Design of mesoscopic metacomposites for electromagnetic wave absorption: enhancing performance and gaining mechanistic insights

Bo Hao , Ze-Hui Chai , Mu Li , Jia-Jing Duan , Yi Zhang , Yi-Bo Zhang , Cui-Ping Li , Chun-Hong Gong

Soft Science ›› 2025, Vol. 5 ›› Issue (3) : 39

PDF
Soft Science ›› 2025, Vol. 5 ›› Issue (3) :39 DOI: 10.20517/ss.2025.48
Review Article

Design of mesoscopic metacomposites for electromagnetic wave absorption: enhancing performance and gaining mechanistic insights

Author information +
History +
PDF

Abstract

The increasing issue of electromagnetic pollution necessitates the development of high-efficiency microwave absorbing materials. Traditional composites present challenges due to temperature sensitivity, complicating impedance matching and loss capabilities across varying temperatures. Rather than concentrating on the micro-scale structures and components typical in traditional design strategies, mesoscopic metacomposites have garnered significant attention due to their capacity to enhance microwave absorption and impedance matching through a discrete distribution of subwavelength-scale functional units in the composites. This review focuses on the applications of mesoscopic metacomposites in improving microwave absorbing performance. The discrete arrangement of subwavelength units improves anti-reflection effects and provides significant intrinsic loss capacity, enabling strong attenuation and effective impedance matching. Additionally, mesoscopic metacomposites facilitate controlled reflection and scattering of electromagnetic waves by carefully designing conductivity, dimensions, and spatial configurations. This presents groundbreaking methods for the further enhancement of microwave absorption efficacy. This review aspires to illuminate the pathway toward the development of thin, lightweight, highly efficient microwave absorbing materials with broadband absorption capabilities.

Keywords

Mesoscopic / metacomposites / microwave absorbing materials / dispersion and distribution / multiple reflection-scattering

Cite this article

Download citation ▾
Bo Hao, Ze-Hui Chai, Mu Li, Jia-Jing Duan, Yi Zhang, Yi-Bo Zhang, Cui-Ping Li, Chun-Hong Gong. Design of mesoscopic metacomposites for electromagnetic wave absorption: enhancing performance and gaining mechanistic insights. Soft Science, 2025, 5(3): 39 DOI:10.20517/ss.2025.48

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li C,Zhang B,Ji G.Magneto-dielectric synergy and multiscale hierarchical structure design enable flexible multipurpose microwave absorption and infrared stealth compatibility.Nanomicro Lett2024;17:40 PMCID:PMC11480309

[2]

Cao X,Zhang Y,Wu G.Construction of three-dimensional conductive network and heterogeneous interfaces via different ratio for tunable microwave absorption.Adv Compos Hybrid Mater2023;6:763

[3]

Sharma S,Panda SSS.Progress in microwave absorbing materials: a critical review.Adv Colloid Interface Sci2024;327:103143

[4]

Zhao Z,Kong L.Advancements in microwave absorption motivated by interdisciplinary research.Adv Mater2024;36:e2304182

[5]

Zhang Z,Wang Z.A review on metal-organic framework-derived porous carbon-based novel microwave absorption materials.Nanomicro Lett2021;13:56 PMCID:PMC8187524

[6]

Wang M.Perspectives on metal-organic framework-derived microwave absorption materials.J Mater Sci Technol2025;214:37-52

[7]

Li N,Zhang F.Barium ferrite with high anisotropy for ultra-broadband microwave absorption.Adv Funct Mater2025;35:2414694

[8]

Li Z,Liu X.Strategy-induced strong exchange interaction for enhancing high-temperature magnetic loss in high-entropy alloy powders.Adv Funct Mater2025;2507152

[9]

Xiang X,Fang G.Tailoring tactics for optimizing microwave absorbing behaviors in ferrite materials.Mater Today Phys2023;36:101184

[10]

Li W,Fan L.Porous pure magnetic foam with engineered heterointerfaces for enhanced microwave absorption.J Mater Sci Technol2025;234:113-21

[11]

liu Z,Zhao Y.Environmental adaptability and efficient electromagnetic wave protection of C/Co aerogels by anchoring Co to biomass carbon via the high-temperature induced morphological transformation of ZIF-67.Nano Research2025;18:94907581

