Advances of soft robotics for gastrointestinal tract applications

Min Du , Zhennian Xie , Xuelin Wang

Soft Science ›› 2025, Vol. 5 ›› Issue (4) : 51

PDF
Soft Science ›› 2025, Vol. 5 ›› Issue (4) :51 DOI: 10.20517/ss.2025.61
Review Article

Advances of soft robotics for gastrointestinal tract applications

Author information +
History +
PDF

Abstract

Gastrointestinal (GI) robots overcome the limitations of conventional endoscopy, offering a noninvasive and precise approach for diagnosing and treating major GI diseases including colorectal cancer, gastric cancer, inflammatory bowel disease, and peptic ulcers. However, due to the dynamic, tortuous, mucus-rich, and pH-variable environment of GI tract, GI robots face serious challenges in achieving precise localization, stable operation, and reliable sensing. Leveraging the properties of tissue-matched modulus, adaptive deformation, and bioinspired design, soft robots can conform to the intestinal wall, minimizing mechanical damage and thereby offering new strategies for efficient sensing and treatment of GI diseases. Hereinto, this review presents a comprehensive GI soft robot system by integrating materials, structural designs, actuation modes, and physiological adaptability to achieve multifunctional performance and clinical reliability. Specifically, materials are classified into biocompatible elastomers, smart responsive polymers, and functionalized conductive materials to guide material selection and structural optimization. Subsequently, structural engineering methods including continuous encapsulation designs, modular-reconfigurable architectures, and biomimetic frameworks are introduced, alongside diverse actuation strategies of field-driven, fluid-driven, and chemically driven autonomous mechanisms. Following that, preclinical applications are highlighted as navigation and localization, drug delivery and controlled release, in vivo sensing, as well as minimally invasive manipulation and therapy. In the future, this integrated GI soft robotics technology will fundamentally reshape precision medicine, enabling a more intelligent and personalized therapeutic platform, and driving the evaluation of next-generation GI soft robotics.

Keywords

Soft robot / gastrointestinal / minimally invasive / diagnosis and treatment / soft actuators

Cite this article

Download citation ▾
Min Du, Zhennian Xie, Xuelin Wang. Advances of soft robotics for gastrointestinal tract applications. Soft Science, 2025, 5(4): 51 DOI:10.20517/ss.2025.61

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aubin CA,Milana E.Towards enduring autonomous robots via embodied energy.Nature2022;602:393-402

[2]

Wehner M,Fitzgerald DJ.An integrated design and fabrication strategy for entirely soft, autonomous robots.Nature2016;536:451-5

[3]

Cianchetti M,Menciassi A.Biomedical applications of soft robotics.Nat Rev Mater2018;3:143-53

[4]

Li G,Zhou F.Self-powered soft robot in the Mariana Trench.Nature2021;591:66-71

[5]

Xie Z,Liu J.Octopus-inspired sensorized soft arm for environmental interaction.Sci Robot2023;8:eadh7852

[6]

Hu W,Mastrangeli M.Small-scale soft-bodied robot with multimodal locomotion.Nature2018;554:81-5

[7]

Sitti M.Miniature soft robots - road to the clinic.Nat Rev Mater2018;3:74-5

[8]

Yoon JE,Park S.Evaluation of gait-assistive soft wearable robot designs for wear comfort, focusing on electroencephalogram and satisfaction.IEEE Robot Autom Lett2024;9:8834-41

[9]

Kim Y,Liu S.Ferromagnetic soft continuum robots.Sci Robot2019;4:eaax7329

[10]

Piskarev Y,Righi M.Fast-response variable-stiffness magnetic catheters for minimally invasive surgery.Adv Sci2024;11:e2305537 PMCID:PMC10966510

[11]

Davy J,Greenidge NJ.Magnetic fluid-driven vine robots for minimally invasive tissue biopsy sampling.Adv Intell Syst2025;7:2400827 PMCID:PMC12370164

[12]

Proietti T,Gerez L.Restoring arm function with a soft robotic wearable for individuals with amyotrophic lateral sclerosis.Sci Transl Med2023;15:eadd1504

[13]

Gu G,Xu H.A soft neuroprosthetic hand providing simultaneous myoelectric control and tactile feedback.Nat Biomed Eng2023;7:589-98

[14]

Wearable robot helps man with Parkinson’s disease to walk.Nat Med2024;30:47-8

[15]

Song X,Wang R.Puffball-inspired microrobotic systems with robust payload, strong protection, and targeted locomotion for on-demand drug delivery.Adv Mater2022;34:e2204791 PMCID:PMC11475404

[16]

