Flexible optical waveguides for health: a review of the current status and technological perspectives

Chengwei Yang , Siyu Chen , Yanan Zou , Yi Ren , Zhuo Wang , Kun Xiao , Arnaldo Leal-Junior , Santosh Kumar , Rui Min

Soft Science ›› 2025, Vol. 5 ›› Issue (4) : 46

PDF
Soft Science ›› 2025, Vol. 5 ›› Issue (4) :46 DOI: 10.20517/ss.2025.44
Review Article

Flexible optical waveguides for health: a review of the current status and technological perspectives

Author information +
History +
PDF

Abstract

In response to the increasing demand for the prevention and control of chronic noncommunicable diseases, people are paying growing attention to the application of flexible optical waveguides in health assistance, and the specific functions of flexible optical waveguides are gradually enriched in the process. This review systematically explains the research progress of flexible optical waveguides in human health assistance. An analysis of the sensing principles used in flexible optical waveguides for signal sensing is provided. The specific applications of flexible optical waveguides in human health assistance are categorized into three main areas: invasive biomedical diagnosis and therapy, contact physiological information monitoring, and interactive soft robots. From the perspective of materials science, a comprehensive analysis is conducted on commonly used materials and their properties for flexible optical waveguides in human health assistance. Furthermore, the sensing principles and specific applications of flexible optical waveguides are provided, aiming to provide theoretical support and technological innovation direction for the construction of a new generation of intelligent health monitoring systems. The unique advantages of flexible optical waveguides in sensing, especially in human physiological signal sensing, are demonstrated through detailed theoretical analyses. Their specific applications in human health assistance are summarized under each category. Finally, this review proposes evolution paths for flexible optical waveguides by addressing current bottlenecks through material innovation (e.g., hybrids, metasurfaces), functional enhancement (e.g., self-powered sensing), and system integration (e.g., miniaturization, Internet of Things platforms).

Keywords

Flexible optical waveguide / sensing principle / invasive biomedical therapy / physiological information monitoring / interactive soft robot

Cite this article

Download citation ▾
Chengwei Yang, Siyu Chen, Yanan Zou, Yi Ren, Zhuo Wang, Kun Xiao, Arnaldo Leal-Junior, Santosh Kumar, Rui Min. Flexible optical waveguides for health: a review of the current status and technological perspectives. Soft Science, 2025, 5(4): 46 DOI:10.20517/ss.2025.44

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

World Health Organization. Regional Office for South-East Asia. Draft Fourteenth General Programme of Work (GPW14) 2025-2028. https://iris.who.int/handle/10665/373010. (accessed 8 Sep 2025)

[2]

World Health Organization. Cardiovascular diseases (CVDs). https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). (accessed 8 Sep 2025)

[3]

Du Y,Kong H.Biocompatible electronic skins for cardiovascular health monitoring.Adv Healthc Mater2024;13:e2303461

[4]

Ravindran PT.Lighting up cancer dynamics.Trends Cancer2018;4:657-9

[5]

Caffè A,Iannaccone G,Montone RA.Precision medicine in acute coronary syndromes.J Clin Med2024;13:4569 PMCID:PMC11313297

[6]

Ahmed MR,Potluri P,Fernando A.Emerging paradigms in fetal heart rate monitoring: evaluating the efficacy and application of innovative textile-based wearables.Sensors2024;24:6066 PMCID:PMC11436206

[7]

Yadav A,Wu Y,Hongyu Z.Wearable strain sensors: state-of-the-art and future applications.Mater Adv2023;4:1444-59

[8]

Liao YT,Lingley A,Otis BP.A 3-μW CMOS glucose sensor for wireless contact-lens tear glucose monitoring.IEEE J Solid State Circuits2012;47:335-44

[9]

Yao H,Lingley AR.A contact lens with integrated telecommunication circuit and sensors for wireless and continuous tear glucose monitoring.J Micromech Microeng2012;22:075007

[10]

Thomas N,Parviz B.A contact lens with an integrated lactate sensor.Sens Actuators B Chem2012;162:128-34

[11]

Mannoor MS,Clayton JD.Graphene-based wireless bacteria detection on tooth enamel.Nat Commun2012;3:763

[12]

Kim J,Bandodkar AJ.Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites.Analyst2014;139:1632-6

[13]

Guinovart T,Crespo GA,Andrade FJ.Potentiometric sensors using cotton yarns, carbon nanotubes and polymeric membranes.Analyst2013;138:5208-15

[14]

Bandodkar AJ,Mirza O.Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring.Biosens Bioelectron2014;54:603-9

[15]

Bandodkar AJ.Non-invasive wearable electrochemical sensors: a review.Trends Biotechnol2014;32:363-71

[16]

Amjadi M,Lee S,Park I.Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite.ACS Nano2014;8:5154-63

[17]

Park B,Kang D.Dramatically enhanced mechanosensitivity and signal-to-noise ratio of nanoscale crack-based sensors: effect of crack depth.Adv Mater2016;28:8130-7

[18]

Liu Z,Guo P.Thickness-gradient films for high gauge factor stretchable strain sensors.Adv Mater2015;27:6230-7

[19]

Kim SR,Park JW.Wearable and transparent capacitive strain sensor with high sensitivity based on patterned Ag nanowire networks.ACS Appl Mater Interfaces2017;9:26407-16

[20]

Yao S.Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires.Nanoscale2014;6:2345-52

[21]