[12]

Wu Z,Zeng X.Dual magnetic particles modified carbon nanosheets in CoFe/Co@NC heterostructure for efficient electromagnetic synergy.Soft Sci2024;4:42

[13]

Zhou L,Bai M.Harnessing the electronic spin states of single atoms for precise electromagnetic modulation.Adv Mater2025;37:e2418321

[14]

Song XJ,Gu ZX.Record enhancement of Curie temperature in host-guest inclusion ferroelectrics.J Am Chem Soc2021;143:5091-8

[15]

Mishra S,Javaid S,Lee G.Enhancement of interlayer exchange coupling via intercalation in 2D magnetic bilayers: towards high Curie temperature.Mater Horiz2024;11:4482-92

[16]

Mohapatra PP,Dobbidi P.Advancements in electromagnetic microwave absorbers: Ferrites and carbonaceous materials.Adv Colloid Interface Sci2025;337:103381

[17]

Zhang K,Hou Z,Zhao Q.Multifunctional broadband microwave absorption of flexible graphene composites.Carbon2019;141:608-17

[18]

An Q,Liao W.A novel ultra-wideband electromagnetic-wave-absorbing metastructure inspired by bionic gyroid structures.Adv Mater2023;35:e2300659

[19]

Li J,Fan R.Structural engineering on carbon materials for microwave absorption: From micro to macro to meta.Carbon2024;224:119058

[20]

Liu X,Wu N.Modulating electromagnetic genes through Bi-phase high-entropy engineering toward temperature-stable ultra-broadband megahertz electromagnetic wave absorption.Nanomicro Lett2025;17:164 PMCID:PMC11850694

[21]

Chen H,Wang C.Superhydrophobic surfaces for the sustainable maintenance of building materials and stone-built heritage: the challenges, opportunities and perspectives.Adv Colloid Interface Sci2025;335:103343

[22]

Zhai M,Guo H.Bionic-structured electromagnetic interference shielding composites.Sci Bull (Beijing)2025;70:2347-64

[23]

Zhang B,Zhang J,Niu S.Advanced bio-inspired structural materials: Local properties determine overall performance.Materials Today2020;41:177-99

[24]

Wegst UG,Saiz E,Ritchie RO.Bioinspired structural materials.Nat Mater2015;14:23-36

[25]

Goodling AE,Kaehr B.Colouration by total internal reflection and interference at microscale concave interfaces.Nature2019;566:523-7

[26]

Huang L,Dai X.Bioinspired metamaterials: multibands electromagnetic wave adaptability and hydrophobic characteristics.Small2019;15:e1902730

[27]

Kwon YW,Kim T.Flexible near-field nanopatterning with ultrathin, conformal phase masks on nonplanar substrates for biomimetic hierarchical photonic structures.ACS Nano2016;10:4609-17

[28]

Duan Y,Chen W,Wang M.A bio-inspired broadband absorption metamaterial: Driven by dual-structure synergistically induced current vortices.J Mater Sci Technol2025;206:193-201

[29]

Anguita JV,Haq S,Silva SRP.Ultra-broadband light trapping using nanotextured decoupled graphene multilayers.Sci Adv2016;2:e1501238 PMCID:PMC4771437

[30]

Lai H,Wang X.A comprehensive morphology study on the carbon nanotube agglomerations in cementitious composite.Carbon2024;223:119014

[31]

Zhang W,Zhang W,Luo C.Microstructure controllable polyimide/MXene composite aerogels for high-temperature thermal insulation and microwave absorption.J Mater Chem C2023;11:9438-48

[32]

Hou Z,Liu Y.Bidirectional periodic pore structure Si-C-N multiphase ceramic with high thermostability and excellent microwave absorption properties over a wide temperature range.J Eur Ceram Soc2024;44:850-7

[33]

Peng Y,Wei H.Controllable construction of hollow Ni/NiO@PPy particles for broadband and highly efficient microwave absorption.Adv Funct Mater2025;35:2423405

[34]

