PDF
Abstract
Flexible smart actuators that produce mechanical output in response to external stimuli have numerous applications in robotics, electronics, and biomedical engineering. With high similarity to biological tissues, high water content, and good tissue adhesion, hydrogels present unique advantages in preparing soft actuators. The development of integrated building blocks further enhances the structural controllability and performance tunability of hydrogel-based actuators. While current research predominantly focuses on the types of environmental responses and multi-field applications for hydrogel actuators, the critical role of integrated building blocks remains relatively underexplored. This review summarizes anisotropic strategies and multifunctional applications for hydrogel actuators based on the selection of stimuli-responsive building blocks (SRBs). Firstly, the deformation mechanism of hydrogel actuators with different polymer matrices is briefly introduced, followed by an overview of the anisotropic strategies employed in hydrogel actuators based on SRBs. The preparation strategies and high actuation performance of hydrogel actuators are discussed from the perspectives of building block properties and anisotropic structures. Moreover, the multifunctional application prospects of SRBs-based hydrogel actuators in information encryption, self-sensing, and intelligent grasping are discussed. Finally, the design principles and current challenges of stimuli-responsive hydrogel actuators are emphasized, and an outlook on the future development of novel hydrogel actuators is presented.
Keywords
Hydrogel actuators
/
stimuli-responsive building blocks
/
anisotropic structures
/
complex deformation
/
multifunctionality
Cite this article
Download citation ▾
Xiaoxia Li, Lin Li, Xiaole Liu, Ying Hu.
Hydrogel actuators: from building blocks selection, anisotropic structures design to multifunctional applications.
Soft Science, 2025, 5(3): 41 DOI:10.20517/ss.2025.47
| [1] |
Lee Y,Sun J.Hydrogel soft robotics.Mater Today Phys2020;15:100258
|
| [2] |
Cheng Y,Wang XQ.Direct-ink-write 3D printing of hydrogels into biomimetic soft robots.ACS Nano2019;13:13176-84
|
| [3] |
Jiang J,Ma H,Huang Z.Photoresponsive hydrogel-based soft robot: a review.Mater Today Bio2023;20:100657 PMCID:PMC10205512
|
| [4] |
Chen CR,Cong HP.A highly stretchable and real-time healable supercapacitor.Adv Mater2019;31:e1900573
|
| [5] |
Qin H,Chen C,Yu SH.A multi-responsive healable supercapacitor.Nat Commun2021;12:4297 PMCID:PMC8280176
|
| [6] |
Herrmann A,Schedler U.Hydrogels and their role in biosensing applications.Adv Healthc Mater2021;10:e2100062 PMCID:PMC11468738
|
| [7] |
Ko S,Kim D,Park JY.Hysteresis-free double-network hydrogel-based strain sensor for wearable smart bioelectronics.ACS Appl Mater Interfaces2022;14:31363-72
|
| [8] |
Pham TT,Phung CD.Surface-triggered in situ gelation for tunable conformal hydrogel coating of therapeutic cells and biomedical devices.Adv Funct Mater2021;31:2010169
|
| [9] |
Barrett-Catton E,Asuri P.Multifunctional hydrogel nanocomposites for biomedical applications.Polymers2021;13:856 PMCID:PMC8001467
|
| [10] |
Kulbay M,Truong D.Smart molecules in ophthalmology: hydrogels as responsive systems for ophthalmic applications.Smart Mol2024;2:e20230021 PMCID:PMC12118312
|
| [11] |
Tang L,Yang X,Li Y.Poly(N-isopropylacrylamide)-based smart hydrogels: design, properties and applications.Prog Mater Sci2021;115:100702
|
| [12] |
Xiang S,Yin H,Zhu M.Visible-light-driven isotropic hydrogels as anisotropic underwater actuators.Nano Energy2021;85:105965
|
| [13] |
Le X,Zhang J.Recent progress in biomimetic anisotropic hydrogel actuators.Adv Sci2019;6:1801584 PMCID:PMC6402410
|
| [14] |
Li W,Li M,Hou X.Nature-inspired strategies for the synthesis of hydrogel actuators and their applications.Prog in Polym Sci2023;140:101665
|
| [15] |