Chen Z,Yao J,Xu Y.Two-stage micropyramids enhanced flexible piezoresistive sensor for health monitoring and human-computer interaction.ACS Appl Mater Interfaces2024;16:7640-9

[22]

Zhou M,Wang C.Amorphous TiO2 inverse opal anode for high-rate sodium ion batteries.Nano Energy2017;31:514-24

[23]

Wang C,Wang H,Yin Z.Advanced carbon for flexible and wearable electronics.Adv Mater2019;31:e1801072

[24]

Kim KH,Song Y.3D hierarchical nanotopography for on-site rapid capture and sensitive detection of infectious microbial pathogens.ACS Nano2021;15:4777-88

[25]

Qu X,Liu Y,Liu Z.Fingerprint-shaped triboelectric tactile sensor.Nano Energy2022;98:107324

[26]

Yu Q,Jiang L,Li X.Flexible optical fiber sensor for non-invasive continuous monitoring of human physiological signals.Small Methods2025;9:e2401368

[27]

Guo J,Yang C,Kong L.Stretchable and temperature-sensitive polymer optical fibers for wearable health monitoring.Adv Funct Mater2019;29:1902898

[28]

Li R,Yu Y,Zhang X.Flexible multilayer substrate based optical waveguides: applications to optical sensing.Sens Actuators A Phys2014;209:57-61

[29]

Sekine M.Development of measurement method for temperature and velocity field with optical fiber sensor.Sensors2023;23:1627 PMCID:PMC9921475

[30]

Zhang M,Zhang Y.Spider silk as a flexible light waveguide for temperature sensing.J Lightwave Technol2023;41:1884-9

[31]

Funnell AC.Design of a flexible weight sensor using optical fibre macrobending.Sensors2023;23:912 PMCID:PMC9861511

[32]

Zhang H,Gao C.Research on the fabrication and parameters of a flexible fiber optic pressure sensor with high sensitivity.Photonics2024;11:919

[33]

To C,Jung J,Park Y.A soft optical waveguide coupled with fiber optics for dynamic pressure and strain sensing.IEEE Robot Autom Lett2018;3:3821-7

[34]

Pathak AK.A wide range and highly sensitive optical fiber pH sensor using polyacrylamide hydrogel.Opt Fiber Technol2017;39:43-8

[35]

Ren Y,Petti L.Optical waveguide humidity sensor with symmetric multilayer configuration.Sens Actuators B Chem2001;75:76-82

[36]

Liang L,Jin L,Sun L.Optical microfiber biomedical sensors: classification, applications, and future perspectives.Adv Sens Res2025;4:2400185

[37]

Jha R,Kumar S.Advancements in optical fiber-based wearable sensors for smart health monitoring.Biosens Bioelectron2024;254:116232

[38]

Zha B,Ma L.Intelligent wearable photonic sensing system for remote healthcare monitoring using stretchable elastomer optical fiber.IEEE Internet Things J2024;11:17317-29

[39]

Luo Z,Kong X.Advance on fiber optic-based biosensors for precision medicine: from diagnosis to therapy.Interdiscip Med2023;1:e20230022

[40]

Quandt BM,Boesel LF,Bona GL.Body-monitoring and health supervision by means of optical fiber-based sensing systems in medical textiles.Adv Healthc Mater2015;4:330-55

[41]

Li W,Yan Y.Wearable photonic smart wristband for cardiorespiratory function assessment and biometric identification.Opto Electron Adv2025;8:240254

[42]

Wang Y,Qi L.Soft optical fibers for biomedical and wearable technologies: current trends and future prospects.Adv Funct Mater2025;2507712

[43]

De Chiara, F.; Wang, S.; Liu, H. Creating a soft tactile skin employing fluorescence based optical sensing.IEEE Robot Autom Lett2020;5:3375-81

[44]

Otsuka R,Hayashi K.Active optical sensor microrobot equipped with multi-DoF gripper arm based on kinetic electronics.IEEE Sens Lett2023;7:1-4

[45]

Kurochkin MA,Brodovskaya EP.Laser-triggered drug release from polymeric 3-D micro-structured films via optical fibers.Mater Sci Eng C Mater Biol Appl2020;110:110664

[46]

Zheng D,Collard L.Toward plasmonic neural probes: SERS detection of neurotransmitters through gold-nanoislands-decorated tapered optical fibers with sub-10 nm gaps.Adv Mater2023;35:e2200902

[47]

Jiang Y,Zhang Q.Green light-based photobiomodulation with an implantable and biodegradable fiber for bone regeneration.Small Methods2020;4:1900879

[48]

Teh DBL,Chai C.A flexi-PEGDA upconversion implant for wireless brain photodynamic therapy.Adv Mater2020;32:e2001459

[49]

Xiang K,Chen J.AI-assisted insole sensing system for multifunctional plantar-healthcare applications.ACS Appl Mater Interfaces2024;16:32662-78

[50]

Bae SH,Chang SY.Hybrid integrated photomedical devices for wearable vital sign tracking.ACS Sens2020;5:1582-8

[51]

Mishra P,Kumar H.Human pulse and respiration monitoring: reconfigurable and scalable balloon-shaped fiber wearables.Adv Mater Technol2023;8:2300429

[52]

Li T,Chen F.Bioinspired stretchable fiber-based sensor toward intelligent human-machine interactions.ACS Appl Mater Interfaces2022;14:22666-77

[53]

