Helical ionotropic gel-fiber sensor with omnidirectional strain perception for multidimensional motion correction in adolescent activity assessment
Jiaxin Xing , Xinwei Yi , Yuqing Qu , Chenguang Yang , Wenwen Wang , Kun Yan , Dong Wang
Soft Science ›› 2025, Vol. 5 ›› Issue (3) : 37
Helical ionotropic gel-fiber sensor with omnidirectional strain perception for multidimensional motion correction in adolescent activity assessment
Conductive ultra-soft hydrogel-based wearable sensors, despite featuring multifunctional adaptability, still face inherent mechanical weaknesses and inadequate directional stress discernment. To address this challenge, we herein rationally designed a helical twisted alginate/agar/carbon nanotube triple-network composite gel fiber through a low-temperature-assisted wet-spinning technique coupled with cation crosslinking. The resulting gel fibers exhibit exceptional mechanoelectrical synergy, achieving conductivity up to 3.8 S/m while sustaining thousandfold self-weight loads via synergistic polymer entanglement and coordination interactions. The implemented helical architecture demonstrates enhanced strain responsivity (56%-130%, gauge factor), rapid response kinetics (< 0.5 s), and rate-agnostic stability in twisted fibers, enabling 360° spatiotemporal perception through three orthogonally coupled mechanisms: torsion-activated interfacial contact expansion, spiral topology-optimized charge transfer, and stress-dissipative dynamic microcavity formation based on the one-dimensional intrinsic uniaxial deformation amplification of gel fibers under multi-directional stresses. Practical validations include four-phase table tennis swing biomechanics analysis, proof-of-concept for handwriting training and motion correction systems, and motion-encoded encrypted communications, establishing a fundamental mechanistic framework for directional angle sensing with applications in assessment of adolescents’ daily activities. Ultimately, this breakthrough stems from the harmonization of helix-driven anisotropic sensitivity and triple-network viscoelastic dissipation, effectively resolving the longstanding compromise between directional acuity and mechanical durability in hydrogel-based sensors.
Conductive hydrogel fiber / triple network / twisted structure / directional spatial awareness / wearable sensor
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
/
| 〈 |
|
〉 |