Li Y,Qu Y.A multidrug delivery microrobot for the synergistic treatment of cancer.Small2023;19:e2301889

[17]

Pang Y,Chen S.Skin-inspired textile-based tactile sensors enable multifunctional sensing of wearables and soft robots.Nano Energy2022;96:107137

[18]

Ashok A,Barton M.Flexible nanoarchitectonics for biosensing and physiological monitoring applications.Small2023;19:e2204946

[19]

Lee SH,Yeo MK.Fully portable continuous real-time auscultation with a soft wearable stethoscope designed for automated disease diagnosis.Sci Adv2022;8:eabo5867 PMCID:PMC9132462

[20]

Zhou W,Ge Y.Amoeba-inspired soft robot for integrated tumor/infection therapy and painless postoperative drainage.Adv Sci2024;11:e2407148 PMCID:PMC11653624

[21]

Soto F,Ozen MO.Robotic pill for biomarker and fluid sampling in the gastrointestinal tract.Adv Intell Syst2022;4:2200030

[22]

Nejati S,Sedaghat S.Smart capsule for targeted proximal colon microbiome sampling.Acta Biomater2022;154:83-96 PMCID:PMC9986838

[23]

Del-rio-ruiz R,Suresh H.Soft autonomous ingestible device for sampling the small-intestinal microbiome.Device2024;2:100406

[24]

Mimee M,Hayward A.An ingestible bacterial-electronic system to monitor gastrointestinal health.Science2018;360:915-8 PMCID:PMC6430580

[25]

Steiger C,Nadeau P,Langer R.Ingestible electronics for diagnostics and therapy.Nat Rev Mater2019;4:83-98 PMCID:PMC12393167

[26]

Yogapriya J,Sumithra MG,Jenopaul P.Gastrointestinal tract disease classification from wireless endoscopy images using pretrained deep learning model.Comput Math Methods Med2021;2021:5940433 PMCID:PMC8449743

[27]

Manfredi L,Ciuti G.A soft pneumatic inchworm double balloon (SPID) for colonoscopy.Sci Rep2019;9:11109 PMCID:PMC6668406

[28]

Zhang L,Li S.A water strider-inspired intestinal stent actuator for controllable adhesion and unidirectional biofluid picking.Mater Today Bio2024;28:101216 PMCID:PMC11402441

[29]

Del Bono V,Gerald A.A soft robotic “Add-on” for colonoscopy: increasing safety and comfort through force monitoring.Npj Robot2025;3:15 PMCID:PMC12165838

[30]

Weitschies W,Grimm M.Ingestible devices for studying the gastrointestinal physiology and their application in oral biopharmaceutics.Adv Drug Deliv Rev2021;176:113853

[31]

Zhao H,Yu D.Electrochemical-genetic programming of protein-based magnetic soft robots for active drug delivery.Adv Sci2025;12:e2503404

[32]

Zhou Z,Yang D.Acid-triggered charge-switchable antibacterial hydrogel for accelerated healing of gastric mucosal wounds.ACS Nano2025;19:17533-53

[33]

Abramson A,Kong YL.Ingestible transiently anchoring electronics for microstimulation and conductive signaling.Sci Adv2020;6:eaaz0127 PMCID:PMC7455191

[34]

Atuma C,Allen A.The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo.Am J Physiol Gastrointest Liver Physiol2001;280:G922-9

[35]

Huizinga JD.Gut peristalsis is governed by a multitude of cooperating mechanisms.Am J Physiol Gastrointest Liver Physiol2009;296:G1-8

[36]

Fallingborg J.Intraluminal pH of the human gastrointestinal tract.Dan Med Bull1999;46:183-96

[37]

Zhao L,Liu X,Li Z.A multifunctional, self-healing, self-adhesive, and conductive sodium alginate/poly(vinyl alcohol) composite hydrogel as a flexible strain sensor.ACS Appl Mater Interfaces2021;13:11344-55

[38]

Rodríguez-rodríguez R,Cruz-medina CA.A review of pH-responsive chitosan-based hydrogels for drug delivery applications.Eur Polym J2025;237:114173

[39]

Schiller, L.R. Gastrointestinal anatomy and physiology: the essentials. Wiley-Blackwell, 2014.