Pan J,Gao S.Knot-inspired optical sensors for slip detection and friction measurement in dexterous robotic manipulation.Opto Electronic Adv2023;6:230076

[54]

Guo J,Gao S,Fu B.Flexible plasmonic optical tactile sensor for health monitoring and artificial haptic perception.Adv Mater Technol2023;8:2201506

[55]

Gong Z,OuYang X.Wearable fiber optic technology based on smart textile: a review.Materials2019;12:3311 PMCID:PMC6829450

[56]

Gan J,Guo Q.Flexible optical fiber sensing: materials, methodologies, and applications.Adv Devices Instrum2024;5:0046

[57]

Rein M,Hou C.Diode fibres for fabric-based optical communications.Nature2018;560:214-8

[58]

Koeppel M,Podschus J.Doppler optical frequency domain reflectometry for remote fiber sensing: erratum.Opt Express2021;29:24193

[59]

Stellinga D,Mekhail SP.Time-of-flight 3D imaging through multimode optical fibers.Science2021;374:1395-9

[60]

Guo J,Dai Q.Soft and stretchable polymeric optical waveguide-based sensors for wearable and biomedical applications.Sensors2019;19:3771 PMCID:PMC6749420

[61]

Choi M,Kim S,Hahn SK.Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo.Nat Photonics2013;7:987-94 PMCID:PMC4207089

[62]

Okumura Y.The polyrotaxane gel: a topological gel by figure-of-eight cross-links.Adv Mater2001;13:485-7

[63]

Browning MB,Hahn M.Compositional control of poly(ethylene glycol) hydrogel modulus independent of mesh size.J Biomed Mater Res A2011;98:268-73

[64]

Gaharwar AK,Wu CJ.Transparent, elastomeric and tough hydrogels from poly(ethylene glycol) and silicate nanoparticles.Acta Biomater2011;7:4139-48

[65]

Musumeci G,Castorina S,Leonardi R.New perspectives in the treatment of cartilage damage. Poly(ethylene glycol) diacrylate (PEGDA) scaffold. A review.Ital J Anat Embryol2013;118:204-10

[66]

Zhang ZF,Wang H.Influence of polymerization conditions on the refractive index of poly(ethylene glycol) diacrylate (PEGDA) hydrogels.Appl Phys A2018;124:1713

[67]

Hakim Khalili, M.; Zhang, R.; Wilson, S.; Goel, S.; Impey, S. A.; Aria, A. I. Additive manufacturing and physicomechanical characteristics of PEGDA hydrogels: recent advances and perspective for tissue engineering.Polymers2023;15:2341 PMCID:PMC10221499

[68]

Yetisen AK,Fallahi A.Glucose-sensitive hydrogel optical fibers functionalized with phenylboronic acid.Adv Mater2017;29:1606380 PMCID:PMC5921932

[69]

Kwok SJJ,Lin HH.Flexible optical waveguides for uniform periscleral cross-linking.Invest Ophthalmol Vis Sci2017;58:2596-602 PMCID:PMC5433838

[70]

Martincek I,Chalupova M.Technology for the preparation of PDMS optical fibers and some fiber structures.IEEE Photon Technol Lett2014;26:1446-9

[71]

Lu C,Richner TJ.Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits.Sci Adv2017;3:e1600955 PMCID:PMC5371423

[72]

Martincek I,Gaso P.Fabrication and optical characterization of strain variable PDMS biconical optical fiber taper.IEEE Photon Technol Lett2013;25:2066-9

[73]

Wang Z,Gallant ND.Crosslinking effect on polydimethylsiloxane elastic modulus measured by custom-built compression instrument.J Appl Polym Sci2014;131:app.41050

[74]

Johnston ID,Tan CKL.Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering.J Micromech Microeng2014;24:035017

[75]

Darby DR,Mason CR.Modulus and adhesion of Sylgard 184, Solaris, and Ecoflex 00-30 silicone elastomers with varied mixing ratios.J Appl Polym Sci2022;139:e52412

[76]

Li Y,Cao D,Dasgupta P.Optical-waveguide based tactile sensing for surgical instruments of minimally invasive surgery.Front Robot AI2021;8:773166 PMCID:PMC8808597

[77]

Vaicekauskaite J,Vudayagiri S.Mapping the mechanical and electrical properties of commercial silicone elastomer formulations for stretchable transducers.J Mater Chem C2020;8:1273-9

[78]

Cheng X,Su Z.Controlled fabrication of nanoscale wrinkle structure by fluorocarbon plasma for highly transparent triboelectric nanogenerator.Microsyst Nanoeng2017;3:16074 PMCID:PMC6444979

[79]

Nizamoglu S,Humar M.Bioabsorbable polymer optical waveguides for deep-tissue photomedicine.Nat Commun2016;7:10374 PMCID:PMC4735646

[80]

Kim M,Kim KS.Optical lens-microneedle array for percutaneous light delivery.Biomed Opt Express2016;7:4220-7 PMCID:PMC5102534

[81]

Bergström JS.An overview of mechanical properties and material modeling of polylactide (PLA) for medical applications.Ann Biomed Eng2016;44:330-40

[82]

Zhao H,Li S.Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides.Sci Robot2016;1:eaai7529

[83]

Hu L,Sugiarto S.Hydrogel-based flexible electronics.Adv Mater2023;35:e2205326

[84]

