal. Sci. 38 (2022) 1261-1268, doi: 10.1007/s44211-022-00142-2.

[62]

J. Li, H. Liu, Y. Li, H. Wang, L. Guan, C. Liao, Image recognition based on THGS algorithm to optimize ResNet-18 model, J. Appl. Artif. Intell. 1 (2024) 169-191, doi: 10.59782/aai.v1i1.284.

[63]

T. Wang, Z. Wang, F. Li, W. Zhao, Lithology identification in Optuna-BiGRU logging based on enhanced multi-head attention mechanism, J. Earth Sci. Environ. 46 (2024) 127-142, doi: 10.19814/j.jese.2023.07011.

[64]

Y. Lan, W. Wang, W. Xu, et al., Discrimination of planting and tissue-cultured Anoectochilus Roxburghi based on SMOTE and Inception-CNN, Spec-trosc. Spect. Anal. 44 (2024) 158-163, doi: 10.3964/j.issn.1000-0593(2024)01-0158-06.

[65]

X. Li, X. Fan, Z. Wang, Y. Li, K. Chen, X. Ma, Logging lithology identification method research based on PSO-SVM: a case study of paleozoic (Pz) reservoir in K oil field, South Turgay Basin, Kazakhstan, Prog. Geophys. 37 (2022) 617-626, doi: 10.6038/pg2022FF0254.

[66]

S. Shuai, Research On Multi-Level Fusion Method of Multi-Source Remote Sens-ing Data —An Example of Identification of Basal-Ultramafic Rocks in North Mountain Bijia Hill Area, China University of Geoscience, 2022 Ph.D. Thesis, doi: 10.27492/d.cnki.gzdzu.2022.000117.

[67]

Z. Wang, Research On XGBoost Lithology Recognition Algorithm Based On Hybrid Optimization, Xi’an Shiyou University, 2022 M.S. Thesis, doi: 10.27400/d.cnki.gxasc.2022.000801.

[68]

Z. Xu, S. Li, P. Lin, H. Xiang, Q. Li, Bayesian-optimized lithology identification via visible and near-infrared spectral data analysis, Intell. Geoeng. 2 (2025) 1-13, doi: 10.1016/j.ige.2025.02.001.

[69]

A. Kuras, B.H. Heincke, S. Salehi, C. Mielke, N. Köllner, C. Rogass, U. Altenberger, I. Burud, Integration of hyperspectral and magnetic data for geological characteri-zation of the Niaqornarssuit ultramafic complex in West-Greenland, Remote Sens. 14 (2022) 4877, 10.3390/rs14194877.

[70]

Y. Gao, G. Xi, C. Chen, L. Xiu, Z. Zheng, P. Yan, J. Dong, B. Yan, J. Liu, Y. Zhao, Z. Yu, The application of a small airborne hyperspectral imaging spectrometer on remote sensing geology and lithology interpretation in alpine canyon regions, Geol. China 50 (2023) 1032-1043, doi: 10.12029/gc20220120003.

[71]

W. Pan, Y. Zhang, Y. Kuang, C. Zhang, Y. Yang, Study on the imaging spectrum logging and alteration zonation of borehole CUSD2-2 in Xiangshan uranium orefield, Jiangxi Province, World Nucl. Geosci. 40 (2023) 852-862, doi: 10.3969/j.issn.1672-0636.2023.03.016.

[72]

L. Zeng, Research of Lithological Discrimination Methods to Geological Remote Sens-ing Based On Grid Technology and Intelligent Algorithms, Central South University, 2011 Ph.D. Thesis.

[73]

L. Han, Study of Multi-Source Remote Sensing Image Fusion Technology and Multi-Source Information’s Application to Geoscience, Northwest University, 2005 Ph.D. Thesis.

[74]

F. Liu, P. Lin, Z. Xu, R. Shao, T. Han, Extraction and imaging of indicator elements for non-destructive, in-situ, fast identification of adverse geology in tunnels, Int. J. Min. Sci. Technol. 33 (2023) 1437-1449, doi: 10.1016/j.ijmst.2023.10.006.

[75]

T. Yu, T. Han, P. Lin, Z. Xu, The identification of faults and case studies based on the analysis of rock mineralogical characterization, J. Basic Sci. Eng. (2023) 1-22 http://kns.cnki.net/kcms/detail/11.3242.TB.20230811.1311.004.html.

[76]

S. Li, B. Liu, X. Xu, L. Nie, Z. Liu, J. Song, H. Sun, L. Chen, K. Fan, An overview of ahead geological prospecting in tunneling, Tunn. Undergr. Space Technol. 63 (2017) 69-94, doi: 10.1016/j.tust.2016.12.011.

[77]

Z. Xu, R. Shao, P. Lin, S. Li, H. Xiang, T. Han, S. Li, Adverse geology identification in tunnel: method, research status and intelligent development direction, Acta Geosci. Sin. 45 (2024) 5-24, doi: 10.3975/cagsb.2023.030702.

[78]

S. Li, C. Li, X. Kang, Development status and future prospects of multi-source remote sensing image fusion, Natl. Remote Sens. Bull. 25 (2021) 148-166, doi: 10.11834/jrs.20210259.

[79]

P. Zhang, J. Li, Development and analysis of borehole geophysical prospecting technology in China, Prog. Geophys. 38 (2023) 1885-1897, doi: 10.6038/pg2023GG0474.

[80]

L. Fisher, M.F. Gazley, A. Baensch, S.J. Barnes, J. Cleverley, G. Duclaux, Resolu-tion of geochemical and lithostratigraphic complexity: a workflow for application of portable X-ray fluorescence to mineral exploration, Geochem.: Explor., Environ., Anal. 14 (2014) 149-159, doi: 10.1144/geochem2012-158.

[81]

R.S. Harmon, C.J.M. Lawley, J. Watts, C.L. Harraden, A.M. Somers, R.R. Hark, Laser-induced breakdown spectroscopy —an emerging analytical tool for mineral explo-ration, Minerals 9 (2019) 718, 10.3390/min9120718.

[82]

R.S. Harmon, G.S. Senesi, Laser-induced breakdown spectroscopy -a geo-chemical tool for the 21st century, Appl. Geochem. 128 (2021) 104929, doi: 10.1016/j.apgeochem.2021.104929.

[83]

T. Yu, Multivariate Spectral Variability Characteristics of Mineral Mixtures and Fault Identification Method, Shandong University, 2023 Ph.D. Thesis, doi: 10.27272/d.cnki.gshdu.2023.007252.

[84]

H. Shi, Z. Xu, P. Lin, W. Ma, Refined lithology identification: method-ology, challenges and prospects, Geoenergy Sci. Eng. 231 (2023) 212382, doi: 10.1016/j.geoen.2023.212382.

[85]

Z. Xu, H. Shi, P. Lin, W. Ma, Intelligent on-site lithology identification based on deep learning of rock images and elemental data, IEEE Geosci. Remote Sens. Lett. 19 (2022) 1-5, doi: 10.1109/LGRS.2022.3179623.

AI Summary AI Mindmap
PDF (9108KB)

1128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/