Kuang X,Zhou T,Zhang YS.Functional tough hydrogels: design, processing, and biomedical applications.Acc Mater Res2023;4:101-14
|
| [16] |
Son H.Advances in stimuli-responsive soft robots with integrated hybrid materials.Actuators2020;9:115
|
| [17] |
Liu J,He S,Shao W.Recent progress in PNIPAM-based multi-responsive actuators: a mini-review.Chem Eng J2022;433:133496
|
| [18] |
Nonoyama T.Tough double network hydrogel and its biomedical applications.Annu Rev Chem Biomol Eng2021;12:393-410
|
| [19] |
Yang F,Cai Y.Mechanically tough and recoverable hydrogels via dual physical crosslinkings.J Polym Sci B Polym Phys2018;56:1294-305
|
| [20] |
Zhao Z,Wang H.Ultra-tough self-healing hydrogel via hierarchical energy associative dissipation.Adv Sci2023;10:e2303315 PMCID:PMC10520617
|
| [21] |
Huang Y,Zhou J.Strong tough polyampholyte hydrogels via the synergistic effect of ionic and metal–ligand bonds.Adv Funct Mater2021;31:2103917
|
| [22] |
Dai CF,Du C.Photoregulated gradient structure and programmable mechanical performances of tough hydrogels with a hydrogen-bond network.ACS Appl Mater Interfaces2020;12:53376-84
|
| [23] |
Huang G,Peng S.Modification of hydrophobic hydrogels into a strongly adhesive and tough hydrogel by electrostatic interaction.Macromolecules2022;55:156-65
|
| [24] |
Chen N,Lu Q.Highly stretchable, repairable, and tough nanocomposite hydrogel physically cross-linked by hydrophobic interactions and reinforced by surface-grafted hydrophobized cellulose nanocrystals.Macromol Rapid Commun2023;44:e2300053
|
| [25] |
Yang B,Chen X,Bian L.Manipulating the mechanical properties of biomimetic hydrogels with multivalent host-guest interactions.J Mater Chem B2019;7:1726-33
|
| [26] |
Fu R,Xiao C.Tough and highly efficient underwater self-repairing hydrogels for soft electronics.Small Methods2022;6:e2101513
|
| [27] |
Zhu J,Hu Q,Xu K.Tough and pH-sensitive hydroxypropyl guar gum/polyacrylamide hybrid double-network hydrogel.Chem Eng J2016;306:953-60
|
| [28] |
Han J,Bhatta R.A double crosslinking adhesion mechanism for developing tough hydrogel adhesives.Acta Biomater2022;150:199-210
|
| [29] |
Su J,Wan C.Dual-network self-healing hydrogels composed of graphene oxide@nanocellulose and poly(AAm-co-AAc).Carbohydr Polym2022;296:119905
|
| [30] |
Ning X,A Y,Chen C.Research advances in mechanical properties and applications of dual network hydrogels.Int J Mol Sci2022;23:15757 PMCID:PMC9779336
|
| [31] |
Jiang L,Mayumi K,Yokoyama H.Highly stretchable and instantly recoverable slide-ring gels consisting of enzymatically synthesized polyrotaxane with low host coverage.Chem Mater2018;30:5013-9
|
| [32] |
Qin H,Li N,Yu SH.Anisotropic and self-healing hydrogels with multi-responsive actuating capability.Nat Commun2019;10:2202 PMCID:PMC6525195
|
| [33] |
Yu X,Zhang H,Fan X.Fast-recoverable, self-healable, and adhesive nanocomposite hydrogel consisting of hybrid nanoparticles for ultrasensitive strain and pressure sensing.Chem Mater2021;33:6146-57
|
| [34] |
Lei K,Wang X.Highly stretchable, self-healing elastomer hydrogel with universal adhesion driven by reversible cross-links and protein enhancement.J Mater Chem B2022;10:9188-201
|
| [35] |
Cui H,Zhang L.Intelligent polymer-based bioinspired actuators: from monofunction to multifunction.Adv Intell Syst2020;2:2000138
|
| [36] |
Zheng Q,Jiang Z,Chen C.Smart actuators based on external stimulus response.Front Chem2021;9:650358 PMCID:PMC8200850
|
| [37] |
Dong Y,Salaita K.Programmable mechanically active hydrogel-based materials.Adv Mater2021;33:e2006600 PMCID:PMC8595730
|
| [38] |
Han IK,Han J.Nanocomposite hydrogel actuators hybridized with various dimensional nanomaterials for stimuli responsiveness enhancement.Nano Converg2019;6:18 PMCID:PMC6556517
|
| [39] |
He Y,Hu Y.Magnetic hydrogel-based flexible actuators: a comprehensive review on design, properties, and applications.Chem Eng J2023;462:142193
|
| [40] |
Yan Q,Zheng H.Bio-inspired stimuli-responsive Ti3C2Tx/PNIPAM anisotropic hydrogels for high-performance actuators.Adv Funct Mater2023;33:2301982
