4D-printed soft microrobots: manufacturing, materials, actuation and applications

Zhongguo Ren , Xinjian Fan , Hui Xie , Mengmeng Sun

Soft Science ›› 2026, Vol. 6 ›› Issue (1) : 6

PDF
Soft Science ›› 2026, Vol. 6 ›› Issue (1) :6 DOI: 10.20517/ss.2025.110
Review Article

4D-printed soft microrobots: manufacturing, materials, actuation and applications

Author information +
History +
PDF

Abstract

Four-dimensional (4D) printing couples additive manufacturing with stimuli-responsive materials to create soft microrobots that can be programmed to change their shape, properties, and functions in response to external cues. This review synthesizes the core blueprint for 4D-printed soft microrobots, encompassing printing technologies, smart materials, and stimulus modalities. It explores how these elements collectively design locomotion, manipulation, and sensing at the microscale, and investigates application frontiers including targeted drug delivery, tissue engineering, stents, sensing, and other applications. Despite rapid progress, key obstacles remain, such as resolution-throughput-multimaterial trade-offs, interlayer adhesion, long-term fidelity, limited force density, biocompatibility, near-body-temperature triggers, and closed-loop imaging and navigation. Our conclusion is that 4D printing provides a unifying platform for adaptive, reconfigurable soft microrobots, and coordinated advances in materials, manufacturing, modeling, and regulation are essential for unlocking reliable clinical and industry-relevant systems.

Keywords

4D printing / soft microrobots / fabrication strategies / intelligent materials / stimuli / applications

Cite this article

Download citation ▾
Zhongguo Ren, Xinjian Fan, Hui Xie, Mengmeng Sun. 4D-printed soft microrobots: manufacturing, materials, actuation and applications. Soft Science, 2026, 6(1): 6 DOI:10.20517/ss.2025.110

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gokhare VG,Shinde DK.A review paper on 3D-printing aspects and various processes used in the 3D-printing.Int J Eng Res Technol2017;6:953-58https://www.ijert.org/research/a-review-paper-on-3d-printing-aspects-and-various-processes-used-in-the-3d-printing-IJERTV6IS060409.pdf. (accessed 13 Jan 2026)

[2]

Dabbagh SR,Birtek MT,Sitti M.3D-printed microrobots from design to translation.Nat Commun2022;13:5875 PMCID:PMC9534872

[3]

Rafiee M,Therriault D.Multi-material 3D and 4D printing: a survey.Adv Sci2020;7:1902307 PMCID:PMC7312457

[4]

Bliah O,Tan JMR.Fabrication of soft robotics by additive manufacturing: from materials to applications.Chem Rev2025;125:7275-320 PMCID:PMC12395417

[5]

Liu H,Lin S,Xi N.Advances in 3D and 4D printing of soft robotics and their applications.Adv Intell Syst2025;7:2400699

[6]

Kim J,Song SJ.Advanced materials for micro/nanorobotics.Chem Soc Rev2024;53:9190-253

[7]

Mitchell A,Hołyńska M.Additive manufacturing - a review of 4D printing and future applications.Addit Manuf2018;24:606-26

[8]

Choi J,Jo W,Moon M.4D printing technology: a review.3D Print Addit Manuf2015;2:159-67

[9]

Kuang X,Wu J.Advances in 4D printing: materials and applications.Adv Funct Mater2019;29:1805290

[10]

Momeni F,Liu X.A review of 4D printing.Mater Design2017;122:42-79

[11]

Gladman AS,Nuzzo RG,Lewis JA.Biomimetic 4D printing.Nat Mater2016;15:413-8

[12]

Tibbits S.4D printing: multi-material shape change.Archit Des2014;84:116-21

[13]

Shi X,Cheng L.Multilayer self-sensing hydrogel soft robot prepared via stereolithography for on-demand drug delivery.Chem Eng J2025;519:164352

[14]

Abolhassani S,Safshekan F,Hasanzadeh E.Advances in 4D bioprinting: the next frontier in regenerative medicine and tissue engineering applications.Adv Healthc Mater2025;14:e2403065

[15]

Ni C,Yin Y.Shape memory polymer with programmable recovery onset.Nature2023;622:748-53

[16]

Li F,Wan X,Zhang SL.A self-powered soft triboelectric-electrohydrodynamic pump.Nat Commun2025;16:1315 PMCID:PMC11790962

[17]

Ding Z,Qi HJ.4D rods: 3D structures via programmable 1D composite rods.Mater Design2018;137:256-65