[40]

Thursby E.Introduction to the human gut microbiota.Biochem J2017;474:1823-36 PMCID:PMC5433529

[41]

Li C,Fitzpatrick V.Design of biodegradable, implantable devices towards clinical translation.Nat Rev Mater2020;5:61-81

[42]

Morsada Z,Islam MT,Saha S.Recent progress in biodegradable and bioresorbable materials: from passive implants to active electronics.Appl Mater Today2021;25:101257

[43]

Li R,Kong D.Recent progress on biodegradable materials and transient electronics.Bioact Mater2018;3:322-33 PMCID:PMC5935787

[44]

Singh R,Istif E.A review of bioresorbable implantable medical devices: materials, fabrication, and implementation.Adv Healthc Mater2020;9:e2000790

[45]

Zhalmuratova D.Reinforced gels and elastomers for biomedical and soft robotics applications.ACS Appl Polym Mater2020;2:1073-91

[46]

Du N,Huang H,Nan K.Stimuli-responsive hydrogel actuators for skin therapeutics and beyond.Soft Sci2024;4:35

[47]

Wang K,Zhao C.Multiple and two-way reversible shape memory polymers: design strategies and applications.Prog Mater Sci2019;105:100572

[48]

Chen S,Zhao R,Liu J.Liquid metal composites.Matter2020;2:1446-80

[49]

Rus D.Design, fabrication and control of soft robots.Nature2015;521:467-75

[50]

Lötters JC,Veltink PH.The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications.J Micromech Microeng1997;7:145-7

[51]

Li J,Meng X.High-fidelity, low-hysteresis bionic flexible strain sensors for soft machines.ACS Nano2024;18:2520-30

[52]

Chen Z,Chen H.A magnetic multi-layer soft robot for on-demand targeted adhesion.Nat Commun2024;15:644 PMCID:PMC10799857

[53]

Wang B,Ye Z.Low-friction soft robots for targeted bacterial infection treatment in gastrointestinal tract.Cyborg Bionic Syst2024;5:0138 PMCID:PMC11223897

[54]

Park CS,Na H.Hydrogels for bioinspired soft robots.Prog Polym Sci2024;150:101791

[55]

Kuang X,Zhou T,Zhang YS.Functional tough hydrogels: design, processing, and biomedical applications.Acc Mater Res2023;4:101-14

[56]

Lu Z,Zhang W.Strong and tough hydrogels fabricated through molecular and structural engineering and their biomedical applications.Chem Eng J2025;508:160728

[57]

Liu GW,Kuosmanen JLP.Drinkable in situ-forming tough hydrogels for gastrointestinal therapeutics.Nat Mater2024;23:1292-9 PMCID:PMC11364503

[58]

Yu J,Yang Y.Robust hydrogel adhesives for emergency rescue and gastric perforation repair.Bioact Mater2023;19:703-16 PMCID:PMC9117276

[59]

Wang H,Li J,Ding A.Structural engineering of polyurethanes for biomedical applications.Prog Polym Sci2024;151:101803

[60]

Ding H,Fu S.Preparation and application of pH-responsive drug delivery systems.J Control Release2022;348:206-38

[61]

Gao W,Zhang C.Facile fabrications of poly (acrylic acid)-mesoporous zinc phosphate/polydopamine Janus nanoparticles as a biosafe photothermal therapy agent and a pH/NIR-responsive drug carrier.Acta Biomater2024;187:328-39

[62]

Huang W,Wang W.A macroporous hydrogel dressing with enhanced antibacterial and anti-inflammatory capabilities for accelerated wound healing.Adv Funct Mater2020;30:2000644

[63]

Wen S,Liu W.Ca-alginate-based janus capsules with a pumping effect for intestinal-targeted controlled release.Engineering2023;24:114-25

[64]

Tang L,Yang X,Li Y.Poly(N-isopropylacrylamide)-based smart hydrogels: design, properties and applications.Prog Mater Sci2021;115:100702

[65]

Ma Y,Yue Y.Nanocellulose-mediated bilayer hydrogel actuators with thermo-responsive, shape memory and self-sensing performances.Carbohydr Polym2024;335:122067

[66]

Delaey J,Van Vlierberghe S.Shape-memory polymers for biomedical applications.Adv Funct Mater2020;30:1909047

[67]

Heunis CM,de Vente G,Venkiteswaran VK.A magnetic bio-inspired soft carrier as a temperature-controlled gastrointestinal drug delivery system.Macromol Biosci2023;23:e2200559

[68]

Peng S,Sun Y.Polyurethane shape memory polymer/ph-responsive hydrogel hybrid for bi-function synergistic actuations.Gels2023;9:428 PMCID:PMC10218152

[69]

Wang S,Luo Y.A comprehensive review of conventional and stimuli-responsive delivery systems for bioactive peptides: from food to biomedical applications.Adv Compos Hybrid Mater2025;8:1053

[70]

Choi SH,Ahn J.Phase patterning of liquid crystal elastomers by laser-induced dynamic crosslinking.Nat Mater2024;23:834-43

