Damage-free dry transfer printing of ultrathin films with on-demand interfacial adhesion: principles and applications

Fu Fan , Lei Chen , Yubin Wang , Pengshuai Wang , Yuan Niu , Yanting Lv , Yu Zhou , Zhiwen Shu , Peng Liu , Wanrong Dong , Nianqi Zhang , Chaohua Li , Huigao Duan

Soft Science ›› 2025, Vol. 5 ›› Issue (4) : 52

PDF
Soft Science ›› 2025, Vol. 5 ›› Issue (4) :52 DOI: 10.20517/ss.2025.52
Review Article

Damage-free dry transfer printing of ultrathin films with on-demand interfacial adhesion: principles and applications

Author information +
History +
PDF

Abstract

Transfer printing, a foundational manufacturing route for integrating heterogeneous materials onto diverse substrates, holds great promise for applications in flexible electronics, emerging displays, and soft robotics. As applications grow more complex, the quality of ultrathin films integrated onto applicable substrates, initially fabricated on rigid substrates by spin-coating, physical vapor deposition, or chemical vapor deposition [e.g., photoresists, metals, two-dimensional (2D) materials] with thicknesses below 10 μm, becomes critical to the performance of advanced devices, including flexible/curved electronics and 2D films-based electronics. However, achieving damage-free transfer printing of ultrathin films requires resolving the trade-off in traditional methods between interfacial fracture and in-plane film damage. Herein, this review elucidates the principles underlying damage-free transfer printing of ultrathin films, highlights recent innovations that enable on-demand control of interfacial adhesion during the process, and summarizes typical applications based on transferred damage-free films. Finally, we provide perspectives on the remaining challenges and future developments needed to enable industrial-scale manufacturing and inspire continued innovation.

Keywords

Transfer printing / damage-free / fragile ultrathin films / on-demand interfacial adhesion / micro/nano-manufacturing / flexible/curved electronics

Cite this article

Download citation ▾
Fu Fan, Lei Chen, Yubin Wang, Pengshuai Wang, Yuan Niu, Yanting Lv, Yu Zhou, Zhiwen Shu, Peng Liu, Wanrong Dong, Nianqi Zhang, Chaohua Li, Huigao Duan. Damage-free dry transfer printing of ultrathin films with on-demand interfacial adhesion: principles and applications. Soft Science, 2025, 5(4): 52 DOI:10.20517/ss.2025.52

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Meitl MA,Kumar V.Transfer printing by kinetic control of adhesion to an elastomeric stamp.Nature Mater2006;5:33-8

[2]

Feng X,Bowen AM,Nuzzo RG.Competing fracture in kinetically controlled transfer printing.Langmuir2007;23:12555-60

[3]

Kim SS,Kim H. Progress in EUV lithography toward manufacturing. In Proceedings of SPIE - The International Society for Optical Engineering, San Jose, USA. February 27 - March 02, 2017. SPIE: 2017. Vol. 10143, pp. 1014306. https://www.researchgate.net/publication/315650357_Progress_in_EUV_lithography_toward_manufacturing. (accessed 11 Sep 2025)

[4]

Cheimarios N,Boudouvis AG.Multiscale modeling in chemical vapor deposition processes: models and methodologies.Arch Computat Methods Eng2021;28:637-72

[5]

Luo H,Wang S,Song J.Switchable adhesive based on shape memory polymer with micropillars of different heights for laser-driven noncontact transfer printing.ACS Appl Mater Interfaces2024;16:9443-52

[6]

Zhang S,Wang S.A thermal actuated switchable dry adhesive with high reversibility for transfer printing.Int J Extrem Manuf2021;3:035103

[7]

Chen F,Sun N.Laser-driven hierarchical “gas-needles” for programmable and high-precision proximity transfer printing of microchips.Sci Adv2023;9:eadk0244 PMCID:PMC10610906

[8]