[18]

Wan X,Tian Y.Recent advances in 4D printing of advanced materials and structures for functional applications.Adv Mater2024;36:e2312263

[19]

Apsite I,Ionov L.Materials for smart soft actuator systems.Chem Rev2022;122:1349-415

[20]

Ge F.Microstructured actuation of liquid crystal polymer networks.Adv Funct Mater2020;30:1901890

[21]

Xiao Y,Zhao Y.Liquid crystal polymer-based soft robots.Adv Intell Syst2020;2:2000148

[22]

Ge Q,Lee H,Fang NX.Multimaterial 4D printing with tailorable shape memory polymers.Sci Rep2016;6:31110 PMCID:PMC4976324

[23]

Chung H,Zheng L.Magnetically controlled soft robotics utilizing elastomers and gels in actuation: a review.Adv Intell Syst2021;3:2000186

[24]

Sol JAHP,Schenning APHJ.Direct ink writing of 4D structural colors.Adv Funct Mater2022;32:2201766

[25]

Lalegani Dezaki, M.; Bodaghi, M.; Serjouei, A.; Afazov, S.; Zolfagharian, A. Soft pneumatic actuators with controllable stiffness by bio-inspired lattice chambers and fused deposition modeling 3D printing.Adv Eng Mater2023;25:2200797

[26]

Paunović N,Krivitsky A,Bao Y.4D printing of biodegradable elastomers with tailorable thermal response at physiological temperature.J Control Release2023;361:417-26

[27]

Chaudhary R,Leoni E,Akbari R.Additive manufacturing by digital light processing: a review.Prog Addit Manuf2023;8:331-51

[28]

Ren Z,Liang K.Femtosecond laser writing of ant-inspired reconfigurable microbot collectives.Nat Commun2024;15:7253 PMCID:PMC11343760

[29]

Sartori P,Del Barrio J,Sánchez-Somolinos C.Photochemically induced propulsion of a 4D printed liquid crystal elastomer biomimetic swimmer.Adv Sci2024;11:e2308561 PMCID:PMC11220691

[30]

Li Y,Lu Y.Thermal gradient-driven heterogeneous actuation of liquid crystal elastomers for a crawling robot.ACS Appl Mater Interfaces2025;17:9992-10003

[31]

Zhang S,Li Z.3D-printed soft magnetoactive origami actuators.Adv Funct Mater2025;35:e16404

[32]

Xia Y,Guo J,Leng J.Multifunctional untethered soft machines driven by 4D printed electrically responsive actuators.ACS Appl Mater Interfaces2025;17:36059-68

[33]

Xiao Y,Ma L.An acoustically actuated hydrogel shape-morphing micromachine.Sens Actuators B Chem2026;446:138720

[34]

Cao ZY,Wang W.Bioinspired microhinged actuators for active mechanism-based metamaterials.Adv Sci2025;12:e2407231 PMCID:PMC11727244

[35]

Wang X,Hu C.3D printed enzymatically biodegradable soft helical microswimmers.Adv Funct Mater2018;28:1804107

[36]

TirgarBahnamiri P.Biodegradable microrobots for targeting cell delivery.Med Hypotheses2017;102:56-60

[37]

Ye M,Zhao H,Nelson BJ.A review of soft microrobots: material, fabrication, and actuation.Adv Intell Syst2023;5:2300311

[38]

Soreni-Harari M,McCue C,Bergbreiter S.Multimaterial 3D printing for microrobotic mechanisms.Soft Robot2020;7:59-67

[39]

Darmawan BA,Nguyen VD.Self-folded microrobot for active drug delivery and rapid ultrasound-triggered drug release.Sens Actuators B Chem2020;324:128752

[40]

Tyagi M,Jager EWH.Novel fabrication of soft microactuators with morphological computing using soft lithography.Microsyst Nanoeng2019;5:44 PMCID:PMC6799821

[41]

Nocentini S,Martella D.Optically driven soft micro robotics.Adv Opt Mater2018;6:1800207

[42]

Yarali E,Ghalayaniesfahani A,Diaz-Payno PJ.4D printing for biomedical applications.Adv Mater2024;36:e2402301

[43]

Soleimanzadeh H,Bodaghi M,Zhang X.Sustainable robots 4D printing.Adv Sustain Syst2023;7:2300289

[44]

Ding A,Alsberg E.4D printing: a comprehensive review of technologies, materials, stimuli, design, and emerging applications.Chem Rev2025;125:3663-771