[71]

Yao Y,Xu H.Enabling liquid crystal elastomers with tunable actuation temperature.Nat Commun2023;14:3518 PMCID:PMC10267162

[72]

Song C,Bao J.Light-responsive programmable shape-memory soft actuator based on liquid crystalline polymer/polyurethane network.Adv Funct Mater2023;33:2213771

[73]

Zhao R,Chester SA,Zhao X.Mechanics of hard-magnetic soft materials.J Mech Phys Solids2019;124:244-63

[74]

Kim Y.Magnetic soft materials and robots.Chem Rev2022;122:5317-64 PMCID:PMC9211764

[75]

Llacer-Wintle J,Chen XZ.Biodegradable small-scale swimmers for biomedical applications.Adv Mater2021;33:e2102049

[76]

Bai S,Chen T,Gao C.Magnetic nanoparticle-mediated hyperthermia: from heating mechanisms to cancer theranostics.TIMS2024;2:100051

[77]

Wang Y,Yang M.High linearity, low hysteresis Ti3C2Tx MXene/AgNW/liquid metal self-healing strain sensor modulated by dynamic disulfide and hydrogen bonds.Adv Funct Mater2023;33:2301587

[78]

Yang J,Xiong X.Highly conductive and adhesive wearable sensors based on PVA/PAM/SF/PEDOT:PSS double network hydrogels.Appl Phys A2024;130:7329

[79]

Tian Z,Xiao X,Han Z.Untethered multifunctional biomimetic soft actuator with programmable shape deformation capabilities and localized maneuverability.Sens Actuators B Chem2024;410:135678

[80]

Zhang L,Yin H.Skin-inspired, sensory robots for electronic implants.Nat Commun2024;15:4777 PMCID:PMC11153219

[81]

Shen Y,Fu M.Reactive wetting enabled anchoring of non-wettable iron oxide in liquid metal for miniature soft robot.Nat Commun2023;14:6276 PMCID:PMC10560245

[82]

Ye Z,He J.Liquid-metal soft electronics coupled with multi-legged robots for targeted delivery in the gastrointestinal tract.Device2024;2:100181

[83]

Zhang L,Xu L,Wen R.Gastrointestinal-peristalsis-inspired hydrogel actuators for NIR-controlled transport of viscous liquids.Adv Mater2023;35:e2212149

[84]

Sun B,Li S,Zhang Y.Imaging of gastrointestinal tract ailments.J Imaging2023;9:115 PMCID:PMC10299193

[85]

Song E,Huang N,Yu X.Recent advances in microsystem approaches for mechanical characterization of soft biological tissues.Microsyst Nanoeng2022;8:77 PMCID:PMC9262960

[86]

Wang Y,Handschuh-Wang S,Du S.Microrobots for targeted delivery and therapy in digestive system.ACS Nano2023;17:27-50

[87]

Kumar P.Thermal therapy for gastrointestinal bleeding.Gastrointest Endosc Clin N Am1997;7:593-609

[88]

Lee YY,Rao SS.How to assess regional and whole gut transit time with wireless motility capsule.J Neurogastroenterol Motil2014;20:265-70 PMCID:PMC4015195

[89]

Hines L,Lum GZ.Soft actuators for small-scale robotics.Adv Mater2017;29:1603483

[90]

Liao X,Zhang Y,Lin S.Synthesis and evaluation of biodegradable copolyimide elastomer with tunable mechanical and thermal properties.Mater Today Commun2022;31:103573

[91]

Wrede P,Chen Y,Sitti M.Synergistic integration of materials in medical microrobots for advanced imaging and actuation.Nat Rev Mater2025;

[92]

Liu Q,Sun Z.Bio-based elastomers: design, properties, and biomedical applications.Adv Mater2025;37:e2417193

[93]

Bai R,Suo Z.Fatigue of hydrogels.Eur J Mech. A Solids2019;74:337-70

[94]

An H,Huang Z.Hydrophobic cross-linked chains regulate high wet tissue adhesion hydrogel with toughness, anti-hydration for dynamic tissue repair.Adv Mater2024;36:e2310164

[95]

Khan MT,Shah LA.Development of acrylic acid-agar-based adhesive hydrogel: influence of tannic acid concentration on adhesion performance.Int J Adhes Adhesives2025;142:104088

[96]

Peng W,Jiang Y.Charge balance transition enabled Janus hydrogel for robust wet-tissue adhesion and anti-postoperative adhesion.Bioact Mater2025;52:123-38 PMCID:PMC12173079

[97]