Sadeque MSB,Rafique M.Hydrogel-integrated optical fiber sensors and their applications: a comprehensive review.J Mater Chem C2023;11:9383-424

[85]

Shabahang S,Yun SH.Light-guiding biomaterials for biomedical applications.Adv Funct Mater2018;28:1706635 PMCID:PMC6703841

[86]

Nurlidar F,Lasmawati D,Heryani R.A simple method for the simultaneous encapsulation of ciprofloxacin into PEGDA/alginate hydrogels using gamma irradiation.Arab J Chem2023;16:104793

[87]

Tiwari G,Sriwastawa B.Drug delivery systems: an updated review.Int J Pharm Investig2012;2:2-11 PMCID:PMC3465154

[88]

Tibbitt MW,Langer R.Emerging frontiers in drug delivery.J Am Chem Soc2016;138:704-17

[89]

Zhu J.Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering.Biomaterials2010;31:4639-56 PMCID:PMC2907908

[90]

Sun S,Yuan B.Drug delivery systems based on polyethylene glycol hydrogels for enhanced bone regeneration.Front Bioeng Biotechnol2023;11:1117647 PMCID:PMC9923112

[91]

Paneer Selvam, S.; Ayyappan, S.; I Jamir, S.; Sellappan, L. K.; Manoharan, S. Recent advancements of hydroxyapatite and polyethylene glycol (PEG) composites for tissue engineering applications - a comprehensive review.Eur Polym J2024;215:113226

[92]

Zhang Y.Surface modification of monodisperse magnetite nanoparticles for improved intracellular uptake to breast cancer cells.J Colloid Interface Sci2005;283:352-7

[93]

Xin H,Liu X.Escherichia coli-based biophotonic waveguides.Nano Lett2013;13:3408-13

[94]

Choi M,Kim S.Step-index optical fiber made of biocompatible hydrogels.Adv Mater2015;27:4081-6 PMCID:PMC4503511

[95]

Li W,Wang C.In vitro enzymatic degradation of the PTMC/cross-linked PEGDA blends.Front Bioeng Biotechnol2023;11:1253221 PMCID:PMC10509478

[96]

Jin H,Kim SC.Synthesis and characterization of interpenetrating polymer networks from polyurethane and poly(ethylene glycol) diacrylate.J Appl Polym Sci2008;109:805-12

[97]

Li J,Zhong M,Nie J.Synthesis of furan derivative as LED light photoinitiator: one-pot, low usage, photobleaching for light color 3D printing.Dyes Pigments2019;165:467-73

[98]

Kaastrup K,Wang C,Stansbury J.UV-Vis/FT-NIR in situ monitoring of visible-light induced polymerization of PEGDA hydrogels initiated by eosin/triethanolamine/O2.Polym Chem2016;7:592-602 PMCID:PMC4706378

[99]

Fairbanks BD,Bowman CN.Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility.Biomaterials2009;30:6702-7 PMCID:PMC2896013

[100]

Sun G,Zhong Y,Huang Y.Blue light induced polymerization kinetics of polyethylene glycol diacrylate hydrogel. Polym. Mater. Sci. Eng. 2022.

[101]

LeValley PJ,Kharkar PM,Gatlin JC.Fabrication of functional biomaterial microstructures by in situ photopolymerization and photodegradation.ACS Biomater Sci Eng2018;4:3078-87 PMCID:PMC6980224

[102]

Bae J,Kim S.Tailored hydrogels for biosensor applications.J Ind Eng Chem2020;89:1-12

[103]

Liu R,Fu X.Synthesis and properties of thermo-sensitive PEG hydrogel.Fine Chem2018;35:429-36http://en.cnki.com.cn/Article_en/CJFDTotal-JXHG201803011.htm. (accessed 8 Sep 2025)

[104]

Li Z,Wang H,He C.Nano-hydroxyapatite/polyacrylamide composite hydrogels with high mechanical strengths and cell adhesion properties.Colloids Surf B Biointerfaces2014;123:959-64

[105]

Wang L,Ke D.Ultrasoft and highly stretchable hydrogel optical fibers for in vivo optogenetic modulations.Adv Opt Mater2018;6:1800427

[106]

Shanks RA.General purpose elastomers: structure, chemistry, physics and performance. In Advances in Elastomers I: Blends and Interpenetrating Networks; Visakh, P. M., Thomas, S., Chandra, A. K., Mathew, Aji. P., Eds.; vol 11; Springer: Berlin, Heidelberg, 2013; pp. 11-45.

[107]

Miranda I,Sousa P.Properties and applications of PDMS for biomedical engineering: a review.J Funct Biomater2021;13:2 PMCID:PMC8788510

[108]

Khanafer K,Schlicht M.Effects of strain rate, mixing ratio, and stress-strain definition on the mechanical behavior of the polydimethylsiloxane (PDMS) material as related to its biological applications.Biomed Microdevices2009;11:503-8

[109]

Prajzler V,Spirkova J.The evaluation of the refractive indices of bulk and thick polydimethylsiloxane and polydimethyl-diphenylsiloxane elastomers by the prism coupling technique.J Mater Sci Mater Electron2017;28:7951-61

[110]

Lamberti A,Cocuzza M.PDMS membranes with tunable gas permeability for microfluidic applications.RSC Adv2014;4:61415-9

[111]

Fan X,Ding X.Alignment-free liquid-capsule pressure sensor for cardiovascular monitoring.Adv Funct Mater2018;28:1805045

[112]