[45]

Cesarano J.A review of robocasting technology.MRS Proc1998;542:133-9

[46]

Ashwin A.State of the art direct ink writing (DIW) and experimental trial on DIW of HAp bio-ceramics.Mater Today Proc2021;46:1298-307

[47]

Rocha VG,Tirichenko IS.Direct ink writing advances in multi-material structures for a sustainable future.J Mater Chem A2020;8:15646-57

[48]

Wei H,Yao Y,Liu Y.Direct-write fabrication of 4D active shape-changing structures based on a shape memory polymer and its nanocomposite.ACS Appl Mater Interfaces2017;9:876-83

[49]

Cheng Y,Wang XQ.Direct-ink-write 3D printing of hydrogels into biomimetic soft robots.ACS Nano2019;13:13176-84

[50]

Zhang P,Chen G.Integrated 3D printing of flexible electroluminescent devices and soft robots.Nat Commun2022;13:4775 PMCID:PMC9399151

[51]

Sathies T,Anoop MS.A review on advancements in applications of fused deposition modelling process.Rapid Prototyp J2020;26:669-87

[52]

Liu Y,Zhang F.Shape memory behavior and recovery force of 4D printed laminated Miura-origami structures subjected to compressive loading.Compos Part B Eng2018;153:233-42

[53]

Bodaghi M,Liao W.Adaptive metamaterials by functionally graded 4D printing.Mater Design2017;135:26-36

[54]

Rajkumar AR.Additive manufacturing-enabled shape transformations via FFF 4D printing.J Mater Res2018;33:4362-76

[55]

Hu GF,Bodaghi M.Increasing dimension of structures by 4D printing shape memory polymers via fused deposition modeling.Smart Mater Struct2017;26:125023

[56]

Kačergis L,Sinapius M.Influence of fused deposition modeling process parameters on the transformation of 4D printed morphing structures.Smart Mater Struct2019;28:105042

[57]

Yamamura S.Hybrid hinge structure with elastic hinge on self-folding of 4D printing using a fused deposition modeling 3D printer.Mater Design2021;203:109605

[58]

Wang F,Huang Y,Yuan C.4D printing via multispeed fused deposition modeling.Adv Mater Technol2023;8:2201383

[59]

Daminabo S,Grammatikos S,Thakur V.Fused deposition modeling-based additive manufacturing (3D printing): techniques for polymer material systems.Mater Today Chem2020;16:100248

[60]

Soleimanzadeh H,Jamalabadi M,Zolfagharian A.Rotary 4D printing of programmable metamaterials on sustainable 4D mandrel.Adv Mater Technol2026;11:e01581

[61]

Mohammadi M,Bodaghi M,Zolfagharian A.3D-printed phase-change artificial muscles with autonomous vibration control.Adv Mater Technol2023;8:2300199

[62]

Zakeri S,Levänen E.A comprehensive review of the photopolymerization of ceramic resins used in stereolithography.Addit Manuf2020;35:101177

[63]

Crivello JV.Photopolymer materials and processes for advanced technologies.Chem Mater2014;26:533-48

[64]

Melchels FP,Grijpma DW.A review on stereolithography and its applications in biomedical engineering.Biomaterials2010;31:6121-30

[65]

Zhao T,Li X.4D printing of shape memory polyurethane via stereolithography.Eur Polym J2018;101:120-6

[66]

Shan W,Hu M,Liu P.4D printing of shape memory polymer via liquid crystal display (LCD) stereolithographic 3D printing.Mater Res Express2020;7:105305

[67]

Piedra-Cascón W,Att W.3D printing parameters, supporting structures, slicing, and post-processing procedures of vat-polymerization additive manufacturing technologies: a narrative review.J Dent2021;109:103630

[68]

Ligon SC,Stampfl J,Mülhaupt R.Polymers for 3D printing and customized additive manufacturing.Chem Rev2017;117:10212-90 PMCID:PMC5553103

[69]

Zhu W,Leong YJ.3D-printed artificial microfish.Adv Mater2015;27:4411-7 PMCID:PMC4695322

[70]

Carlotti M.Functional materials for two-photon polymerization in microfabrication.Small2019;15:e1902687

[71]

Fischer J.Three-dimensional optical laser lithography beyond the diffraction limit.Laser Photonics Rev2013;7:22-44

[72]

Lemma ED,De Vittorio M.Studying cell mechanobiology in 3D: the two-photon lithography approach.Trends Biotechnol2019;37:358-72

[73]