Liu S,Zhang F.A novel full-band microwave absorber based on scattering enhanced prism-honeycomb nested structure.Adv Funct Mater2025;35:2422666

[35]

Du Y,You W.Balancing MXene surface termination and interlayer spacing enables superior microwave absorption.Adv Funct Mater2023;33:2301449

[36]

Lan D,Zhao Z,Kou K.Double-shell hollow glass microspheres@Co2SiO4 for lightweight and efficient electromagnetic wave absorption.Chem Eng J2021;408:127313

[37]

Wang B,Duan G,Pi F.Review of broadband metamaterial absorbers: from principles, design strategies, and tunable properties to functional applications.Adv Funct Mater2023;33:2213818

[38]

Wang J,Xing Y,Huang P.Multi-scale design of ultra-broadband microwave metamaterial absorber based on hollow carbon/MXene/Mo2C microtube.Small2023;19:e2207051

[39]

Hao B,Si H.Multiscale design of dielectric composites for enhanced microwave absorption performance at elevated temperatures.Adv Funct Mater2025;35:2423897

[40]

Lv H,Yuan M.Functional nanoporous graphene superlattice.Nat Commun2024;15:1295 PMCID:PMC10861524

[41]

Xiong X,Lv H.Recent progress in carbon-based materials and loss mechanisms for electromagnetic wave absorption.Carbon2024;219:118834

[42]

Zhang F,Shi J.Recent progress on carbon-based microwave absorption materials for multifunctional applications: a review.Composites Part B: Engineering2024;283:111646

[43]

Liao SY,Shi YY.Reversible switching between microwave absorption and emi shielding of VO2 composite foam.Small2024;20:e2402841

[44]

Wang Y,Han H.Multi-level structural design guided by the innovative cup filled theory for enhanced electromagnetic wave absorption.Carbon2025;243:120452

[45]

Lv H,Wu G,Wang X.Engineering defects in 2D g-C3N4 for wideband, efficient electromagnetic absorption at elevated temperature.J Mater Chem A2021;9:19710-8

[46]

Cao S.g-C3N4-based photocatalysts for hydrogen generation.J Phys Chem Lett2014;5:2101-7

[47]

He Y,Liu D.Surface engineering strategy for MXene to tailor electromagnetic wave absorption performance.Chem Eng J2024;491:152041

[48]

Wang X,Li C.Progress in MXene-based materials for microwave absorption.J Mater Sci Technol2024;180:207-25

[49]

Cui C,Ren E.MXene-based rGO/Nb2CTx/Fe3O4 composite for high absorption of electromagnetic wave.Chem Eng J2021;405:126626

[50]

Lin Y,Wang Y.Progress of MOFs composites in the field of microwave absorption.Carbon2025;238:120241

[51]

Zhang X,Qin Y.Conductive metal-organic frameworks with tunable dielectric properties for boosting electromagnetic wave absorption.ACS Nano2023;17:12510-8

[52]

Long L,Deng M.MoS2-based nanocomposites toward electromagnetic wave absorption.Mater Res Bull2024;174:112732

[53]

Miao B,Zhu Q.Scalable synthesis of 2D Ti2CTx MXene and molybdenum disulfide composites with excellent microwave absorbing performance.Adv Compos Hybrid Mater2023;6:643

[54]

Dai J,Wen B,Wang L.Flower-like MoS2@Bi2Fe4O9 microspheres with hierarchical structure as electromagnetic wave absorber.Appl Surf Sci2019;479:1226-35

[55]

Oses C,Curtarolo S.High-entropy ceramics.Nat Rev Mater2020;5:295-309

[56]

Ma J,Zhu N,Wu N.High-entropy perovskite (Y0.2La0.2Sm0.2Nd0.2Gd0.2)CoO3 with dielectric-conductive synergy achieving wide-temperature-range EMI shielding and electromagnetic wave absorption compatibility.Chem Eng J2025;520:165716

[57]

Wu H,Li Y.Rapid joule-heating synthesis for manufacturing high-entropy oxides as efficient electrocatalysts.Nano Lett2022;22:6492-500

[58]

Chen X,Gu W.Research progress on nanostructure design and composition regulation of carbon spheres for the microwave absorption.Carbon2022;189:617-33