Chen F,Hu J.Mass transfer techniques for large-scale and high-density microLED arrays.Int J Extrem Manuf2022;4:042005

[9]

Wang Y,Lu J.Programmable micro-transfer-printing for heterogeneous material integration.AIP Adv2022;12:065110

[10]

Linghu C,Wang C.Transfer printing techniques for flexible and stretchable inorganic electronics.npj Flex Electron2018;2:26

[11]

Zhou H,Yu Q,Yu X.Transfer printing and its applications in flexible electronic devices.Nanomaterials2019;9:283 PMCID:PMC6410120

[12]

Kim Y,Choi MK.Recent advances in transfer printing of colloidal quantum dots for high-resolution full color displays.Korean J Chem Eng2024;41:3469-82

[13]

Yoon J,Kang D,Bower CA.Heterogeneously integrated optoelectronic devices enabled by micro-transfer printing.Adv Opt Mater2015;3:1313-35

[14]

Huang Z.Transfer printing technologies for soft electronics.Nanoscale2022;14:16749-60

[15]

Cheng H,Wu J.A viscoelastic model for the rate effect in transfer printing.J Appl Mech2013;80:041019

[16]

Yin H,Feng X.Rate-dependent peeling behavior of the viscoelastic film-substrate system.Int J Solids Struct2024;286-7:112588

[17]

Keum H,Eisenhaure JD,Kim S.Deterministically assembled three-dimensional silicon microstructures using elastomeric stamps. In 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), Paris, France. January 29 - February 02, 2012. IEEE; 2012. pp. 224-7.

[18]

Kim S,Carlson A.Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing.Proc Natl Acad Sci U S A2010;107:17095-100 PMCID:PMC2951455

[19]

Zhao X,Zhang R,Ma Y.Dual-interface competitive fracture model for curvature-based transfer printing method.Adv Mater Interfaces2024;11:2400303

[20]

Cho S,Song K.Adhesiveless transfer printing of ultrathin microscale semiconductor materials by controlling the bending radius of an elastomeric stamp.Langmuir2016;32:7951-7

[21]

Carlson A,Wu J.Shear-enhanced adhesiveless transfer printing for use in deterministic materials assembly.Appl Phys Lett2011;98:264104

[22]

Yang SY,Cheng H.Elastomer surfaces with directionally dependent adhesion strength and their use in transfer printing with continuous roll-to-roll applications.Adv Mater2012;24:2117-22

[23]

Lee J.Aphid-inspired and thermally-actuated soft gripper using 3D printing technology.Macromol Rapid Commun2023;44:e2300352

[24]

Linghu C,Cen N,Lai Z.Rapidly tunable and highly reversible bio-inspired dry adhesion for transfer printing in air and a vacuum.Soft Matter2018;15:30-7

[25]

Liang C,Huo Z,Tian Y.Adhesion performance study of a novel microstructured stamp for micro-transfer printing.Soft Matter2021;17:4989-97

[26]

Lee H,Lee Y,Kim HJ.Octopus-inspired smart adhesive pads for transfer printing of semiconducting nanomembranes.Adv Mater2016;28:7457-65

[27]

Yoo JI,Ko HC.Stick-and-play system based on interfacial adhesion control enhanced by micro/nanostructures.Nano Res2021;14:3143-58

[28]

Shi X,Li S,Zhao Z.Magnetic-field-driven switchable adhesion of NdFeB/PDMS composite with gecko-like surface.Nano Res2023;16:6840-8

[29]

Saeidpourazar R,Li Y.Laser-driven micro transfer placement of prefabricated microstructures.J Microelectromech Syst2012;21:1049-58

[30]

Huang Y,Cheng Z.Direct laser writing-based programmable transfer printing via bioinspired shape memory reversible adhesive.ACS Appl Mater Interfaces2016;8:35628-33

[31]