Qian X,Su M.Printable skin-driven mechanoluminescence devices via nanodoped matrix modification.Adv Mater2018;30:e1800291

[113]

Rothmaier M,Clemens F.Textile pressure sensor made of flexible plastic optical fibers.Sensors2008;8:4318-29 PMCID:PMC3697177

[114]

Leber A,Sandt J,Kolle M.Stretchable thermoplastic elastomer optical fibers for sensing of extreme deformations.Adv Funct Mater2019;29:1802629

[115]

Qu Y,Page AG.Superelastic multimaterial electronic and photonic fibers and devices via thermal drawing.Adv Mater2018;30:e1707251

[116]

Fu R,Nazempour R.Implantable and biodegradable poly(l-lactic acid) fibers for optical neural interfaces.Adv Opt Mater2018;6:1700941

[117]

Qin H,Sonkusale SR.Highly stretchable and nonvolatile gelatin-supported deep eutectic solvent gel electrolyte-based ionic skins for strain and pressure sensing.J Mater Chem C2019;7:601-8

[118]

Wu SD,Ketelsen B.Fabrication of eco-friendly wearable strain sensor arrays via facile contact printing for healthcare applications.Small Methods2023;7:e2300170

[119]

Hu H,Lv R.Design and experiment of an optical fiber micro bend sensor for respiration monitoring.Sens Actuators A Phys2016;251:126-33

[120]

Praveena S,Babu PR.MoS2 sensitized tapered fiber optic evanescent wave sensor for refractive index based glucose sensing application.Curr Appl Phys2025;77:46-56

[121]

Li Y,Gui Y,Tian Z.Difunctional hydrogel optical fiber fluorescence sensor for continuous and simultaneous monitoring of glucose and pH.Biosensors2023;13:287 PMCID:PMC9954304

[122]

Li J,Long Z,Guo H.Wearable multifunctional optical sensor based on Er3+/Yb3+ co-doped Gd2O3 nanoparticles and tapered U-shaped fiber.Opt Lett2025;50:281-4

[123]

Li H,Ding M.New class of optical blood glucose sensors based on a PMMA Mach–Zehnder interferometer.ACS Photonics2024;11:1684-92

[124]

Levi A,Furlan S,Beccai L.Soft, transparent, electronic skin for distributed and multiple pressure sensing.Sensors2013;13:6578-604 PMCID:PMC3690071

[125]

Peng W,Song H.A nanograting-based flexible and stretchable waveguide for tactile sensing.Nanoscale Res Lett2021;16:23 PMCID:PMC7865040

[126]

He R,Wang Z.Optical fiber sensors for heart rate monitoring: a review of mechanisms and applications.Results Opt2023;11:100386

[127]

Youn J,Jang S.Highly stretchable-compressible coiled polymer sensor for soft continuum manipulator.Smart Mater Struct2022;31:015043

[128]

Huang X,Liu T,Cui X.An approach on a new variable amplitude waveform sensor.Optik2017;132:52-66

[129]

Yun S,Mun S.A highly stretchable optical strain sensor monitoring dynamically large strain for deformation-controllable soft actuator.Smart Mater Struct2021;30:105020

[130]

Al-Lami SS,Salman AM.Adjustable optical fiber displacement-curvature sensor based on macro-bending losses with a coding of optical signal intensity.Sens Actuators A Phys2024;373:115403

[131]

Min R,Pereira L.Polymer optical fiber for monitoring human physiological and body function: a comprehensive review on mechanisms, materials, and applications.Opt Laser Technol2022;147:107626

[132]

Guo J,Yang C.Highly flexible and stretchable optical strain sensing for human motion detection.Optica2017;4:1285

[133]

Mäntele W.UV-VIS absorption spectroscopy: Lambert-Beer reloaded.Spectrochim Acta A Mol Biomol Spectrosc2017;173:965-8

[134]

Wang W,Zhao R,Tao G.Stretchable polymer optical fiber with an unusual relationship between optical loss and elongation.J Lightwave Technol2024;42:3370-5

[135]

Huong A.Quantitative analysis of spectroscopy data for skin oximetry. In Proceedings of the 3rd International Conference on Biomedical and Bioinformatics Engineering. Association for Computing Machinery; 2016. pp. 46-9.

[136]

Fuente D,Urchueguía JF.Estimation of the light field inside photosynthetic microorganism cultures through Mittag-Leffler functions at depleted light conditions.J Quant Spectrosc Radiat Transf2018;204:23-6

[137]

Nagar MA.Polymer-based optical guided-wave biomedical sensing: from principles to applications.Photonics2024;11:972

[138]

Pendão C.Optical fiber sensors and sensing networks: overview of the main principles and applications.Sensors2022;22:7554 PMCID:PMC9570792

[139]

Jakubowski K,Boesel LF,Heuberger M.Recent advances in photoluminescent polymer optical fibers.Curr Opin Solid State Mater Sci2021;25:100912

[140]

Shin YH,Choi JW.Review - recent progress in portable fluorescence sensors.J Electrochem Soc2021;168:017502

[141]

Wang Q,Lin Q,Mu Z.A review on fluorescence intensity ratio thermometer based on rare-earth and transition metal ions doped inorganic luminescent materials.J Alloys Compd2021;850:156744

[142]

Li Z,Cheng Z.In vivo fiber-optic fluorescent sensor for real-time pH monitoring of tumor microenvironment.Chem Eng J2024;493:152495