Mo C,Zhu K.Advances in injectable hydrogels based on diverse gelation methods for biomedical imaging.Small Methods2024;8:e2400076

[98]

Kong Q,Zhang H.Mimosa-inspired body temperature-responsive shape memory polymer networks: high energy densities and multi-recyclability.Adv Sci2024;11:e2407596 PMCID:PMC11497007

[99]

Li D,Li X.3D printing of near-ambient responsive liquid crystal elastomers with enhanced nematic order and pluralized transformation.ACS Nano2025;19:7075-87

[100]

Ye Z,Zhang L.Preparation and characterization of PLA/TPU/HA enhanced shape memory blends.Mater Today Commun2025;47:113023

[101]

Xie F,Bryant P,Colwell JM.Degradation and stabilization of polyurethane elastomers.Prog Polym Sci2019;90:211-68

[102]

Chen S,Wang H.A bottom-up approach to generate isotropic liquid metal network in polymer-enabled 3D thermal management.Chem Eng J2022;439:135674

[103]

Chitambar CR.Medical applications and toxicities of gallium compounds.Int J Environ Res Public Health2010;7:2337-61 PMCID:PMC2898053

[104]

Hargreaves BA,Pauly KB,Koch KM.Metal-induced artifacts in MRI.AJR Am J Roentgenol2011;197:547-55 PMCID:PMC5562503

[105]

Ali A,Zia M.Synthesis, characterization, applications, and challenges of iron oxide nanoparticles.Nanotechnol Sci Appl2016;9:49-67 PMCID:PMC4998023

[106]

Ma D,Luo Y,Shi X.Zwitterion-coated ultrasmall iron oxide nanoparticles for enhanced T1-weighted magnetic resonance imaging applications.J Mater Chem B2017;5:7267-73

[107]

Wang X,Zhang J.Printed conformable liquid metal e-skin-enabled spatiotemporally controlled bioelectromagnetics for wireless multisite tumor therapy.Adv Funct Mater2019;29:1907063

[108]

Shellock FG.Radiofrequency energy-induced heating during mr procedures: a review.J Magn Reson Imaging2000;12:30-6

[109]

Shen Z,Chen X.Iron oxide nanoparticle based contrast agents for magnetic resonance imaging.Mol Pharm2017;14:1352-64

[110]

Mhlanga N,Van der Walt H,Mokhena T.Nanostructures and nanoparticles as medical diagnostic imaging contrast agents: a review.Mater Today Chem2024;40:102233

[111]

D.Pitfalls in Musculoskeletal Radiology Peh, W.C.G., Eds.; Cham:Springer International Publishing; 2017; pp 45-59

[112]

Naha PC,Kim J.Dextran-coated cerium oxide nanoparticles: a computed tomography contrast agent for imaging the gastrointestinal tract and inflammatory bowel disease.ACS Nano2020;14:10187-97 PMCID:PMC7484129

[113]

Akagi M,Higaki T.Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT.Eur Radiol2019;29:6163-71

[114]

Zlitni A.Molecular imaging agents for ultrasound.Curr Opin Chem Biol2018;45:113-20 PMCID:PMC6609297

[115]

Mohammadlou B, Ippolito S, FitzPatrick J, Upadhyay P, Burnett TL, Gogotsi Y. Characterization of MXene-based materials by X-Ray computed tomography.Small Methods2025;9:e2500262

[116]

Lin J,Huang P.Graphene-based nanomaterials for bioimaging.Adv Drug Deliv Rev2016;105:242-54 PMCID:PMC5039069

[117]

Shellock FG.MR procedures: biologic effects, safety, and patient care.Radiology2004;232:635-52

[118]

Lee B,Lee N,Hyeon T.Design of oxide nanoparticles for biomedical applications.Nat Rev Mater2025;10:252-67

[119]

Xiong Z,Tang J.Rationally constructing the theranostics hydrogels for targeted CT imaging and healing of inflammatory bowel disease.Chem Eng J2025;513:162986

[120]

Sridharan B.Exosomes and ultrasound: the future of theranostic applications.Mater Today Bio2023;19:100556 PMCID:PMC9900624

[121]

Feldman MK,Blackwood MS.US artifacts.Radiographics2009;29:1179-89

[122]

Beyer T,Birk UJ.Medical physics and imaging-a timely perspective.Front Phys2021;9:634693

[123]

Shen Y,Zhou E.Tough hydrogel-coated containment capsule of magnetic liquid metal for remote gastrointestinal operation.Natl Sci Rev2025;12:nwaf042 PMCID:PMC11892562

[124]