Luo H,Linghu C,Wang C.Laser-driven programmable non-contact transfer printing of objects onto arbitrary receivers via an active elastomeric microstructured stamp.Natl Sci Rev2020;7:296-304 PMCID:PMC8288994

[32]

Linghu C,Wang C.Universal SMP gripper with massive and selective capabilities for multiscaled, arbitrarily shaped objects.Sci Adv2020;6:eaay5120 PMCID:PMC7021497

[33]

Eisenhaure J.Laser-driven shape memory effect for transfer printing combining parallelism with individual object control.Adv Mater Technol2016;1:1600098

[34]

Kim J,Yun T.Shape memory polymer surfaces with controllable roughness for multiscale switchable dry adhesion.Nat Commun2025;16:4954 PMCID:PMC12119915

[35]

Gablech I.State-of-the-art electronic materials for thin films in bioelectronics.Adv Elect Mater2023;9:2300258

[36]

Pham PV,Dash SP.Transfer of 2D films: from imperfection to perfection.ACS Nano2024;18:14841-76 PMCID:PMC11171780

[37]

Nam Y,Choi JG.Ultra-thin GaAs single-junction solar cells for self-powered skin-compatible electrocardiogram sensors.Small Methods2024;8:e2301735

[38]

Han S,Meng Y.Chapter 17 - 2D materials–based electronics enabled by transfer printing technologies. In Transfer printing technologies and applications. Elsevier; 2024. pp. 475-93.

[39]

Sakthinathan S,Vinothini S.A review of thin-film growth, properties, applications, and future prospects.Processes2025;13:587

[40]

Malureanu R.Ultra-thin films for plasmonics: a technology overview.Nanotechnol Rev2015;4:259-75

[41]

Gao W,He J.Recent advances in ultrathin materials and their applications in e-skin.InfoMat2023;5:e12426

[42]

Huang W,Kwon IS.Ultracompliant hydrogel-based neural interfaces fabricated by aqueous-phase microtransfer printing.Adv Funct Mater2018;28:1801059

[43]

Chen L,Liu P.Sustainable lithography paradigm enabled by mechanically peelable resists.Adv Mater2025;37:e2410978

[44]

Liu G,Yang Z.Graphene-assisted metal transfer printing for wafer-scale integration of metal electrodes and two-dimensional materials.Nat Electron2022;5:275-80

[45]

Bae S,Lee Y.Roll-to-roll production of 30-inch graphene films for transparent electrodes.Nat Nanotechnol2010;5:574-8

[46]

Zhang X,Wang S.Se-mediated dry transfer of wafer-scale 2D semiconductors for advanced electronics.Nat Commun2025;16:4468 PMCID:PMC12078512

[47]

Gong Z.Layer-scale and chip-scale transfer techniques for functional devices and systems: a review.Nanomaterials2021;11:842 PMCID:PMC8065746

[48]

Wu H,Zhu C,Sitti M.Transfer printing of metallic microstructures on adhesion-promoting hydrogel substrates.Adv Mater2015;27:3398-404

[49]

Le Borgne, B.; De Sagazan, O.; Crand, S.; Jacques, E.; Harnois, M. Conformal electronics wrapped around daily life objects using an original method: water transfer printing.ACS Appl Mater Interfaces2017;9:29424-9

[50]

Le Borgne B,Morvan X.Water transfer printing enhanced by water-induced pattern expansion: toward large-area 3D electronics.Adv Mater Technol2019;4:1800600

[51]

Sun W,Zhu X.Electric field-driven jetting and water-assisted transfer printing for high-resolution electronics on complex curved surfaces.Electronics2024;13:1182

[52]

Xu Z,Yang L.Water-soluble and environmentally friendly UV photodetector fabricated through solvent-free material patterning. In 2025 IEEE 38th International Conference on Micro Electro Mechanical Systems (MEMS), Kaohsiung, Taiwan. January 19-23, 2025. IEEE; 2025. pp. 708-11.

