High-precision electrohydrodynamic printing of EGaIn-AgNPs biphasic conductive ink for conformal and lightweight bioelectrodes

Jingxuan Ma , Jiayun Feng , Zicheng Sa , Fanzhou Meng , Zhao Feng , Qing Sun , Yuxin Sun , Jiayue Wen , Shang Wang , Yanhong Tian

Soft Science ›› 2025, Vol. 5 ›› Issue (4) : 50

PDF
Soft Science ›› 2025, Vol. 5 ›› Issue (4) :50 DOI: 10.20517/ss.2025.41
Research Article

High-precision electrohydrodynamic printing of EGaIn-AgNPs biphasic conductive ink for conformal and lightweight bioelectrodes

Author information +
History +
PDF

Abstract

Low-melting-point liquid metals (LMs), characterized by exceptional electrical conductivity, mechanical compliance, and eco-friendly, cost-effective processability, hold great promise as flexible conductors in human-machine interfaces, wearable bioelectronics, and emerging technologies. However, their intrinsic fluidity compromises device stability, while high surface tension and low viscosity present significant challenges for high-resolution patterning and scalable manufacturability. In this study, we develop a eutectic gallium indium-silver nanoparticles (EGaIn-AgNPs) biphasic conductive ink and employ electrohydrodynamic printing to achieve precise, high-resolution patterning of the EGaIn-AgNPs biphasic structure (~5 μm). This approach strategically embeds a solid phase within the LM matrix, effectively suppressing its inherent fluidity and substantially augmenting its mechanical stability and structural robustness. By leveraging the versatility and precision of electrohydrodynamic printing, we successfully fabricate lightweight, highly resolved conductive patterns that can conform seamlessly to complex and dynamic surfaces, such as human skin and plant leaves. This advancement addresses key challenges in LM-based flexible electronics, unlocking transformative opportunities in wearable electronics, implantable devices, next-generation consumer electronics, and smart agricultural systems.

Keywords

Electrohydrodynamic printing / liquid metal / conductive ink / flexible electronics / electrophysiological monitoring

Cite this article

Download citation ▾
Jingxuan Ma, Jiayun Feng, Zicheng Sa, Fanzhou Meng, Zhao Feng, Qing Sun, Yuxin Sun, Jiayue Wen, Shang Wang, Yanhong Tian. High-precision electrohydrodynamic printing of EGaIn-AgNPs biphasic conductive ink for conformal and lightweight bioelectrodes. Soft Science, 2025, 5(4): 50 DOI:10.20517/ss.2025.41

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhu M,Luo Y.A mechanically interlocking strategy based on conductive microbridges for stretchable electronics.Adv Mater2022;34:e2101339

[2]

Liu Y,O’Connor B,Zhu Y.Curvilinear soft electronics by micromolding of metal nanowires in capillaries.Sci Adv2022;8:eadd6996 PMCID:PMC9674275

[3]

Yoon H,Kim J.Adaptive epidermal bioelectronics by highly breathable and stretchable metal nanowire bioelectrodes on electrospun nanofiber membrane.Adv Funct Mater2024;34:2313504

[4]

Xiong W,Qu S,Li K.Marangoni-driven deterministic formation of softer, hollow microstructures for sensitivity-enhanced tactile system.Nat Commun2024;15:5596 PMCID:PMC11222500

[5]

Heng W,Gao W.Flexible electronics and devices as human-machine interfaces for medical robotics.Adv Mater2022;34:e2107902 PMCID:PMC9035141

[6]

Choi Y,Son D.Molecular rationale for the design of instantaneous, strain-tolerant polymeric adhesive in a stretchable underwater human-machine interface.ACS Nano2022;16:1368-80

[7]

Rahman MT,Kumar H,Kim S.Metal-organic framework reinforced highly stretchable and durable conductive hydrogel-based triboelectric nanogenerator for biomotion sensing and wearable human‐machine interfaces.Adv Funct Mater2023;33:2303471

[8]

Lu Y,Wang S.Stretchable graphene-hydrogel interfaces for wearable and implantable bioelectronics.Nat Electron2024;7:51-65

[9]

Ershad F,Yu C.Wearable bioelectronics fabricated in situ on skins.Npj Flex Electron2023;7:32 PMCID:PMC11041641

[10]

Bai Y,Wu X.Flexible strain sensors with ultra-high sensitivity and wide range enabled by crack-modulated electrical pathways.Nanomicro Lett2024;17:64 PMCID:PMC11570575

[11]

Shin G,Jeon B,Song S.Soft electromagnetic artificial muscles using high-density liquid-metal solenoid coils and bistable stretchable magnetic housings.Adv Funct Mater2024;34:2302895