[59]

Wang L,Shi X.Recent progress of microwave absorption microspheres by magnetic-dielectric synergy.Nanoscale2021;13:2136-56

[60]

Zhao X,Gao W,Gao C.Wet-spun superelastic graphene aerogel millispheres with group effect.Adv Mater2017;29:1701482

[61]

Zhang Y,Guo Z.MXene@Co hollow spheres structure boosts interfacial polarization for broadband electromagnetic wave absorption.J Mater Sci Technol2024;176:167-75

[62]

Xu Z,Wang J.A comparative study on the microwave absorption properties of core-single-shell, core-double-shell and yolk-shell CIP/ceramic composite microparticles.J Magn Magn Mater2022;547:168959

[63]

Tian Y,Li T.Graphene-based aerogel microspheres with annual ring-like structures for broadband electromagnetic attenuation.Chem Eng J2023;464:142644

[64]

Wang G,Estevez D.Boosting interfacial polarization through heterointerface engineering in MXene/graphene intercalated-based microspheres for electromagnetic wave absorption.Nanomicro Lett2023;15:152 PMCID:PMC10247949

[65]

Cai Y,Fei G,Xia H.Polyimide derived carbon/graphene hybrid aerogel microspheres for strong and wide bandwidth microwave absorption.Adv Funct Mater2025;35:2419252

[66]

Fu Z,Luo H,Yang H.Research progress of ceramic matrix composites for high temperature stealth technology based on multi-scale collaborative design.J Mater Res Technol2022;18:2770-83

[67]

Yang Z,Hu Y,Zhou W.Dielectric and microwave absorption properties of TiAlCo ceramic fabricated by atmospheric plasma spraying.Ceram Int2016;42:8525-30

[68]

Yu Y,Wei Z.Enhancing battery module safety with insulation material: Hollow glass microspheres incorporating aerogel of varying particle sizes.Chem Eng J2023;478:147400

[69]

Shen G,Cai X.Dielectric and microwave absorption performances of hollow C/TiO2 composite microspheres.MRS Commun2021;11:890-5

[70]

Wang N,Li H.Tailoring the thermal and mechanical properties of graphene film by structural engineering.Small2018;:e1801346

[71]

Li C,Zhang S.Flexible regulation engineering of titanium nitride nanofibrous membranes for efficient electromagnetic microwave absorption in wide temperature spectrum.Nano Res2024;17:1666-75

[72]

Zhao B,Yan Z.Structural defects in phase-regulated high-entropy oxides toward superior microwave absorption properties.Adv Funct Mater2023;33:2209924

[73]

Kumar R,Joanni E.Composites based on layered materials for absorption of microwaves and electromagnetic shielding.Carbon2023;211:118072

[74]

Yin P,Lu C.Research progress of structural regulation and composition optimization to strengthen absorbing mechanism in emerging composites for efficient electromagnetic protection.J Mater Sci Technol2025;204:204-23

[75]

Jian S,Yu H.Enhancing strategies of MOFs-derived materials for microwave absorption: review and perspective.Adv Colloid Interface Sci2025;338:103412

[76]

Qin M,Wu H.Dielectric loss mechanism in electromagnetic wave absorbing materials.Adv Sci (Weinh)2022;9:e2105553 PMCID:PMC8981909

[77]

Shi M,Lan D,Zhang S.Enhanced polarization relaxation of multidimensional bimetallic selenide nanocomposites for electromagnetic wave absorption.Adv Funct Mater2025;e02261

[78]

Luo N,Ni Z,Fu Q.Preparation of reduced graphene oxide aerogel microspheres with excellent electromagnetic microwave absorption performance.Carbon2025;243:120466

[79]

Jiang Z,Li Y.Reduced graphene oxide@carbon sphere based metacomposites for temperature-insensitive and efficient microwave absorption.Nano Res2022;15:8546-54

[80]

Pan Y,Lan D.Conductor-semiconductor heterointerface polarization enhancement for superior electromagnetic wave absorption.J Mater Sci Technol2026;244:129-41

[81]