[53]

Anderson TL.Fracture mechanics: fundamentals and applications. 3rd edition. CRC press; 2005.

[54]

Hutchinson JW.Mixed mode cracking in layered materials.Adv Appl Mech1991;29:63-191

[55]

León Baldelli, A.; Babadjian, J.; Bourdin, B.; Henao, D.; Maurini, C. A variational model for fracture and debonding of thin films under in-plane loadings.J Mech Phys Solids2014;70:320-48

[56]

Jung A,Kim N.Multiple transfer of layer-by-layer nanofunctional films by adhesion controls.ACS Appl Mater Interfaces2019;11:48476-86

[57]

Li Y,Wang S.Regulatable interfacial adhesion between stamp and ink for transfer printing.Interdiscip Mater2024;3:29-53

[58]

Chen Z,Zheng Z.Advancements in transfer printing techniques for flexible electronics: adjusting interfaces and promoting versatility.Int J Extrem Manuf2024;6:052005

[59]

Ahn J,Jeong Y.Illuminating recent progress in nanotransfer printing: core principles, emerging applications, and future perspectives.Adv Sci2024;11:e2303704 PMCID:PMC10767444

[60]

Linghu C,Zhao W.Advancing smart dry adhesives with shape memory polymers.Int J Smart Nano Mater2025;16:103-43

[61]

Zhang L,Tan Z,Yao C.Research progress of microtransfer printing technology for flexible electronic integrated manufacturing.Micromachines2021;12:1358 PMCID:PMC8619378

[62]

Wu H,Luo H,Duan Y.Fabrication techniques for curved electronics on arbitrary surfaces.Adv Mater Technol2020;5:2000093

[63]

Park J,Lee H.Transfer printing of electronic functions on arbitrary complex surfaces.ACS Nano2020;14:12-20

[64]

Zeng Y,Hong W.Review on metallization approaches for high-efficiency silicon heterojunction solar cells.Trans Tianjin Univ2022;28:358-73

[65]

Lee CH,Zheng X.Transfer printing methods for flexible thin film solar cells: basic concepts and working principles.ACS Nano2014;8:8746-56

[66]

Chen L,Liu P.Phase-change stamp with highly switchable adhesion and stiffness for damage-free multiscale transfer printing.ACS Nano2024;18:23968-78

[67]

Yan Z,Xue M.Thermal release transfer printing for stretchable conformal bioelectronics.Adv Sci2017;4:1700251 PMCID:PMC5700632

[68]

Wang C,Nie S.Programmable and scalable transfer printing with high reliability and efficiency for flexible inorganic electronics.Sci Adv2020;6:eabb2393 PMCID:PMC7299632

[69]

Shin Y,Hur YC.Damage-free dry transfer method using stress engineering for high-performance flexible two- and three-dimensional electronics.Nat Mater2024;23:1411-20

[70]

Sim K,Li Z.Three-dimensional curvy electronics created using conformal additive stamp printing.Nat Electron2019;2:471-9

[71]

Shu Z,Liu P.Near-zero-adhesion-enabled intact wafer-scale resist-transfer printing for high-fidelity nanofabrication on arbitrary substrates.Int J Extrem Manuf2024;6:015102

[72]

Chen Z,Wang H.Electrochemical replication and transfer for low-cost, sub-100 nm patterning of materials on flexible substrates.Adv Mater2023;35:e2210778

[73]

Chen L,Feng B.Dry-transferable photoresist enabled reliable conformal patterning for ultrathin flexible electronics.Adv Mater2023;35:e2303513

[74]

Zhou Y,Shu Z,Hu Y.Wafer-level perfect conformal contact lithography at the diffraction limit enabled by dry transferable photoresist.Int J Extrem Manuf2025;7:065101

[75]

Zhou Y,Chen L,Ji Z.Wafer-recyclable, eco-friendly, and multiscale dry transfer printing by transferable photoresist for flexible epidermal electronics.ACS Appl Mater Interfaces2024;16:13525-33