|
| [41] |
Liu H,Liu R.Multifunctional gradient hydrogel with ultrafast thermo-responsive actuation and ultrahigh conductivity.J Mater Chem A2022;10:21874-83
|
| [42] |
Li M,Ge Y.Vulcanized layered double hydroxide nanosheet composite hydrogels as efficient near-infrared light-fueled soft actuators.ACS Mater Lett2023;5:1841-50
|
| [43] |
Xue P,Ma S.Highly conductive MXene/PEDOT:PSS-integrated poly(N-isopropylacrylamide) hydrogels for bioinspired somatosensory soft actuators.Adv Funct Mater2023;33:2214867
|
| [44] |
Zuo X,Zhou Y.Fluorescent hydrogel actuators with simultaneous morphing- and color/brightness-changes enabled by light-activated 3D printing.Chem Eng J2022;447:137492
|
| [45] |
Cui X,Zhang B.Sponge-like, semi-interpenetrating self-sensory hydrogel for smart photothermal-responsive soft actuator with biomimetic self-diagnostic intelligence.Chem Eng J2023;467:143515
|
| [46] |
Ma Y,Yang W.Sundew-inspired simultaneous actuation and adhesion/friction control for reversibly capturing objects underwater.Adv Mater Technol2019;4:1800467
|
| [47] |
Haq MA,Wang D.Mechanical properties of PNIPAM based hydrogels: a review.Mater Sci Eng C Mater Biol Appl2017;70:842-55
|
| [48] |
Li JY,He YT.Thermosensitive hydrogel microneedles for controlled transdermal drug delivery.Acta Biomater2022;153:308-19
|
| [49] |
Jin Y,Ju S,Choi TY.Thermally tunable dynamic and static elastic properties of hydrogel due to volumetric phase transition.Polymers2020;12:1462 PMCID:PMC7408385
|
| [50] |
Jiang S,Ma H,Qian L.pH and temperature dual-responsive hydrogel actuator with bidirectional bending behavior and ultra large bending angle.Eur Polym J2023;197:112296
|
| [51] |
Li H,Wu X,Chen X.Thermo-hardening hydrogel actuators as self-locking grippers.Sci China Mater2024;67:2115-22
|
| [52] |
Ni C,Wen X.High speed underwater hydrogel robots with programmable motions powered by light.Nat Commun2023;14:7672 PMCID:PMC10667353
|
| [53] |
Kong X,Xu W.Drosera-inspired dual-actuating double-layer hydrogel actuator.Macromol Rapid Commun2021;42:e2100416
|
| [54] |
Higgins W,Alford A,Kharlampieva E.Stratified temperature-responsive multilayer hydrogels of poly(N-vinylpyrrolidone) and poly(N-vinylcaprolactam): effect of hydrogel architecture on properties.Macromolecules2016;49:6953-64
|
| [55] |
Le M,Chen K.Upper critical solution temperature polymeric drug carriers.Chem Eng J2022;432:134354
|
| [56] |
Hua L,Jian Y,Chen C.Multiple-responsive and amphibious hydrogel actuator based on asymmetric UCST-type volume phase transition.ACS Appl Mater Interfaces2019;11:43641-8
|
| [57] |
Li J,Xu Y.Highly bidirectional bendable actuator engineered by LCST-UCST bilayer hydrogel with enhanced interface.ACS Appl Mater Interfaces2020;12:55290-8
|
| [58] |
Li L,Levkin PA.Design and applications of photoresponsive hydrogels.Adv Mater2019;31:e1807333 PMCID:PMC9285504
|
| [59] |
Yang S,Xia X,Wang B.Biomimetic stimulus responsiveness: from materials design to device integration.Adv Funct Mater2024;34:2400500
|
| [60] |
Guo K,Zhou C.Self-regulated reversal deformation and locomotion of structurally homogenous hydrogels subjected to constant light illumination.Nat Commun2024;15:1694 PMCID:PMC10894256
|
| [61] |
Zhu CN,Wang H.Reconstructable gradient structures and reprogrammable 3D deformations of hydrogels with coumarin units as the photolabile crosslinks.Adv Mater2021;33:e2008057
|
| [62] |
Kumar A,Hazra J,Ghosh P.Engineering the nonmorphing point of actuation for controlled drug release by hydrogel bilayer across the pH spectrum.ACS Appl Mater Interfaces2022;14:56321-30
|
| [63] |
Chen H,Tong T,Ma S.A pH-responsive asymmetric microfluidic/chitosan device for drug release in infective bone defect treatment.Int J Mol Sci2023;24:4616 PMCID:PMC10003349
|
| [64] |
Su L,Wang Y.Modularized microrobot with lock-and-detachable modules for targeted cell delivery in bile duct.Sci Adv2023;9:eadj0883 PMCID:PMC10848723