Hu Y,Jin D.Botanical-inspired 4D printing of hydrogel at the microscale.Adv Funct Mater2020;30:1907377

[74]

Guo Y,Hu W,Sitti M.Shape-programmable liquid crystal elastomer structures with arbitrary three-dimensional director fields and geometries.Nat Commun2021;12:5936 PMCID:PMC8511085

[75]

Zhang W,Wang H.Structural multi-colour invisible inks with submicron 4D printing of shape memory polymers.Nat Commun2021;12:112 PMCID:PMC7782480

[76]

Maibohm C,Borme J,Heggarty K.Multi-beam two-photon polymerization for fast large area 3D periodic structure fabrication for bioapplications.Sci Rep2020;10:8740 PMCID:PMC7250934

[77]

Liu X,Chen J.Recent advances in stimuli-responsive shape-morphing hydrogels.Adv Funct Mater2022;32:2203323

[78]

Shahsavan H,Jákli A.Smart biomimetic micro/nanostructures based on liquid crystal elastomers and networks.Soft Matter2017;13:8006-22

[79]

Hussain M,Mandle RJ,Hine PJ.Liquid crystal elastomers for biological applications.Nanomaterials2021;11:813 PMCID:PMC8005174

[80]

Petsch S,Khatri B.Smart artificial muscle actuators: liquid crystal elastomers with integrated temperature feedback.Sens Actuators A Phys2015;231:44-51

[81]

Jiang H,Dunn ML.4D printing of liquid crystal elastomer composites with continuous fiber reinforcement.Nat Commun2024;15:8491 PMCID:PMC11445243

[82]

Zhou X,Jin B.Multimodal autonomous locomotion of liquid crystal elastomer soft robot.Adv Sci2024;11:e2402358 PMCID:PMC11187929

[83]

Kotikian A,Bordiga G.Liquid crystal elastomer lattices with thermally programmable deformation via multi-material 3D printing.Adv Mater2024;36:e2310743

[84]

López-Díaz A,Vázquez E.Hydrogels in soft robotics: past, present, and future.ACS Nano2024;18:20817-26 PMCID:PMC11328171

[85]

Saroia J,Wei Q,Lu T.A review on biocompatibility nature of hydrogels with 3D printing techniques, tissue engineering application and its future prospective.Bio Des Manuf2018;1:265-79

[86]

Wang R,Cheng J.Direct 4D printing of ceramics driven by hydrogel dehydration.Nat Commun2024;15:758 PMCID:PMC10810896

[87]

Zhang M,Zheng Z,Yildiz E.Hydrogel muscles powering reconfigurable micro-metastructures with wide-spectrum programmability.Nat Mater2023;22:1243-52 PMCID:PMC10533409

[88]

Huang TY,Jin DD.Four-dimensional micro-building blocks.Sci Adv2020;6:eaav8219 PMCID:PMC6968937

[89]

Ma ZC,Han B.Femtosecond laser programmed artificial musculoskeletal systems.Nat Commun2020;11:4536 PMCID:PMC7484797

[90]

Huang W,Wang C,Zhao Y.Shape memory materials.Mater Today2010;13:54-61

[91]

Rousseau IA.Challenges of shape memory polymers: a review of the progress toward overcoming SMP’s limitations.Polym Eng Sci2008;48:2075-89

[92]

Rokaya D,Srimaneepong V.Shape memory polymeric materials for biomedical applications: an update.J Compos Sci2023;7:24

[93]

Kong Q,Zhang H.Mimosa-inspired body temperature-responsive shape memory polymer networks: high energy densities and multi-recyclability.Adv Sci2024;11:e2407596 PMCID:PMC11497007

[94]

Li H,Ye H.Reconfigurable 4D printing via mechanically robust covalent adaptable network shape memory polymer.Sci Adv2024;10:eadl4387 PMCID:PMC11095468

[95]

Feng S,Cui J.Photo switchable 4D printing remotely controlled responsive and mimetic deformation shape memory polymer nanocomposites.Adv Funct Mater2024;34:2401431

[96]

Ze Q,Wu S.Magnetic shape memory polymers with integrated multifunctional shape manipulation.Adv Mater2020;32:e1906657

[97]

Zolfagharian A,Kouzani AZ.Silicon-based soft parallel robots 4D printing and multiphysics analysis.Smart Mater Struct2022;31:115030

[98]

Zolfagharian A,Kouzani A.Closed-loop 4D-printed soft robots.Mater Design2020;188:108411