[76]

Liu J,Xue R.Sacrificial layer-assisted nanoscale transfer printing.Microsyst Nanoeng2020;6:80 PMCID:PMC8433480

[77]

He Y,Liu Z.Sacrifice-layer-free transfer of wafer-scale atomic-layer-deposited dielectrics and full-device stacks for two-dimensional electronics.Nat Commun2025;16:5904 PMCID:PMC12217795

[78]

Liu H,Man P.Controlled adhesion of ice-toward ultraclean 2D materials.Adv Mater2023;35:e2210503

[79]

Shi C,Li C,Jian W.Precision-induced localized molten liquid metal stamps for damage-free transfer printing of ultrathin membranes and 3D objects.Nat Commun2024;15:8839 PMCID:PMC11471857

[80]

Zabow G.Reflow transfer for conformal three-dimensional microprinting.Science2022;378:894-8 PMCID:PMC10013203

[81]

Yi H,Sun K.Wet-responsive, reconfigurable, and biocompatible hydrogel adhesive films for transfer printing of nanomembranes.Adv Funct Mater2018;28:1706498

[82]

Guo Q,Yang L. High-precision and wafer-scale transfer lithography of commercial photoresists via reversible adhesion for sustainable microfabrication on diverse substrates. arXiv 2025, arXiv:2504.15078. https://doi.org/10.48550/arXiv.2504.15078. (accessed 2025-09-11)

[83]

Gu Z,Zhang F.Understanding surface adhesion in nature: a peeling model.Adv Sci2016;3:1500327 PMCID:PMC5066691

[84]

Love JC,Kriebel JK,Whitesides GM.Self-assembled monolayers of thiolates on metals as a form of nanotechnology.Chem Rev2005;105:1103-69

[85]

Barlow S.Complex organic molecules at metal surfaces: bonding, organisation and chirality.Surf Sci Rep2003;50:201-341

[86]

Chandekar A,Whitten JE.Thermal stability of thiol and silane monolayers: a comparative study.Appl Surf Sci2010;256:2742-9

[87]

Vericat C,Benitez G,Salvarezza RC.Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system.Chem Soc Rev2010;39:1805-34

[88]

Li Z,Shi J.Residue-free wafer-scale direct imprinting of two-dimensional materials.Nat Electron2025;8:571-7

[89]

Hoque E,Bhushan B.Low adhesion, non-wetting phosphonate self-assembled monolayer films formed on copper oxide surfaces.Ultramicroscopy2009;109:1015-22

[90]

Kulkarni SA,Mandale A,Vijayamohanan KP.Growth kinetics and thermodynamic stability of octadecyltrichlorosilane self-assembled monolayer on Si (100) substrate.Mater Lett2005;59:3890-5

[91]

Hong FCN.Residual-layer-free printing by selective filling of self-assembled monolayer-treated mold.J Vac Sci Technol B2011;29:041601

[92]

Chen Z,Chen F.Construction of 3D patterns through modified electrochemical replication and transfer.Adv Mater Technol2024;9:2301695

[93]

Zhang S,Chen Y.Hydrogel-enabled transfer-printing of conducting polymer films for soft organic bioelectronics.Adv Funct Mater2020;30:1906016

[94]

Brown HR.The adhesion between polymers.Annu Rev Mater Sci1991;21:463-89

[95]

Kang K,Huang L.High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity.Nature2015;520:656-60

[96]

Yoon HH,Choi G.Strong fermi-level pinning at metal/n-Si(001) interface ensured by forming an intact schottky contact with a graphene insertion layer.Nano Lett2017;17:44-9

[97]

Lafontaine WR.Hardness and adhesion measurements of copper metallizations by a continuous indentation approach.MRS Proc1990;203:163-8

[98]

Liu Y,Zhu E.Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions.Nature2018;557:696-700

[99]