Srinivasan SS,Hwang AV.RoboCap: robotic mucus-clearing capsule for enhanced drug delivery in the gastrointestinal tract.Sci Robot2022;7:eabp9066 PMCID:PMC10034646

[125]

Consumi V,Merlin J,Stilli A.Design and evaluation of the SoftSCREEN capsule for colonoscopy.IEEE Robot Autom Lett2023;8:1659-66

[126]

Hao B,Dong Y.Focused ultrasound enables selective actuation and Newton-level force output of untethered soft robots.Nat Commun2024;15:5197 PMCID:PMC11189400

[127]

Nan M,Song H.Multistimulus-responsive miniature soft actuator with programmable shape-morphing design for biomimetic and biomedical applications.Adv Funct Mater2024;34:2401776

[128]

Huang W,Wang W,Xue C.A double-layer polysaccharide hydrogel (DPH) for the enhanced intestine-targeted oral delivery of probiotics.Engineering2024;34:187-94

[129]

Zhang X,Fu X,Zhao Y.Magneto-responsive microneedle robots for intestinal macromolecule delivery.Adv Mater2021;33:e2104932

[130]

Levy JA,Stine JM,Ghodssi R.Magnetically triggered ingestible capsule for localized microneedle drug delivery.Device2024;2:100438

[131]

Chen W,Ryoo SW.Dynamic omnidirectional adhesive microneedle system for oral macromolecular drug delivery.Sci Adv2022;8:eabk1792 PMCID:PMC8730401

[132]

Ze Q,Dai J.Spinning-enabled wireless amphibious origami millirobot.Nat Commun2022;13:3118 PMCID:PMC9198078

[133]

Gu H,Ehmke C.Self-folding soft-robotic chains with reconfigurable shapes and functionalities.Nat Commun2023;14:1263 PMCID:PMC9992713

[134]

Sun Y,Gu J.Magnetically driven capsules with multimodal response and multifunctionality for biomedical applications.Nat Commun2024;15:1839 PMCID:PMC10904804

[135]

Li Q,Yang H.Magnetically actuated soft microrobot with environmental adaptative multimodal locomotion towards targeted delivery.Adv Sci2024;11:e2406600 PMCID:PMC11578324

[136]

Abramson A,Khang M.An ingestible self-orienting system for oral delivery of macromolecules.Science2019;363:611-5 PMCID:PMC6430586

[137]

Tong D,Wu Z.Octopus-inspired soft robot for slow drug release.Biomimetics2024;9:340 PMCID:PMC11202092

[138]

Soon RH,Dogan MA.Pangolin-inspired untethered magnetic robot for on-demand biomedical heating applications.Nat Commun2023;14:3320 PMCID:PMC10282021

[139]

Gao X,Li J,Xu J.Pain-free oral delivery of biologic drugs using intestinal peristalsis-actuated microneedle robots.Sci Adv2024;10:eadj7067 PMCID:PMC10776013

[140]

Min H,Jang S.Stiffness-tunable velvet worm-inspired soft adhesive robot.Sci Adv2024;10:eadp8260 PMCID:PMC11578180

[141]

Li W,Liu S.Climbing plant-inspired multi-responsive biomimetic actuator with transitioning complex surfaces.Adv Funct Mater2025;35:2414733

[142]

Chen W,Yang M.Triple-configurational magnetic robot for targeted drug delivery and sustained release.ACS Appl Mater Interfaces2021;13:45315-24

[143]

Lum GZ,Dong X.Shape-programmable magnetic soft matter.Proc Natl Acad Sci U S A2016;113:E6007-15 PMCID:PMC5068264

[144]

Liu D,Chen Z.Magnetically driven soft continuum microrobot for intravascular operations in microscale.Cyborg Bionic Syst2022;2022:9850832 PMCID:PMC9494713

[145]

Liu H,Yuan H.Bioinspired multifunctional self-sensing actuated gradient hydrogel for soft-hard robot remote interaction.Nanomicro Lett2024;16:69 PMCID:PMC10766940

[146]

Wei T,Yang M,Hu C.A magnetic patch robot with photothermal-activated multi-modality for targeted anti-postoperative adhesion.Int J Extrem Manuf2025;7:055502

[147]

Ying B,Zhu Q.An electroadhesive hydrogel interface prolongs porcine gastrointestinal mucosal theranostics.Sci Transl Med2025;17:eadq1975

[148]

Zhang L,Zhou X.A magnetic-driven multi-motion robot with position/orientation sensing capability.Research2023;6:0177 PMCID:PMC11778601

[149]

Chen Z,Fang K,Yu J.Magneto-thermal hydrogel swarms for targeted lesion sealing.Adv Healthc Mater2025;14:e2403076