|
| [65] |
Han Z,Mao G.Dual pH-responsive hydrogel actuator for lipophilic drug delivery.ACS Appl Mater Interfaces2020;12:12010-7
|
| [66] |
Benny Mattam, L.; Bijoy, A.; Abraham Thadathil, D.; George, L.; Varghese, A. Conducting polymers: a versatile material for biomedical applications.ChemistrySelect2022;7:e202201765
|
| [67] |
Milani GM,Ambrosio FN.Poly(acrylic acid)/polypyrrole interpenetrated network as electro-responsive hydrogel for biomedical applications.J Appl Polym Sci2022;139:52091
|
| [68] |
Liu D,Zhao Y.A strand entangled supramolecular PANI/PAA hydrogel enabled ultra-stretchable strain sensor.Small2022;18:e2203258
|
| [69] |
Liu S,Xiao Y.Tough and responsive oppositely charged nanocomposite hydrogels for use as bilayer actuators assembled through interfacial electrostatic attraction.J Mater Chem B2016;4:3239-46
|
| [70] |
Na H,Park CS,Kim HY.Hydrogel-based strong and fast actuators by electroosmotic turgor pressure.Science2022;376:301-7
|
| [71] |
Danmatam N,Pearce J.Smart carboxymethyl cellulose/polythiophene hydrogel for electrically driven soft actuators: Physical and thermal properties and electroactive performances.J Appl Polym Sci2022;139:e52904
|
| [72] |
Pu W,Yao L.A review of humidity-driven actuator: toward high response speed and practical applications.J Mater Sci2022;57:12202-35
|
| [73] |
Lv C,Shi Q.Sensitively humidity-driven actuator based on photopolymerizable PEG-DA films.Adv Mater Interfaces2017;4:1601002
|
| [74] |
Li J,Chong YT.Hofmeister effect mediated strong PHEMA-gelatin hydrogel actuator.ACS Appl Mater Interfaces2022;14:23826-38
|
| [75] |
Wang M,Deng W.Ultrafast response and programmable locomotion of liquid/vapor/light-driven soft multifunctional actuators.ACS Nano2022;16:2672-81
|
| [76] |
Pirahmadi P,Alamdarnejad G.Polyvinyl alcohol/chitosan/carbon nanotubes electroactive shape memory nanocomposite hydrogels.J Appl Polym Sci2021;138:49995
|
| [77] |
Lee S,Choi J.Double-crosslinked reduced graphene oxide-based hydrogel actuator system with fast electro-responsive deformation and enhanced mechanical properties.Mater Today Chem2023;29:101434
|
| [78] |
Yu X,Zhang M,Qu L.Graphene-based smart materials.Nat Rev Mater2017;2:17046
|
| [79] |
Anichini C.Graphene-based hybrid functional materials.Small2021;17:e2100514
|
| [80] |
Ioniţă M,Watzlawek AA,Burns JS.Graphene and functionalized graphene: extraordinary prospects for nanobiocomposite materials.Compos Part B Eng2017;121:34-57
|
| [81] |
Yang C,Chen C.Reduced graphene oxide-containing smart hydrogels with excellent electro-response and mechanical properties for soft actuators.ACS Appl Mater Interfaces2017;9:15758-67
|
| [82] |
Duan J,Kong Y.Homogeneous chitosan/graphene oxide nanocomposite hydrogel-based actuator driven by efficient photothermally induced water gradients.ACS Appl Nano Mater2020;3:1002-9
|
| [83] |
Zhao Q,Ren L,Zhang Z.Bionic intelligent hydrogel actuators with multimodal deformation and locomotion.Nano Energy2018;51:621-31
|
| [84] |
Song P,Gao HL,Yu SH.Self-healing and superstretchable conductors from hierarchical nanowire assemblies.Nat Commun2018;9:2786 PMCID:PMC6050250
|
| [85] |
Zhang H,Eklund A,Priimagi A.Feedback-controlled hydrogels with homeostatic oscillations and dissipative signal transduction.Nat Nanotechnol2022;17:1303-10 PMCID:PMC9747616
|
| [86] |
Han B,Zhang Y.Multi-field-coupling energy conversion for flexible manipulation of graphene-based soft robots.Nano Energy2020;71:104578
|
| [87] |
Liu J,Zhang Z,Yu Y.Programmable shape deformation actuated bilayer hydrogel based on mixed metal ions.Eur Polym J2022;175:111375
|
| [88] |
Lu H,Yang X.Actuating supramolecular shape memorized hydrogel toward programmable shape deformation.Small2020;16:e2005461
|
| [89] |
Zhang Y,Han L,Shi L.Novel self-healing, shape-memory, tunable double-layer actuators based on semi-IPN and physical double-network hydrogels.Macro Mater Eng2018;303:1800505
|
| [90] |