Chen Z,Zhang X.Electrode transfer method toward high-performance interfaces and devices.Matter2022;5:2484-6

[100]

Dappe YJ,Flores F.Weak chemical interaction and van der Waals forces between graphene layers: a combined density functional and intermolecular perturbation theory approach.Phys Rev B2006;74:205434

[101]

Kim J,Park H.Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene.Nat Commun2014;5:4836

[102]

Kim Y,Lee K.Remote epitaxy through graphene enables two-dimensional material-based layer transfer.Nature2017;544:340-3

[103]

Li Y,Chen X.Damage-free transfer printing.Nat Mater2024;23:1313-4

[104]

Heo S,Son SJ.Instant, multiscale dry transfer printing by atomic diffusion control at heterogeneous interfaces.Sci Adv2021;7:eabh0040 PMCID:PMC8270493

[105]

Doudrick K,Mutunga EM.Different shades of oxide: from nanoscale wetting mechanisms to contact printing of gallium-based liquid metals.Langmuir2014;30:6867-77

[106]

Lin J,Zhang L,Shi C.FEA study on liquid droplet stamp contact of thin film devices.Eur Phys J Spec Top2025;

[107]

Liu X,Zheng K.Liquid droplet stamp transfer printing.Adv Funct Mater2021;31:2105407

[108]

Li H,Cao Y,Feng X.High-efficiency transfer printing using droplet stamps for robust hybrid integration of flexible devices.ACS Appl Mater Interfaces2021;13:1612-9

[109]

Chen T,Sun C,Choy K.Influence of substrate initial temperature on adhesion strength of ice on aluminum alloy.Cold Reg Sci Technol2018;148:142-7

[110]

Janjua ZA.The influence of freezing and ambient temperature on the adhesion strength of ice.Cold Reg Sci Technol2017;140:14-9

[111]

Kim HH,Suk JW.Clean transfer of wafer-scale graphene via liquid phase removal of polycyclic aromatic hydrocarbons.ACS Nano2015;9:4726-33

[112]

Zhang X,Tang R.Liquid metal neuro-electrical interface.Soft Sci2024;4:23

[113]

Ye Z,Song S,Sitti M.Phase change of gallium enables highly reversible and switchable adhesion.Adv Mater2016;28:5088-92

[114]

Chang X,Liao H.Thermal reflow transfer printing of ultra-thin metal conductive layer for flexible sensors on fabric substrate.IEEE Sens J2025;25:23615-22

[115]

Li C,Lin X,Song J.Laser-driven noncontact bubble transfer printing via a hydrogel composite stamp.Proc Natl Acad Sci U S A2024;121:e2318739121 PMCID:PMC10835071

[116]

Cha C,Zhu W.Structural reinforcement of cell-laden hydrogels with microfabricated three dimensional scaffolds.Biomater Sci2014;2:703-9 PMCID:PMC4000042

[117]

Xie T.Tunable polymer multi-shape memory effect.Nature2010;464:267-70

[118]

Gan Y,Zhang J.Shape memory polymer assisted transfer printing of large-area metal thin film. In 2024 IEEE 19th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Kyoto, Japan. May 02-05, 2024. IEEE; 2024. p. 1-4.

[119]

Fan F,Zhou Y.Multiscale transfer printing via shape memory polymer with high adhesion and modulus switchability.ACS Appl Mater Interfaces2024;16:26824-32

[120]

Bayley FA,Stavrinou PN,Cabral JT.Wavefront kinetics of plasma oxidation of polydimethylsiloxane: limits for sub-μm wrinkling.Soft Matter2014;10:1155-66

[121]

Park S,So H.TPU-assisted adhesive PDMS film for dry or underwater environments.NPG Asia Mater2024;16:546

[122]

Qiu Y,Yang J.Wafer-scale integration of stretchable semiconducting polymer microstructures via capillary gradient.Nat Commun2021;12:7038 PMCID:PMC8640044

[123]