Liu T,Zhang X.Phase engineering in a twin-phase β/γ-MoCx lightweight nanoflower with matched fermi level for enhancing electron transport across the polarized interfaces in electromagnetic wave attenuation.Adv Funct Mater2024;34:2410194

[82]

Zeng X,Zhao C,Liu X.In situ exsolution-prepared solid-solution-type sulfides with intracrystal polarization for efficient and selective absorption of low-frequency electromagnetic wave.Adv Sci (Weinh)2024;11:e2403723 PMCID:PMC11425237

[83]

Sun R,Lian G.Dielectric shell regulation in synergy FeCoNi@ZnIn2S4 microspheres with broadband electromagnetic wave absorption.Soft Sci2025;5:35

[84]

Quan B,Ji G.Dielectric polarization in electromagnetic wave absorption: review and perspective.J Alloys Compd2017;728:1065-75

[85]

Kuriakose M,Depriester M,Sahraoui AH.Maxwell-Wagner-Sillars effects on the thermal-transport properties of polymer-dispersed liquid crystals.Phys Rev E Stat Nonlin Soft Matter Phys2014;89:022511

[86]

He M,Lu X.Excellent low-frequency microwave absorption and high thermal conductivity in polydimethylsiloxane composites endowed by hydrangea-like CoNi@BN heterostructure fillers.Adv Mater2024;36:e2410186

[87]

Li N,Li X,Yang G.Phase structure-induced amplification of interfacial polarization loss for excellent electromagnetic wave absorption.Chem Eng J2024;488:150420

[88]

Zhao Y,Liu Z.Simple synthesis of hollow CoFe carbon fiber composites with enhanced heterogeneous interfaces and impedance matching for broadband microwave absorption.J Mater Sci Technol2025;238:178-90

[89]

Su X,Liu T.Controllable atomic migration in microstructures and defects for electromagnetic wave absorption enhancement.Adv Funct Mater2024;34:2403397

[90]

Fang X,Chen X,Zhang Z.Controlling the microstructure of biomass-derived porous carbon to assemble structural absorber for broadening bandwidth.Carbon2022;198:70-9

[91]

Cao W,Yuan J,Cao M.Temperature dependent microwave absorption of ultrathin graphene composites.J Mater Chem C2015;3:10017-22

[92]

Li C,Tan L.Three-dimensional interconnected graphene microsphere as fillers for enhancing thermal conductivity of polymer.Chem Eng J2019;368:79-87

[93]

Guo Q,Lavorgna M.Robust and recyclable graphene/chitosan composite aerogel microspheres for adsorption of oil pollutants from water.Carbohydr Polym2022;290:119416

[94]

Lefrançois Perreault L,Meligrana G.Spray-dried mesoporous mixed Cu-Ni oxide@graphene nanocomposite microspheres for high power and durable Li-ion battery anodes.Adv Energy Mater2018;8:1802438

[95]

Meng F,Wei .Generation of graphene-based aerogel microspheres for broadband and tunable high-performance microwave absorption by electrospinning-freeze drying process.Nano Res2018;11:2847-61

[96]

Zhang Y,Dai Z.Subwavelength-scale graphene aerogel powders for efficient microwave absorption composites with improved mechanical strength.Chem Eng J2025;505:159118

[97]

Wang Z,Zhou L,Fang Z.Current progress and challenges of electromagnetic wave absorbing materials at high temperature.Adv Sci (Weinh)2025;:e04286

[98]

Wang C,Yuan Y.Graphene aerogel composites derived from recycled cigarette filters for electromagnetic wave absorption.J Mater Chem C2015;3:11893-901

[99]

Shao G,Xu R,Huang X.Carbon nanofiber aerogel microspheres with heterogeneous skin-core structure for broadband electromagnetic wave absorption.Carbon2024;228:119416

[100]

Fang X,Pang K.In situ construction of efficient electromagnetic function Graphene/PES composites based on liquid phase exfoliation strategy.Mater Today Phys2024;43:101408

[101]

Li Y,Mei Y.Electrospun generation of Ti3C2Tx MXene@graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption.Chem Eng J2020;391:123512

[102]

Zhi D,Qi Z.Core-shell heterogeneous graphene-based aerogel microspheres for high-performance broadband microwave absorption via resonance loss and sequential attenuation.Chem Eng J2022;433:134496