[99]

Kim Y.Magnetic soft materials and robots.Chem Rev2022;122:5317-64 PMCID:PMC9211764

[100]

Deng H,Xie Y,Yan Z.Laser reprogramming magnetic anisotropy in soft composites for reconfigurable 3D shaping.Nat Commun2020;11:6325 PMCID:PMC7730436

[101]

Zhang Y,Liu P.Coaxially printed magnetic mechanical electrical hybrid structures with actuation and sensing functionalities.Nat Commun2023;14:4428 PMCID:PMC10363174

[102]

Kim Y,Zhao R,Zhao X.Printing ferromagnetic domains for untethered fast-transforming soft materials.Nature2018;558:274-9

[103]

Akman R,Moore S,Hollister SJ.Manufacture dependent differential biodegradation of 3D printed shape memory polymers.Virtual Phys Prototyp2024;19:e2371504 PMCID:PMC11308866

[104]

Huang R.The effect of swelling/deswelling cycles on the mechanical behaviors of the polyacrylamide hydrogels.Polymer2024;312:127634

[105]

Lin S,Liu J.Anti-fatigue-fracture hydrogels.Sci Adv2019;5:eaau8528 PMCID:PMC6357728

[106]

Ng WL,Chua CK.Process, material, and regulatory considerations for 3D Printed medical devices and tissue constructs.Engineering2024;36:146-66

[107]

Song X,Wang R.Puffball-inspired microrobotic systems with robust payload, strong protection, and targeted locomotion for on-demand drug delivery.Adv Mater2022;34:e2204791 PMCID:PMC11475404

[108]

Zhang M,Deng C.Light-driven lattice soft microrobot with multimodal locomotion.Nat Commun2025;16:8059 PMCID:PMC12394689

[109]

Li D,Yang Y,Shen Y.Micro-rocket robot with all-optic actuating and tracking in blood.Light Sci Appl2020;9:84 PMCID:PMC7214411

[110]

Huang Y,Su C,Chen N.Light-responsive soft actuators: mechanism, materials, fabrication, and applications.Actuators2021;10:298

[111]

Chen M,An R,Zhou K.4D printing of reprogrammable liquid crystal elastomers with synergistic photochromism and photoactuation.Adv Mater2024;36:e2303969

[112]

Lugger SJD,Mulder DJ,Schenning APHJ.4D printing of supramolecular liquid crystal elastomer actuators fueled by light.Adv Mater Technol2023;8:2201472

[113]

Wu S,Zhu Y.Thermally actuated soft robotics.Adv Mater2025;37:e04683 PMCID:PMC12531750

[114]

He Q,Wang Y,Cai S.Recyclable and self-repairable fluid-driven liquid crystal elastomer actuator.ACS Appl Mater Interfaces2020;12:35464-74

[115]

Aksoy B.Multistable shape programming of variable-stiffness electromagnetic devices.Sci Adv2022;8:eabk0543 PMCID:PMC9140967

[116]

Ren L,Wang B.4D printed self-sustained soft crawling machines fueled by constant thermal field.Adv Funct Mater2024;34:2400161

[117]

Wu S,Zhao Y,Zhu Y.Caterpillar-inspired soft crawling robot with distributed programmable thermal actuation.Sci Adv2023;9:eadf8014 PMCID:PMC10032605

[118]

Zhao Y,Li Y.Physically intelligent autonomous soft robotic maze escaper.Sci Adv2023;9:eadi3254 PMCID:PMC10491293

[119]

Li M,Aghakhani A,Sitti M.Soft actuators for real-world applications.Nat Rev Mater2022;7:235-49 PMCID:PMC7612659

[120]

Subeshan B,Asmatulu E.Current progress of 4D-printing technology.Prog Addit Manuf2021;6:495-516

[121]

Zhou H,Pané S,Pumera M.Magnetically driven micro and nanorobots.Chem Rev2021;121:4999-5041 PMCID:PMC8154323

[122]

Romeis D.Effective magnetic susceptibility in magnetoactive composites.J Magn Magn Mater2023;565:170197

[123]

Nadzharyan TA,Kramarenko EY.Theoretical modeling of magnetoactive elastomers on different scales: a state-of-the-art review.Polymers2022;14:4096 PMCID:PMC9572082

[124]

Chung G,Kim JH,Seol SK.Bioinspired, rapidly responsive magnetically tunable stiffness metamaterials.Adv Mater2025;37:e2505880 PMCID:PMC12392855

[125]