[150]

Li W,Lou C.Triple-responsive soft actuator with plastically retentive deformation and magnetically programmable recovery.ACS Nano2023;17:24042-54

[151]

Ebrahimi N,Cappelleri DJ.Magnetic actuation methods in bio/soft robotics.Adv Funct Mater2021;31:2005137

[152]

Li H,Deng Q.Programmable magnetic hydrogel robots with drug delivery and physiological sensing capabilities.Mater Today2025;87:66-76

[153]

Kaynak M,Sakar MS.Addressable acoustic actuation of 3D printed soft robotic microsystems.Adv Sci2020;7:2001120 PMCID:PMC7578873

[154]

Wu S,Zhu Y.Thermally actuated soft robotics.Adv Mater2025;Epub ahead of print:

[155]

Huan Y,Firrincieli A.Flexible over-the-tube device for soft-tethered colonoscopy.IEEE/ASME Trans Mechatron2024;29:1611-21

[156]

Melancon D,Kamp LM,Bertoldi K.Inflatable origami: multimodal deformation via multistability.Adv Funct Mater2022;32:2201891

[157]

Zhu K,Sharma B.Development of a bioinspired soft robotic system for teleoperated endoscopic surgery.Cyborg Bionic Syst2025;6:0289 PMCID:PMC12159415

[158]

Nguyen CC,Thai MT.A handheld hydraulic soft robotic device with bidirectional bending end-effector for minimally invasive surgery.IEEE Trans Med Robot Bionics2023;5:590-601

[159]

Zhang C,Jiao Z.Functional fluid-based soft robotic actuation.Adv Mater2025;37:e2502669

[160]

Siéfert E,Bico J.Bio-inspired pneumatic shape-morphing elastomers.Nat Mater2019;18:24-8

[161]

Yoon Y,Lee J.Bioinspired untethered soft robot with pumpless phase change soft actuators by bidirectional thermoelectrics.Chem Eng J2023;451:138794

[162]

Beatty R,Schreiber LHJ.Soft robot-mediated autonomous adaptation to fibrotic capsule formation for improved drug delivery.Sci Robot2023;8:eabq4821

[163]

Cai L,Sun L.Rocket-inspired effervescent motors for oral macromolecule delivery.Adv Mater2023;35:e2210679

[164]

Karshalev E,Esteban-Fernández de Ávila B.Micromotors for active delivery of minerals toward the treatment of iron deficiency anemia.Nano Lett2019;19:7816-26 PMCID:PMC6854300

[165]

An Z,Wu Z.Dual-responsive micromotor pill for targeted retention in the intestines in vivo.J Mater Chem B2025;13:1296-301

[166]

Han Z,Mao G.Dual pH-responsive hydrogel actuator for lipophilic drug delivery.ACS Appl Mater Interfaces2020;12:12010-7

[167]

Fu YJ,Wang LY.A gas therapy strategy for intestinal flora regulation and colitis treatment by nanogel-based multistage NO delivery microcapsules.Adv Mater2024;36:e2309972

[168]

Wang J,Zhang W.Selective decorating Ag and MnOx nanoparticles on halloysite and used as micromotor for bacterial killing.Appl Clay Sci2022;216:106352

[169]

Feng Y,Liu Y,Yang H.Advances in chemically powered micro/nanorobots for biological applications: a review.Adv Funct Mater2023;33:2209883

[170]

Wei J,Guan J,Shao Z.Robust and highly sensitive cellulose nanofiber-based humidity actuators.ACS Appl Mater Interfaces2021;13:54417-27

[171]

Sun L,Li M.Reinforced nacre-like MXene/sodium alginate composite films for bioinspired actuators driven by moisture and sunlight.Small2024;20:e2406832 PMCID:PMC11657044

[172]

Chen Z,Jung S.Bioinspired and biohybrid soft robots: principles and emerging technologies.Matter2025;8:102045

[173]

Wang B,Yuan K.Endoscopy-assisted magnetic navigation of biohybrid soft microrobots with rapid endoluminal delivery and imaging.Sci Robot2021;6:eabd2813

[174]

Li Z,Zhang F.Biohybrid microrobots regulate colonic cytokines and the epithelium barrier in inflammatory bowel disease.Sci Robot2024;9:eadl2007

[175]

Yang Z,Li Z,Zhang L.A magnetically-actuated ultrasound capsule endoscope (MUSCE) for endoluminal imaging in tubular environments.IEEE Robot Autom Lett2025;10:2590-7

[176]

Xu Z,Yuan M,Ge W.Versatile magnetic hydrogel soft capsule microrobots for targeted delivery.iScience2023;26:106727 PMCID:PMC10192936