Wei S,Le X.Bioinspired synergistic fluorescence-color-switchable polymeric hydrogel actuators.Angew Chem Int Ed Engl2019;58:16243-51
|
| [91] |
Kim YS,Ishida Y.Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel.Nat Mater2015;14:1002-7
|
| [92] |
Li M,Dong B.In-air fast response and high speed jumping and rolling of a light-driven hydrogel actuator.Nat Commun2020;11:3988 PMCID:PMC7417580
|
| [93] |
Yao X,Qin H,Cong HP.Solvent-adaptive hydrogels with lamellar confinement cellular structure for programmable multimodal locomotion.Nat Commun2024;15:9254 PMCID:PMC11514043
|
| [94] |
Naguib M,Barsoum MW.25th anniversary article: MXenes: a new family of two-dimensional materials.Adv Mater2014;26:992-1005
|
| [95] |
Liao H,Wan P.Conductive MXene nanocomposite organohydrogel for flexible, healable, low-temperature tolerant strain sensors.Adv Funct Mater2019;29:1904507
|
| [96] |
Zhang YZ,Anjum DH.MXenes stretch hydrogel sensor performance to new limits.Sci Adv2018;4:eaat0098 PMCID:PMC6003726
|
| [97] |
Li X,Li Y.Healable, degradable, and conductive MXene nanocomposite hydrogel for multifunctional epidermal sensors.ACS Nano2021;15:7765-73
|
| [98] |
Chae A,Lee S.Highly oxidation-resistant and self-healable MXene-based hydrogels for wearable strain sensor.Adv Funct Mater2023;33:2213382
|
| [99] |
Rafieerad A,Yan W,Amiri A.Sweet-MXene hydrogel with mixed-dimensional components for biomedical applications.J Mech Behav Biomed Mater2020;101:103440
|
| [100] |
Tao N,Li X.Near-infrared light-responsive hydrogels via peroxide-decorated MXene-initiated polymerization.Chem Sci2019;10:10765-71 PMCID:PMC6993809
|
| [101] |
Zhang P,Li P,Niu QJ.Fabrication of novel MXene (Ti3C2)/polyacrylamide nanocomposite hydrogels with enhanced mechanical and drug release properties.Soft Matter2020;16:162-9
|
| [102] |
Li Y,Li C,Yu Z.Bionic light-responsive hydrogel actuators with multiple-freedom motions in water environments.Nano Energy2024;130:110130
|
| [103] |
Shang M,Ma J,Liu C.Somatosensory actuators based on light-responsive anisotropic hydrogel for storage encryption of information systems.Chem Eng J2024;496:153895
|
| [104] |
Yang L,Zhang L,Chen X.A moisture-driven actuator based on polydopamine-modified MXene/bacterial cellulose nanofiber composite film.Adv Funct Mater2021;31:2101378
|
| [105] |
Zhang W,Ren Z.High-performance MXene/carbon nanotube electrochemical actuators for biomimetic soft robotic applications.Adv Funct Mater2024;34:2408496
|
| [106] |
Ma S,Valenzuela C.Highly stretchable and conductive MXene-encapsulated liquid metal hydrogels for bioinspired self-sensing soft actuators.Adv Funct Mater2024;34:2309899
|
| [107] |
Chen L,Sun Y.A bamboo/PNIPAM composite hydrogel assembly for both programmable and remotely-controlled light-responsive biomimetic actuations.Chem Eng J2022;446:137072
|
| [108] |
Luo R,Dinh N.Gradient porous elastic hydrogels with shape-memory property and anisotropic responses for programmable locomotion.Adv Funct Mater2015;25:7272-9
|
| [109] |
Depa K,Šlouf M,Cimrová V.Synthesis of conductive doubly filled poly(N-isopropylacrylamide)-polyaniline-SiO2 hydrogels.Sens Actuators B Chem2017;244:616-34
|
| [110] |
Li Y,Xu H,Yan J.Biomimetic gradient hydrogel actuators with ultrafast thermo-responsiveness and high strength.ACS Appl Mater Interfaces2022;14:32541-50
|
| [111] |
Wang S,Wang S.Strong, tough, ionic conductive, and freezing-tolerant all-natural hydrogel enabled by cellulose-bentonite coordination interactions.Nat Commun2022;13:3408 PMCID:PMC9213515
|
| [112] |
Gevorkian A,Kheiri S.Actuation of three-dimensional-printed nanocolloidal hydrogel with structural anisotropy.Adv Funct Mater2021;31:2010743
|
| [113] |
Yang B,Wang P,Zhu Y.Robust and rapid responsive organic-inorganic hybrid bilayer hydrogel actuators with silicon nanoparticles as the cross-linker.Polymer2021;228:123863
|
| [114] |
Duan S,Zhang CW.Noncovalent aggregation for diverse properties in hydrogels: a comprehensive review. Chem. Rev. 2025.