[103]

Jing W.Cost-effective preparation and high performance of high-temperature electromagnetic wave absorbing materials based on graphene nanosheets.Ceram Int2024;50:31080-7

[104]

Wang W,Gao X,He R.Material extrusion 3D printing of large-scale SiC honeycomb metastructure for ultra-broadband and high temperature electromagnetic wave absorption.Additive Manufacturing2024;85:104158

[105]

Jiang Z,Pan Z.Pomegranate-like ATO/SiO2 microspheres for efficient microwave absorption in wide temperature spectrum.J Mater Sci Technol2024;174:195-203

[106]

Wang W,Liu G.Temperature-dependent dielectric properties and high-temperature microwave absorption performance of Ti3SiC2/Al2O3-13%TiO2 coatings.J Eur Ceram Soc2024;44:254-60

[107]

Li T,Chen Y,Zhou Z.Multiaxial electrospun generation of hollow graphene aerogel spheres for broadband high-performance microwave absorption.Nano Res2020;13:477-84

[108]

Zhang Y,Si H.TiN nanofiber metacomposites for efficient electromagnetic wave absorption: Insights on multiple reflections and scattering effects.J Mater Sci Technol2025;233:69-79

[109]

Chen D,Deng W.Dual-resonant cavities-induced hierarchical heterogeneous enhancement effect of multi-interfacial microspheres for broadband microwave absorption.Carbon2025;238:120316

[110]

Chen C,Zhou E,Chen Z.Porous graphene microflowers for high-performance microwave absorption.Nanomicro Lett2018;10:26 PMCID:PMC6199076

[111]

Tian Y,Wang G,Qin F.Macro-ordered porous carbon nanocomposites for efficient microwave absorption.Carbon2024;218:118614

[112]

Duan S,Peng K,Xu C.A simple and reliable route to prepare high-temperature microwave high-performing absorbers.J Mater Sci: Mater Electron2021;32:25996-6006

[113]

Hang T,Li Z.Constructing gradient reflection and scattering porous framework in composite aerogels for enhanced microwave absorption.Carbohydr Polym2024;329:121777

[114]

Li T,Zhi D.Top-level electromagnetic design of multishell resonant cavity for microspherical microwave structural absorbers.Small Structures2025;6:2400666

[115]

Gao J,Jin Z.Ultra-broadband microwave absorber based on disordered metamaterials.Opt Express2024;32:25740-54

[116]

Sheinfux H, Kaminer I, Genack AZ, Segev M. Interplay between evanescence and disorder in deep subwavelength photonic structures.Nat Commun2016;7:12927 PMCID:PMC5059687

[117]

Pichler K,Böhm J.Random anti-lasing through coherent perfect absorption in a disordered medium.Nature2019;567:351-5

[118]

Zhang H,Chu H,Wu W.Hyperuniform disordered distribution metasurface for scattering reduction.Appl Phys Lett2021;118:101601

[119]

Qin Y,Xie X.Multiple reflection and scattering effects of the lotus seedpod-based activated carbon decorated with Co3O4 microwave absorbent.J Colloid Interface Sci2021;602:344-54

[120]

Zhang Y,Hu R,Pan L.Sandwiched MXene/polyimide composite foams for multiscale microwave absorption.Sci China Mater2024;67:272-8

[121]

Li S,Sun H,Wang Q.Constructing honeycomb-like hierarchical foam via electromagnetic cooperation strategy for broadband microwave absorption.Carbon2023;215:118425

[122]

Benhamou SM.Optimizing the management, control, and computation of skin depth in laminated structures considering reflection effects.Wave Motion2024;127:103292

[123]

Shao G,Chen Y.Miniaturized hard carbon nanofiber aerogels: from multiscale electromagnetic response manipulation to integrated multifunctional absorbers.Adv Funct Mater2024;34:2408252

[124]

Wang X,Zhang Y,Zhang Y.Large-size Ti3C2Tx microsheets for lightweight and wide-frequency microwave absorption.J Mater Sci: Mater Electron2022;33:21091-100

AI Summary AI Mindmap
PDF

274

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/