[12]

Ma S,Valenzuela C.Highly stretchable and conductive MXene-encapsulated liquid metal hydrogels for bioinspired self-sensing soft actuators.Adv Funct Mater2024;34:2309899

[13]

Ren Z,Song S.Soft-robotic ciliated epidermis for reconfigurable coordinated fluid manipulation.Sci Adv2022;8:eabq2345 PMCID:PMC9417179

[14]

Chen S,Zhao R,Liu J.Liquid metal composites.Matter2020;2:1446-80

[15]

Markvicka EJ,Huang X.An autonomously electrically self-healing liquid metal-elastomer composite for robust soft-matter robotics and electronics.Nat Mater2018;17:618-24

[16]

Pan C,Malakooti MH.A liquid-metal-elastomer nanocomposite for stretchable dielectric materials.Adv Mater2019;31:e1900663

[17]

Zang W,Wu W.Superstretchable liquid-metal electrodes for dielectric elastomer transducers and flexible circuits.ACS Nano2024;18:1226-36

[18]

Tavakoli M,Paisana H.EGaIn-assisted room-temperature sintering of silver nanoparticles for stretchable, inkjet-printed, thin-film electronics.Adv Mater2018;Epub ahead of print:

[19]

Carneiro M, Majidi C, Tavakoli M. Multi-electrode printed bioelectronic patches for long‐term electrophysiological monitoring.Adv Funct Mater2022;32:2205956

[20]

Lopes PA,de Almeida AT.Reversible polymer-gel transition for ultra-stretchable chip-integrated circuits through self-soldering and self-coating and self-healing.Nat Commun2021;12:4666 PMCID:PMC8333313

[21]

Guo R,Wu Z.Thermal transfer-enabled rapid printing of liquid metal circuits on multiple substrates.ACS Appl Mater Interfaces2022;14:37028-38

[22]

Wu Y,Peng Z.A novel strategy for preparing stretchable and reliable biphasic liquid metal.Adv Funct Mater2019;29:1903840

[23]

Guo R,Yuan B,Liu J.Magnetic liquid metal (Fe-EGaIn) based multifunctional electronics for remote self-healing materials, degradable electronics, and thermal transfer printing.Adv Sci2019;6:1901478 PMCID:PMC6794621

[24]

Ku HH,Huang CW.Remote control: electrochemically driving EGaIn@Fe liquid metal for application of soft robotics.Small2024;20:e2405279

[25]

Guan M,Bao Z,Zou S.Gold nanoparticles incorporated liquid metal for wearable sensors and wound healing.Chem Eng J2025;508:161120

[26]

Carneiro M, Majidi C, Tavakoli M. Gallium-based liquid-solid biphasic conductors for soft electronics.Adv Funct Mater2023;33:2306453

[27]

Hajalilou A,Morgado TA.Replacing the gallium oxide shell with conductive Ag: toward a printable and recyclable composite for highly stretchable electronics, electromagnetic shielding, and thermal interfaces.ACS Appl Mater Interfaces2024;16:61157-68

[28]

Ma J,Vong MH,Awartani OM.Shaping a soft future: patterning liquid metals.Adv Mater2023;35:e2205196

[29]

Zhu J,Tong Y.Recent progress in multifunctional, reconfigurable, integrated liquid metal-based stretchable sensors and standalone systems.Prog Mater Sci2024;142:101228 PMCID:PMC11090487

[30]

Kim M,Ko SH.Liquid metal patterning and unique properties for next-generation soft electronics.Adv Sci2023;10:e2205795 PMCID:PMC9951389

[31]

Tang SY,Sivan V.Liquid metal enabled pump.Proc Natl Acad Sci U S A2014;111:3304-9 PMCID:PMC3948272

[32]

Lin Z,Cai Z.High internal phase emulsions gel ink for direct-ink-writing 3D printing of liquid metal.Nat Commun2024;15:4806 PMCID:PMC11153652

[33]

Wang M,Uzabakiriho PC.Stencil printing of liquid metal upon electrospun nanofibers enables high-performance flexible electronics.ACS Nano2021;15:19364-76

[34]

Lin Y,Khan MR,Genzer J.Vacuum filling of complex microchannels with liquid metal.Lab Chip2017;17:3043-50

[35]

Yalcintas EP,Cetinkaya T,Majidi C.Soft electronics manufacturing using microcontact printing.Adv Funct Mater2019;29:1906551

[36]

Frey EJ,Bachmann AL,Dickey MD.Patterning of a high surface area liquid metal-carbon composite film using laser processing.Adv Funct Mater2024;34:2308574

[37]