|
| [115] |
Ge G,Zhang W.Ti3C2Tx MXene-activated fast gelation of stretchable and self-healing hydrogels: a molecular approach.ACS Nano2021;15:2698-706
|
| [116] |
Xu C,Liu Y,Liu S.Versatile graphene oxide hybrid supramolecular hydrogel driven by host–guest interaction showing excellent mechanical and sensing properties and photothermal responsiveness.ACS Appl Polym Mater2023;5:7375-89
|
| [117] |
Cheng FM,Li HD.Recent progress on hydrogel actuators.J Mater Chem B2021;9:1762-80
|
| [118] |
Han Z.Rapid-responsive hydrogel actuators with hierarchical structures: strategies and applications.ACS Appl Polym Mater2023;5:4605-20
|
| [119] |
Liu H,Chen K.Bioinspired gradient structured soft actuators: from fabrication to application.Chem Eng J2023;461:141966
|
| [120] |
Yao X,Qin H.Nanocomposite hydrogel actuators with ordered structures: from nanoscale control to macroscale deformations.Small Methods2024;8:e2300414
|
| [121] |
Fan W,Guo H.Dual-gradient enabled ultrafast biomimetic snapping of hydrogel materials.Sci Adv2019;5:eaav7174 PMCID:PMC6474766
|
| [122] |
Ying Z,Xie J,Lin X.Novel electrically-conductive electro-responsive hydrogels for smart actuators with a carbon-nanotube-enriched three-dimensional conductive network and a physical-phase-type three-dimensional interpenetrating network.J Mater Chem C2020;8:4192-205
|
| [123] |
Gregg A,Baumberg JJ.Light-actuated anisotropic microactuators from CNT/hydrogel nanocomposites.Adv Opt Mater2022;10:2200180
|
| [124] |
Chen W,Kouwer PHJ.Magnetically driven hierarchical alignment in biomimetic fibrous hydrogels.Small2022;18:e2203033
|
| [125] |
Yu X,Zhang H.Dorsoventral gradient hydrogel fiber actuators visualized by AIEgen-conjugated nanoparticles.Nano Today2022;44:101502
|
| [126] |
Zheng Y,Yu J,Wang Y.Highly stretchable and strong poly (vinyl alcohol)-based hydrogel for reprogrammable actuator applications.Chem Eng J2023;454:140054
|
| [127] |
Xu G,Lu Q.Electric field-driven building blocks for introducing multiple gradients to hydrogels.Protein Cell2020;11:267-85 PMCID:PMC7093350
|
| [128] |
Zhu QL,Wagner D.Distributed electric field induces orientations of nanosheets to prepare hydrogels with elaborate ordered structures and programmed deformations.Adv Mater2020;32:e2005567
|
| [129] |
Zhai Y,Chen J.Magnetic-field induced asymmetric hydrogel fibers for tough actuators with programmable deformation.Chem Eng J2023;477:147088
|
| [130] |
Odent J,Toncheva A.Hierarchical chemomechanical encoding of multi-responsive hydrogel actuators via 3D printing.J Mater Chem A2019;7:15395-403
|
| [131] |
Chen Z,Chen C,Li H.Dual-gradient PNIPAM-based hydrogel capable of rapid response and tunable actuation.Chem Eng J2021;424:130562
|
| [132] |
Yang Y,Wang X.Photothermal nanocomposite hydrogel actuator with electric-field-induced gradient and oriented structure.ACS Appl Mater Interfaces2018;10:7688-92
|
| [133] |
Zhu QL,Wagner D.Patterned electrode assisted one-step fabrication of biomimetic morphing hydrogels with sophisticated anisotropic structures.Adv Sci2021;8:e2102353 PMCID:PMC8693068
|
| [134] |
Xue P,Chen Y.Near-infrared light-driven shape-morphing of programmable anisotropic hydrogels enabled by MXene nanosheets.Angew Chem Int Ed Engl2021;60:3390-6
|
| [135] |
He Z,Yuan W.Highly adhesive, stretchable, and antifreezing hydrogel with excellent mechanical properties for sensitive motion sensors and temperature-/humidity-driven actuators.ACS Appl Mater Interfaces2022;14:38205-15
|
| [136] |
Lin J,Cui Y,Chang C.Ionic coordination strengthening of temperature-driven gradient hydrogel actuators with rapid responsiveness.Compos Part B Eng2022;245:110210
|
| [137] |
Bi Y,He P,Liu C.Smart bilayer polyacrylamide/DNA hybrid hydrogel film actuators exhibiting programmable responsive and reversible macroscopic shape deformations.Small2020;16:e1906998
|
| [138] |
Abdolahi J,Arbabi N.Finite bending of a temperature-sensitive hydrogel tri-layer: an analytical and finite element analysis.Compos Struct2017;164:219-28
|
| [139] |