[143]

Stich MI,Wolfbeis OS.Multiple fluorescent chemical sensing and imaging.Chem Soc Rev2010;39:3102-14

[144]

Erdogan T.Fiber grating spectra.J Lightwave Technol1997;15:1277-94

[145]

Bilro L,Pinto JL.Optical sensors based on plastic fibers.Sensors2012;12:12184-207 PMCID:PMC3478834

[146]

Zhao C,Cai Z.A wearable breath sensor based on fiber-tip microcantilever.Biosensors2022;12:168 PMCID:PMC8946493

[147]

Sirkis T,Agdarov S,Zalevsky Z.Blood pulse wave velocity and pressure sensing via fiber based and free space based optical sensors.Nanoscale Imag Sens Actuat Biomed Appl2017;10077:100770A

[148]

Measures RM.Fiber-optic-based smart structures. In Encyclopedia of Physical Science and Technolog. 2003. pp. 769-802.

[149]

Shao M,Liu Y,Qiao X.All-fiber michelson interferometer for heart rate and breath monitoring.IEEE Sensors J2024;24:23909-17

[150]

Zheng M,Zou Q.Moisture-driven switching of plasmonic bound states in the continuum in the visible region.Adv Funct Mater2023;33:2209368

[151]

Chen G,Yu N.Temperature-adaptive hydrogel optical waveguide with soft tissue-affinity for thermal regulated interventional photomedicine.Nat Commun2022;13:7789 PMCID:PMC9758120

[152]

Zhang W,Jia H,Feng Y.Semiring-optic-fiber (SROF) sensor-based abnormal gait recognition via monitoring muscle activation.IEEE Sensors J2023;23:19307-17

[153]

Wang S,Wang Y.Machine-learning-based human motion recognition via wearable plastic-fiber sensing system.IEEE Internet Things J2023;10:17893-904

[154]

Wang Z,Ma L.Optical microfiber intelligent sensor: wearable cardiorespiratory and behavior monitoring with a flexible wave-shaped polymer optical microfiber.ACS Appl Mater Interfaces2024;16:8333-45

[155]

Li L,Liu Y.Automatic and continuous blood pressure monitoring via an optical-fiber-sensor-assisted smartwatch.PhotoniX2023;4:99

[156]

Sui K,Kaur J,Berg RW.Drug delivery and optical neuromodulation using a structured polymer optical fiber with ultra-high NA. In Proceedings of the Optogenetics and Optical Manipulation. 2023.

[157]

Zheng WL,Li LK,Zhao Y.A plug-and-play optical fiber SPR sensor for simultaneous measurement of glucose and cholesterol concentrations.Biosens Bioelectron2022;198:113798

[158]

Jiang Q,Chen Z.Wearable strain sensor integrating mechanoluminescent fiber with a flexible printed circuit.Opt Lett2024;49:1221-4

[159]

Nguyen PQ,Donghia NM.Wearable materials with embedded synthetic biology sensors for biomolecule detection.Nat Biotechnol2021;39:1366-74

[160]

Yun SH.Light in diagnosis, therapy and surgery.Nat Biomed Eng2017;1:0008 PMCID:PMC5476943

[161]

Serajuddin AT.Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs.J Pharm Sci1999;88:1058-66

[162]

Savjani KT,Savjani JK.Drug solubility: importance and enhancement techniques.ISRN Pharm2012;2012:195727 PMCID:PMC3399483

[163]

Zhao Z,Kim J.Targeting strategies for tissue-specific drug delivery.Cell2020;181:151-67

[164]

Dreiss CA.Hydrogel design strategies for drug delivery.Curr Opin Colloid Interface Sci2020;48:1-17

[165]

Sandoval-Yañez C,Amador CA.The advantages of polymeric hydrogels in calcineurin inhibitor delivery.Processes2020;8:1331

[166]

Hu Y,Hui J,Yetisen AK.Fiber optic devices for diagnostics and therapy in photomedicine.Adv Opt Mater2024;12:2400478

[167]

Bajgrowicz-Cieslak M,Elshereif MI,Hassan MU.Optical glucose sensors based on hexagonally-packed 2.5-dimensional photonic concavities imprinted in phenylboronic acid functionalized hydrogel films.RSC Adv2017;7:53916-24 PMCID:PMC5708336

[168]

Elsherif M,Yetisen AK.Hydrogel optical fibers for continuous glucose monitoring.Biosens Bioelectron2019;137:25-32

[169]

Guo J,Du Z,Kong L.Soft and plasmonic hydrogel optical probe for glucose monitoring.Nanophotonics2021;10:3549-58

[170]

Davies S,Blyth J,Yetisen AK.Reusable dual-photopolymerized holographic glucose sensors.Adv Funct Mater2023;33:2214197

[171]

Ujah E,Slaughter G.Ultrasensitive tapered optical fiber refractive index glucose sensor.Sci Rep2023;13:4495 PMCID:PMC10024692

[172]

Wen X,Liu Q.Glucose sensing based on hydrogel grating incorporating phenylboronic acid groups.Opt Express2022;30:47541-52

[173]

Ahmed I,Ali M,Mohammad B.Photonic hydrogel for continuous glucose monitoring using smartphone readout.Mater Design2023;231:112065

[174]

Heo YJ,Okitsu T,Takeuchi S.Long-term in vivo glucose monitoring using fluorescent hydrogel fibers.Proc Natl Acad Sci U S A2011;108:13399-403 PMCID:PMC3158145