[177]

Wang C,Schirhagl R,Venkiteswaran VK.Biocompatible film-coating of magnetic soft robots for mucoadhesive locomotion.Adv Mater Technol2023;8:2201813

[178]

Liu R,Zhen Y.A magnetic capsule robot with an exoskeleton to withstand esophageal pressure and delivery drug in stomach.IEEE Robot Autom Lett2024;9:11802-9

[179]

Hu X,Li M,He G.Catheter-assisted bioinspired adhesive magnetic soft millirobot for drug delivery.Small2024;20:e2306510

[180]

Wu L,Liu X.Milk-derived exosomes exhibit versatile effects for improved oral drug delivery.Acta Pharm Sin B2022;12:2029-42 PMCID:PMC9279706

[181]

Liu X,Inda ME.Magnetic living hydrogels for intestinal localization, retention, and diagnosis.Adv Funct Mater2021;31:2010918 PMCID:PMC9328153

[182]

Yang Z,Lee JX.Magnetic miniature soft robot with reprogrammable drug-dispensing functionalities: toward advanced targeted combination therapy.Adv Mater2024;36:e2408750

[183]

Kumawat A,Ghoroi C.pH-responsive, reactive oxygen species scavenging and highly swellable nanogel for colon-targeted oral drug delivery.ACS Appl Nano Mater2024;7:18964-78

[184]

Xiao B,Edwards S,Dong X.Sensing mucus physiological property in situ by wireless millimeter-scale soft robots.Adv Funct Mater2024;34:2307751 PMCID:PMC11845219

[185]

You SS,Schmidt P.An ingestible device for gastric electrophysiology.Nat Electron2024;7:497-508

[186]

Wang C,Dong X,Sitti M.In situ sensing physiological properties of biological tissues using wireless miniature soft robots.Sci Adv2023;9:eadg3988 PMCID:PMC7614673

[187]

Inda-Webb ME,Liu Q.Sub-1.4 cm3 capsule for detecting labile inflammatory biomarkers in situ.Nature2023;620:386-92

[188]

Sun Y,Li D.Stretchable, multiplexed, and bimodal sensing electronic armor for colonoscopic continuum robot enhanced by triboelectric artificial synapse.Adv Mater2025;37:e2502203 PMCID:PMC12369696

[189]

Sahafi A,Rasmussen CLM.Edge artificial intelligence wireless video capsule endoscopy.Sci Rep2022;12:13723 PMCID:PMC9374669

[190]

De la Paz E,Trifonov A.A self-powered ingestible wireless biosensing system for real-time in situ monitoring of gastrointestinal tract metabolites.Nat Commun2022;13:7405 PMCID:PMC9715945

[191]

Li Y,Bhuiyan SRA.Bio-inspired untethered robot-sensor platform for minimally invasive biomedical sensing.ACS Appl Mater Interfaces2023;15:58839-49

[192]

Sharma S,Poole NH.Location-aware ingestible microdevices for wireless monitoring of gastrointestinal dynamics.Nat Electron2023;6:242-56 PMCID:PMC10516531

[193]

Madhvapathy SR,Wang LW.Miniaturized implantable temperature sensors for the long-term monitoring of chronic intestinal inflammation.Nat Biomed Eng2024;8:1040-52

[194]

Yang J,Runciman M,Sun Z.A soft inflatable cable-driven parallel robot with a variable stiffness end-effector for advanced interventional endoscopy.IEEE Trans Biomed Eng2025;72:2794-803

[195]

Nguyen CC,Ashok A.Motor-free soft robots for cancer detection, surgery, and in situ bioprinting.Adv Healthc Mater2025;14:e2404623 PMCID:PMC12118338

[196]

Nan K,Li D.An ingestible, battery-free, tissue-adhering robotic interface for non-invasive and chronic electrostimulation of the gut.Nat Commun2024;15:6749

[197]

Wu H,Li H.Accelerated intestinal wound healing via dual electrostimulation from a soft and biodegradable electronic bandage.Nat Electron2024;7:299-312

[198]

Srinivasan SS,Huang HW.An ingestible self-propelling device for intestinal reanimation.Sci Robot2024;9:eadh8170

[199]

Wang Y,Cui L.Bioinspired handheld time-share driven robot with expandable DoFs.Nat Commun2024;15:768 PMCID:PMC10817928

[200]

Greenidge NJ,Moldovan AC.Harnessing the oloid shape in magnetically driven robots to enable high-resolution ultrasound imaging.Sci Robot2025;10:eadq4198

AI Summary AI Mindmap
PDF

220

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/