Chen T,Liu L,Agarwal S.Combining 3D printing with electrospinning for rapid response and enhanced designability of hydrogel actuators.Adv Funct Mater2018;28:1800514
|
| [140] |
Gregg A,Baumberg JJ.Kinetics of light-responsive CNT/PNIPAM hydrogel microactuators.Small2024;20:e2305034
|
| [141] |
Ma C,Zhao Q.Supramolecular Lego assembly towards three-dimensional multi-responsive hydrogels.Adv Mater2014;26:5665-9
|
| [142] |
Cheng Y,Huang C.Self-healing graphene oxide-based nanocomposite hydrogels serve as near-infrared light-driven valves.Sens Actuators B Chem2019;298:126908
|
| [143] |
Wei X,Chen L.Remotely controlled light/electric/magnetic multiresponsive hydrogel for fast actuations.ACS Appl Mater Interfaces2023;15:10030-43
|
| [144] |
Sun Z,Zhou J.Rapid photothermal responsive conductive MXene nanocomposite hydrogels for soft manipulators and sensitive strain sensors.Macromol Rapid Commun2021;42:e2100499
|
| [145] |
Wang R,Lu W.Bio-inspired structure-editing fluorescent hydrogel actuators for environment-interactive information encryption.Angew Chem Int Ed Engl2023;62:e202300417
|
| [146] |
Zhang X,Yang X.Near-infrared light-driven shape-programmable hydrogel actuators loaded with metal-organic frameworks.ACS Appl Mater Interfaces2022;14:11834-41
|
| [147] |
Li M.Programmable dual-responsive actuation of single-hydrogel-based bilayer actuators by photothermal and skin layer effects with graphene oxides.Adv Mater Interfaces2023;10:2300169
|
| [148] |
Peng X,Zhang Q,Bai Q.Surface patterning of hydrogels for programmable and complex shape deformations by ion inkjet printing.Adv Funct Mater2017;27:1701962
|
| [149] |
Basu A,Goodman C,Nelson A.Catalytically initiated gel-in-gel printing of composite hydrogels.ACS Appl Mater Interfaces2017;9:40898-904
|
| [150] |
Zhang M,Zheng Z,Yildiz E.Hydrogel muscles powering reconfigurable micro-metastructures with wide-spectrum programmability.Nat Mater2023;22:1243-52 PMCID:PMC10533409
|
| [151] |
Qin J,Wang Y,Song B.Nanofibrous actuator with an alignment gradient for millisecond-responsive, multidirectional, multimodal, and multidimensional large deformation.ACS Appl Mater Interfaces2020;12:46719-32
|
| [152] |
Zhou MX,Wang JY,Liu J.Dynamic color-switching of hydrogel micropillar array under ethanol vapor for optical encryption.Small2023;19:e2304384
|
| [153] |
Wang R,Cheng J.Direct 4D printing of ceramics driven by hydrogel dehydration.Nat Commun2024;15:758 PMCID:PMC10810896
|
| [154] |
Gladman AS,Nuzzo RG,Lewis JA.Biomimetic 4D printing.Nat Mater2016;15:413-8
|
| [155] |
Li M,Liu Y.Bioinspired light-driven photonic crystal actuator with MXene-hydrogel muscle.Cell Rep Phys Sci2022;3:100915
|
| [156] |
Liu H,Liao L.Approaching intrinsic dynamics of MXenes hybrid hydrogel for 3D printed multimodal intelligent devices with ultrahigh superelasticity and temperature sensitivity.Nat Commun2022;13:3420 PMCID:PMC9197829
|
| [157] |
Li K,Zhussupbekova A.4D printing of MXene hydrogels for high-efficiency pseudocapacitive energy storage.Nat Commun2022;13:6884 PMCID:PMC9653467
|
| [158] |
Fontana-Escartín A,Bertran O,Alemán C.Aqueous alginate/MXene inks for 3D printable biomedical devices.Colloids Surf A Physicochem Eng Asp2023;671:131632
|
| [159] |
Pantula A,Shi Y.Untethered unidirectionally crawling gels driven by asymmetry in contact forces.Sci Robot2022;7:eadd2903
|
| [160] |
Ma C,Tang X.A multiresponsive anisotropic hydrogel with macroscopic 3D complex deformations.Adv Funct Mater2016;26:8670-6
|
| [161] |
Zhang M,Zheng Z.Micro- and nanofabrication of dynamic hydrogels with multichannel information.Nat Commun2023;14:8208 PMCID:PMC10713606
|
| [162] |
Ni C,Yin Y.Shape memory polymer with programmable recovery onset.Nature2023;622:748-53
|
| [163] |
Li J,Bian R.Multimaterial cryogenic printing of three-dimensional soft hydrogel machines.Nat Commun2025;16:185 PMCID:PMC11695866
|
| [164] |
Dhand AP,Burdick JA.Lithography-based 3D printing of hydrogels.Nat Rev Bioeng2025;3:108-25 PMCID:PMC12269901
|
| [165] |