[175]

Li Y,Liu R.3D hybrid arrayed Ag/MOF multi-plasmon resonant cavity system for high-performance SPR sensing.Opt Laser Technol2023;167:109825

[176]

Ahmed I,Al Ghaferi A,Butt H.Nanocomposite hydrogel-based optical fiber probe for continuous glucose sensing.Small Sci2024;4:2300189 PMCID:PMC11935230

[177]

Deng C,Gan Y.High-sensitivity hemoglobin detection based on polarization-differential spectrophotometry.Biosens Bioelectron2023;241:115667

[178]

Rahad R,Haque MA,Sagor RH.Plasmonic refractive index sensing in the early diagnosis of diabetes, anemia, and cancer: an exploration of biological biomarkers.Results Phys2023;49:106478

[179]

Luo M.A reflective optical fiber SPR sensor with surface modified hemoglobin for dissolved oxygen detection.Alex Eng J2021;60:4115-20

[180]

Safaee MM,Roxbury D.A wearable optical microfibrous biomaterial with encapsulated nanosensors enables wireless monitoring of oxidative stress.Adv Funct Mater2021;31:2006254

[181]

Guo Y,Wang Z,Hou K.Biocompatible optical fiber for photomedical application.Giant2023;16:100195

[182]

Yang K,Shi X.Nano-graphene in biomedicine: theranostic applications.Chem Soc Rev2013;42:530-47

[183]

Brown SB,Walker I.The present and future role of photodynamic therapy in cancer treatment.Lancet Oncol2004;5:497-508

[184]

Lai B,Douplik A.Three-dimensional fluence rate measurement and data acquisition system for minimally invasive light therapies.Rev Sci Instrum2009;80:043104 PMCID:PMC2832052

[185]

Zein R,Hamblin MR.Review of light parameters and photobiomodulation efficacy: dive into complexity.J Biomed Opt2018;23:1-17 PMCID:PMC8355782

[186]

Huang YY,Carroll J.Biphasic dose response in low level light therapy - an update.Dose Response2011;9:602-18 PMCID:PMC3315174

[187]

de Freitas, L. F.; Hamblin, M. R. Proposed mechanisms of photobiomodulation or low-level light therapy.IEEE J Sel Top Quantum Electron2016;22:7000417 PMCID:PMC5215870

[188]

Courtois E,Axisa F.Photobiomodulation by a new optical fiber device: analysis of the in vitro impact on proliferation/migration of keratinocytes and squamous cell carcinomas cells stressed by X-rays.Lasers Med Sci2021;36:1445-54

[189]

Naeser MA,Krengel MH.Significant improvements in cognitive performance post-transcranial, red/near-infrared light-emitting diode treatments in chronic, mild traumatic brain injury: open-protocol study.J Neurotrauma2014;31:1008-17 PMCID:PMC4043367

[190]

Pan WT,Ma D.Advances in photobiomodulation for cognitive improvement by near-infrared derived multiple strategies.J Transl Med2023;21:135 PMCID:PMC9945713

[191]

Lee TL,Chan AS.Can transcranial photobiomodulation improve cognitive function? A systematic review of human studies.Ageing Res Rev2023;83:101786

[192]

Shen J,Tao X.Luminous fabric devices for wearable low-level light therapy.Biomed Opt Express2013;4:2925-37 PMCID:PMC3862154

[193]

Zuo X,Zhang J.Photobiomodulation and diffusing optical fiber on spinal cord’s impact on nerve cells from normal spinal cord tissue in piglets.Lasers Med Sci2022;37:259-67

[194]

Liang Z,Wang S.Photobiomodulation by diffusing optical fiber on spinal cord: a feasibility study in piglet model.J Biophotonics2020;13:e201960022

[195]

Canales A,Froriep UP.Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo.Nat Biotechnol2015;33:277-84

[196]

Tan P,Huang Y.Optophysiology: illuminating cell physiology with optogenetics.Physiol Rev2022;102:1263-325 PMCID:PMC8993538

[197]

Tsakas A,Ampeliotis D,Alexandropoulos D.(INVITED)Review of optical fiber technologies for optogenetics.Results Opt2021;5:100168

[198]

Gutierrez DV,Masseck O.Optogenetic control of motor coordination by Gi/o protein-coupled vertebrate rhodopsin in cerebellar Purkinje cells.J Biol Chem2011;286:25848-58 PMCID:PMC3138296

[199]

Chen S,Xiao K.A comprehensive review of optical fiber technologies in optogenetics and their prospective developments in future clinical therapies.Opt Laser Technol2024;179:111332

[200]

Park S,Jia X.One-step optogenetics with multifunctional flexible polymer fibers.Nat Neurosci2017;20:612-9 PMCID:PMC5374019

[201]

Sharma K,Schneider A,Diester I.Multifunctional optrode for opsin delivery, optical stimulation, and electrophysiological recordings in freely moving rats.J Neural Eng2021;18:066013

[202]

Domingues MF,Leitao CSJ.Insole optical fiber sensor architecture for remote gait analysis - an e-health solution.IEEE Internet Things J2019;6:207-14

[203]

Avellar L,Leal-Junior A.POF Smart Pants: a fully portable optical fiber-integrated smart textile for remote monitoring of lower limb biomechanics.Biomed Opt Express2023;14:3689-704 PMCID:PMC10368064

[204]