Lu T,Jin Y.Soft-matter printed circuit board with UV laser micropatterning.ACS Appl Mater Interfaces2017;9:22055-62

[38]

Kim JH,Kim H.Imbibition-induced selective wetting of liquid metal.Nat Commun2022;13:4763 PMCID:PMC9376080

[39]

Zhu H,Zhang M,Hu G.Fully solution processed liquid metal features as highly conductive and ultrastretchable conductors.npj Flex Electron2021;5:123

[40]

Shi G,Zeng J.A liquid metal microdroplets initialized hemicellulose composite for 3D printing anode host in Zn-Ion battery.Adv Mater2023;35:e2300109

[41]

Yang Y,Zheng Y,Si C.Lignin-based vitrimer for high-resolution and full-component rapidly recycled liquid metal printed circuit.Adv Funct Mater2025;35:2425780

[42]

Lin Y,Dickey MD.Attributes, fabrication, and applications of gallium-based liquid metal particles.Adv Sci2020;7:2000192 PMCID:PMC7312306

[43]

Scharmann F,Breternitz V.Viscosity effect on GaInSn studied by XPS.Surf Interface Anal2004;36:981-5

[44]

Ren L,Casillas G.Nanodroplets for stretchable superconducting circuits.Adv Funct Mater2016;26:8111-8

[45]

Dong R,Hang C.Printed stretchable liquid metal electrode arrays for in vivo neural recording.Small2021;17:e2006612

[46]

Tang L,Zhang L.Printable metal-polymer conductors for highly stretchable bio-devices.iScience2018;4:302-11 PMCID:PMC6146547

[47]

Mohammed MG.All-printed flexible and stretchable electronics.Adv Mater2017;19:1604965

[48]

Liu J,Rao Z,Yin Z.High-performance, micrometer thick/conformal, transparent metal-network electrodes for flexible and curved electronic devices.Adv Mater Technol2018;3:1800155

[49]

Wen J,Hao C.Fabrication of high performance printed flexible conductors by doping of polyaniline nanomaterials into silver paste.J Mater Chem C2019;7:1188-97

[50]

Li D,Zhang YZ.Printable transparent conductive films for flexible electronics.Adv Mater2018;30:1704738

[51]

Wang S,Sun Q.Flexible electronic systems via electrohydrodynamic Jet printing: a MnSe@rGO cathode for aqueous zinc-ion batteries.ACS Nano2023;17:13256-68

[52]

Zeng G,Horta S.A layered Bi2Te3 @PPy cathode for aqueous zinc-ion batteries: mechanism and application in printed flexible batteries.Adv Mater2024;36:2470004

[53]

Delenne J,El Youssoufi MS.From liquid to solid bonding in cohesive granular media.Mech Mater2011;43:529-37

[54]

Lee GH,Yoon C.A personalized electronic tattoo for healthcare realized by on-the-spot assembly of an intrinsically conductive and durable liquid-metal composite.Adv Mater2022;34:e2204159

[55]

Chen W,Zhong W.Directly printable and adhesive liquid metal ink for wearable devices.Adv Funct Mater2025;35:2411647

[56]

Qiu Y,Zou Z.Deep-learning-assisted printed liquid metal sensory system for wearable applications and boxing training.npj Flex Electron2023;7:272

[57]

Zhao R,Xu X.A fast and cost-effective transfer printing of liquid metal inks for three-dimensional wiring in flexible electronics.ACS Appl Mater Interfaces2020;12:36723-30

[58]

Kim MS,Choi J.Stretchable printed circuit board based on leak-free liquid metal interconnection and local strain control.ACS Appl Mater Interfaces2022;14:1826-37

[59]

Guo R,Zhao X.Cu-EGaIn enabled stretchable e-skin for interactive electronics and CT assistant localization.Mater Horiz2020;7:1845-53

[60]

Lopes PA,Silva AF.Bi-Phasic Ag-In-Ga-embedded elastomer inks for digitally printed, ultra-stretchable, multi-layer electronics.ACS Appl Mater Interfaces2021;13:14552-61

[61]

Carneiro M, de Almeida AT, Tavakoli M, Majidi C. Recyclable thin-film soft electronics for smart packaging and E-skins.Adv Sci2023;10:e2301673 PMCID:PMC10502858

[62]

Siegenthaler KO,Skupin G.Ecoflex® and Ecovio®: biodegradable, performance-enabling plastics. In: Rieger, B.; Künkel, A.; Coates, G.W.; Reichardt, R.; Dinjus, E.; Zevaco, T.A.; Eds.; Synthetic biodegradable polymers. Berlin: Springer Berlin Heidelberg, 2012; pp 91-136.

AI Summary AI Mindmap
PDF

351

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/