Zhang A,Chen L.3D printing hydrogels for actuators: a review.Chin Chem Lett2021;32:2923-32
|
| [166] |
Wang J,Han S,Jia X.Multiple-stimuli-responsive multicolor luminescent self-healing hydrogel and application in information encryption and bioinspired camouflage.J Mater Chem C2022;10:15565-72
|
| [167] |
Gao Q,Shan G.Bioinspired stimuli-responsive hydrogel with reversible switching and fluorescence behavior served as light-controlled soft actuators.Macromol Mater Eng2021;306:2100379
|
| [168] |
Li S,Chen G.4D printing of biomimetic anisotropic self-sensing hydrogel actuators.Chem Eng J2023;473:145444
|
| [169] |
Xiang C,Hu N.A bioinspired smart adhesion actuator with fast-driving and self-sensing capability.Adv Mater Technol2023;8:2201715
|
| [170] |
Wang J,Wang J.A self-healing artificial muscle was realized by fitting the electrode membrane with the self-healing actuating membrane with a folded structure.Smart Mater Struct2024;33:015029
|
| [171] |
Yang C,Xu Y.pH oscillator-driven jellyfish-like hydrogel actuator with dissipative synergy between deformation and fluorescence color change.ACS Macro Lett2022;11:347-53
|
| [172] |
Xie J,Lu W.Environment-interactive programmable deformation of electronically innervated synergistic fluorescence-color/shape changeable hydrogel actuators.Small2023;19:e2304204
|
| [173] |
Chen N,Liu Y.Conductive photo-thermal responsive bifunctional hydrogel system with self-actuating and self-monitoring abilities.Nano Res2022;15:7703-12
|
| [174] |
Qian C,Chen C.A stretchable and conductive design based on multi-responsive hydrogel for self-sensing actuators.Chem Eng J2023;454:140263
|
| [175] |
Wang X,Ma S,Xu X.Polydopamine-modified MXene-integrated poly(N-isopropylacrylamide) to construct ultrafast photoresponsive bilayer hydrogel actuators with smart adhesion.ACS Appl Mater Interfaces2023;15:49689-700
|
| [176] |
Feng X,Shang S.Multicolor fluorescent cellulose hydrogels actuators: lanthanide-ligand metal coordination, synergetic color-changing and shape-morphing, and antibacterial activity.Chem Eng J2022;450:138356
|
| [177] |
Lu Y,Deng F.Gradient wood-derived hydrogel actuators constructed by an isotropic-anisotropic structure strategy with rapid thermal-response, high strength and programmable deformation.Chem Eng J2025;504:158903
|
| [178] |
Du J,Wang B,Liu L.Hydrogel fibers for wearable sensors and soft actuators.iScience2023;26:106796 PMCID:PMC10197150
|
| [179] |
Lo C,Kim C.Highly stretchable self-sensing actuator based on conductive photothermally-responsive hydrogel.Mater Today2021;50:35-43
|
| [180] |
Shen Z,Majidi C.Cutaneous ionogel mechanoreceptors for soft machines, physiological sensing, and amputee prostheses.Adv Mater2021;33:e2102069
|
| [181] |
Xiao R,Yang T.Biomimetic gradient aerogel fibers for sustainable energy harvesting from human sweat via the hydrovoltaic effect.Nano Energy2025;136:110759
|
| [182] |
Hu L,Sugiarto S.Hydrogel-based flexible electronics.Adv Mater2023;35:e2205326
|
| [183] |
Shintake J,Floreano D.Soft robotic grippers.Adv Mater2018;30:e1707035
|
| [184] |
Wang Y,Wang C.3D printing of octopi-inspired hydrogel suckers with underwater adaptation for reversible adhesion.Chem Eng J2023;457:141268
|
| [185] |
Ying B,Zuo R,Liu X.An anti-freezing, ambient-stable and highly stretchable ionic skin with strong surface adhesion for wearable sensing and soft robotics.Adv Funct Mater2021;31:2104665
|
| [186] |
Li J,He Z,Wu H.Biomimetic turing machine: a multiscale theoretical framework for the inverse design of target space curves.J Mech Phys Solids2025;196:105999
|
| [187] |
Yang X,Zhao H.Morphing matter: from mechanical principles to robotic applications.Soft Sci2023;3:38
|
| [188] |
Liu H,Yuan H.Bioinspired multifunctional self-sensing actuated gradient hydrogel for soft-hard robot remote interaction.Nanomicro Lett2024;16:69 PMCID:PMC10766940
|
| [189] |
Zhang Z,Yuan W.Plants inspired shape-programmable and reconfigurable actuation soft actuators for adaptive grasping, sensing and recognition.Small2025;21:e2501164
|