Leal-Junior AG,Pontes MJ,Frizera A.Polymer optical fiber-embedded, 3D-printed instrumented support for microclimate and human-robot interaction forces assessment.Opt Laser Technol2019;112:323-31

[205]

Zhou H,He Y.Distributed strain sensor based on self-powered, stretchable mechanoluminescent optical fiber.Adv Intell Syst2023;5:2300113

[206]

Hou B,Li C.An interactive mouthguard based on mechanoluminescence-powered optical fibre sensors for bite-controlled device operation.Nat Electron2022;5:682-93

[207]

Koyama S,Ishizawa H,Bonefacino J.Measurement of pulsation strain at the fingertip using a plastic FBG sensor.IEEE Sensors J2021;21:21537-45

[208]

Li J,Xu F.Sensitive and wearable optical microfiber sensor for human health monitoring.Adv Mater Technol2018;3:1800296

[209]

Liang H,Kan L.Wearable and multifunctional self-mixing microfiber sensor for human health monitoring.IEEE Sensors J2023;23:2122-7

[210]

Wang X,Chen M.Wearable ultrasensitive and rapid human physiological monitoring based on microfiber Sagnac interferometer.Sci China Inf Sci2024;67:3870

[211]

Pan J,Zhang Z,Wang X.Flexible liquid-filled fiber adapter enabled wearable optical sensors.Adv Mater Technol2020;5:2000079

[212]

Bonefacino J,Glen TS.Ultra-fast polymer optical fibre Bragg grating inscription for medical devices.Light Sci Appl2018;7:17161 PMCID:PMC6060050

[213]

Lo Presti, D.; Bianchi, D.; Massaroni, C.; Gizzi, A.; Schena, E. A soft and skin-interfaced smart patch based on fiber optics for cardiorespiratory monitoring.Biosensors2022;12:363 PMCID:PMC9221342

[214]

Yi Y,Zhao H,Fan Y.High-performance ultrafast humidity sensor based on microknot resonator-assisted mach-zehnder for monitoring human breath.ACS Sens2020;5:3404-10

[215]

Bao W,Lai H,Wang Y.Wearable breath monitoring based on a flexible fiber-optic humidity sensor.Sens Actuators B Chem2021;349:130794

[216]

Zhang Z,Yao N.A multifunctional airflow sensor enabled by optical micro/nanofiber.Adv Fiber Mater2021;3:359-67

[217]

Zhang H,Teng C,Li X.Wearable cardiorespiratory sensor for real-time monitoring with smartphone integration.IEEE Trans Instrum Meas2024;73:1-10

[218]

Shen L,Xiao K.WaveFlex sensor: advancing wearable cardiorespiratory monitoring with flexible wave-shaped polymer optical fiber.IEEE J Select Topics Quantum Electron2024;30:1-9

[219]

Bai H,Barreiros J,Pollock CR.Stretchable distributed fiber-optic sensors.Science2020;370:848-52

[220]

Yang W,Gu W.Self-powered interactive fiber electronics with visual-digital synergies.Adv Mater2021;33:e2104681

[221]

Khan H,Samad A.Highly sensitive mechano-optical strain sensors based on 2D materials for human wearable monitoring and high-end robotic applications.J Mater Chem C2022;10:932-40

[222]

Qu J,Li Z.Recent progress in advanced tactile sensing technologies for soft grippers.Adv Funct Mater2023;33:2306249

[223]

Xin Y,Bark H.The role of 3D printing technologies in soft grippers.Adv Mater2024;36:e2307963

[224]

Mason MT.Toward robotic manipulation.Annu Rev Control Robot Auton Syst2018;1:1-28

[225]

Billard A.Trends and challenges in robot manipulation.Science2019;364:eaat8414

[226]

Sundaram S.How to improve robotic touch.Science2020;370:768-9

[227]

Jiang C,Pan J,Zhang L.Finger-skin-inspired flexible optical sensor for force sensing and slip detection in robotic grasping.Adv Mater Technol2021;6:2100285

[228]

Shang K,Zhou J.Optical and electrical dual-mode tactile sensor with interlinked interfaces recording normal force and slip for closed-loop robotics.Chem Eng J2023;475:146279

[229]

Cao H,Zhang Y,Zhang K.Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity.Signal Transduct Target Ther2021;6:426 PMCID:PMC8674418

[230]

Cywar RM,Hoyt CB,Chen EY.Bio-based polymers with performance-advantaged properties.Nat Rev Mater2022;7:83-103

[231]

Cui C,Meng L,Dai R.Recent progress in natural biopolymers conductive hydrogels for flexible wearable sensors and energy devices: materials, structures, and performance.ACS Appl Bio Mater2021;4:85-121

[232]

Yu H,Yang Y.Plasmon-enhanced light–matter interactions and applications.npj Comput Mater2019;5:184

[233]

Liu C,Lalanne P.Enhanced light-matter interaction in metallic nanoparticles: a generic strategy of smart void filling.Nano Lett2024;24:4641-8 PMCID:PMC11036389

[234]

Guo Q.A review of mechanochromic polymers and composites: from material design strategy to advanced electronics application.Compos Part B Eng2021;227:109434

[235]

Yang C,Xiao K.Portable optical fiber biosensors integrated with smartphone: technologies, applications, and challenges [Invited].Biomed Opt Express2024;15:1630-50 PMCID:PMC10942678

AI Summary AI Mindmap
PDF

652

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/