Yoo J,Yang UJ.Highly efficient printed quantum dot light-emitting diodes through ultrahigh-definition double-layer transfer printing.Nat Photon2024;18:1105-12

[124]

Shao Y,Tian H.Gecko-inspired intelligent adhesive structures for rough surfaces.Research2025;8:0630 PMCID:PMC11850978

[125]

Cheng X,Zhang Y.Bioinspired 3D flexible devices and functional systems.Natl Sci Rev2024;11:nwad314 PMCID:PMC10833470

[126]

Guimarães CF,Marques AP.The stiffness of living tissues and its implications for tissue engineering.Nat Rev Mater2020;5:351-70

[127]

Yeo WH,Lee J.Multifunctional epidermal electronics printed directly onto the skin.Adv Mater2013;25:2773-8

[128]

Zhang Y,Cao Y.Climbing-inspired twining electrodes using shape memory for peripheral nerve stimulation and recording.Sci Adv2019;5:eaaw1066 PMCID:PMC6505533

[129]

Chen X,Wang Z.Wrap-like transfer printing for three-dimensional curvy electronics.Sci Adv2023;9:eadi0357 PMCID:PMC10371014

[130]

Cianchetti M,Menciassi A.Biomedical applications of soft robotics.Nat Rev Mater2018;3:143-53

[131]

Choi C,Liu S.Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array.Nat Commun2017;8:1664 PMCID:PMC5698290

[132]

Jung I,Malyarchuk V.Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability.Proc Natl Acad Sci U S A2011;108:1788-93 PMCID:PMC3033289

[133]

Zhang K,Mikael S.Origami silicon optoelectronics for hemispherical electronic eye systems.Nat Commun2017;8:1782 PMCID:PMC5701179

[134]

Weng K,Gao J.Facile design of highly stretchable and conductive crumpled graphene/NiS2 films for multifunctional applications.Small Methods2025;9:e2401965 PMCID:PMC12020346

[135]

Gao Y,Chen G,Liu X.Recent progress in the transfer of graphene films and nanostructures.Small Methods2021;5:e2100771

[136]

Liu Y,Shin HJ,Huang Y.Promises and prospects of two-dimensional transistors.Nature2021;591:43-53

[137]

Kang K,Han Y.Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures.Nature2017;550:229-33

[138]

Bediako DK,Yoo H.Heterointerface effects in the electrointercalation of van der Waals heterostructures.Nature2018;558:425-9

[139]

Lee CH,van der Zande AM.Atomically thin p-n junctions with van der Waals heterointerfaces.Nat Nanotechnol2014;9:676-81

[140]

Akinwande D,Wang CH.Graphene and two-dimensional materials for silicon technology.Nature2019;573:507-18

[141]

Si M,Jiang C.Steep-slope hysteresis-free negative capacitance MoS2 transistors.Nat Nanotechnol2018;13:24-8

[142]

Schulman DS,Das S.Contact engineering for 2D materials and devices.Chem Soc Rev2018;47:3037-58

[143]

Allain A,Banerjee K.Electrical contacts to two-dimensional semiconductors.Nat Mater2015;14:1195-205

[144]

Wang Y,Wu RJ.Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors.Nature2019;568:70-4

[145]

Lamoureux A,Shlian M,Shtein M.Dynamic kirigami structures for integrated solar tracking.Nat Commun2015;6:8092 PMCID:PMC4569711

[146]

Janssen G.Stress and strain in polycrystalline thin films.Thin Solid Films2007;515:6654-64

[147]

Windischmann H.Intrinsic stress in sputter-deposited thin films.Crit Rev Solid State Mater Sci1992;17:547-96

[148]

Nix WD.Mechanical properties of thin films.Metall Trans A1989;20:2217-45

[149]

Jian W,Feng X.3D conformal curvy electronics: design, fabrication, and application.ACS Nano2025;19:15177-88

AI Summary AI Mindmap
PDF

208

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/