Wu S,Zhang Y.High-load shape memory microgripper with embedded resistive heating and magnetic actuation.Adv Funct Mater2025;35:2421798

[126]

Li Z,Dong L.A review of microrobot’s system: towards system integration for autonomous actuation in vivo.Micromachines2021;12:1249 PMCID:PMC8540518

[127]

Han D,Yang C.Soft robotic manipulation and locomotion with a 3D printed electroactive hydrogel.ACS Appl Mater Interfaces2018;10:17512-8

[128]

Wang N,Liu T,Gu M.4D printing of electrically activated reversible deformation composite actuators.Adv Mater Technol2025;10:2401345

[129]

Morales Ferrer, J. M.; Sánchez Cruz, R. E.; Caplan, S.; van Rees, W. M.; Boley, J. W. Multiscale heterogeneous polymer composites for high stiffness 4D printed electrically controllable multifunctional structures.Adv Mater2024;36:e2307858

[130]

Zhang Z,Ahmed D.SonoTransformers: transformable acoustically activated wireless microscale machines.Proc Natl Acad Sci U S A2024;121:e2314661121 PMCID:PMC10861920

[131]

Nwokonkwo O,Ibekwe S.Numerical study of the heating effects of high intensity focused ultrasound on shape memory polymer fiber reinforced self-healing polymer composite.Smart Mater Struct2021;30:085026

[132]

Hao B,Dong Y.Focused ultrasound enables selective actuation and Newton-level force output of untethered soft robots.Nat Commun2024;15:5197 PMCID:PMC11189400

[133]

Koetting MC,Steichen SD.Stimulus-responsive hydrogels: theory, modern advances, and applications.Mater Sci Eng R Rep2015;93:1-49 PMCID:PMC4847551

[134]

Hippler M,Richler K.Mechanical stimulation of single cells by reversible host-guest interactions in 3D microscaffolds.Sci Adv2020;6:eabc2648 PMCID:PMC7531888

[135]

Cecchini L,Ronzan M,Pugno NM.4D printing of humidity-driven seed inspired soft robots.Adv Sci2023;10:e2205146 PMCID:PMC10037692

[136]

Xin C,Hu Y.Environmentally adaptive shape-morphing microrobots for localized cancer cell treatment.ACS Nano2021;15:18048-59

[137]

Hu X,Wang X,Tung S.Multifunctional thermo-magnetically actuated hybrid soft millirobot based on 4D printing.Compos Part B Eng2022;228:109451

[138]

Liu G,Chen X.Additive manufacturing of structural materials.Mater Sci Eng R Rep2021;145:100596

[139]

Gazzaniga A,Cerea M.Towards 4D printing in pharmaceutics.Int J Pharm X2023;5:100171 PMCID:PMC9982600

[140]

Bellinger AM,Grant TM.Oral, ultra-long-lasting drug delivery: application toward malaria elimination goals.Sci Transl Med2016;8:365ra157 PMCID:PMC5264553

[141]

Ghosh A,Xu L.Gastrointestinal-resident, shape-changing microdevices extend drug release in vivo.Sci Adv2020;6:eabb4133 PMCID:PMC7608789

[142]

Khademhosseini A.A decade of progress in tissue engineering.Nat Protoc2016;11:1775-81

[143]

Kalashnikov N.Morphodynamic tissues via integrated programmable shape memory actuators.Adv Funct Mater2019;29:1903327

[144]

Roy A,Eiken MK,Pena-Francesch A.Programmable tissue folding patterns in structured hydrogels.Adv Mater2024;36:e2300017 PMCID:PMC10518030

[145]

Lin C,Li Y.4D-printed biodegradable and remotely controllable shape memory occlusion devices.Adv Funct Mater2019;29:1906569

[146]

Miao S,Nowicki M.Stereolithographic 4D bioprinting of multiresponsive architectures for neural engineering.Adv Biosyst2018;2:1800101 PMCID:PMC6430203

[147]

You D,Liu C.4D printing of multi-responsive membrane for accelerated in vivo bone healing via remote regulation of stem cell fate.Adv Funct Mater2021;31:2103920

[148]

Zeenat L,Bera AK,Pati F.4D bioprinting of self-forming tubular structures for enhanced vascular tissue engineering.Int J Biol Macromol2025;324:147088

[149]

Zhao W,Liu L,Leng J.Research progress of shape memory polymer and 4D printing in biomedical application.Adv Healthc Mater2023;12:e2201975

[150]

Maity N,Chakraborty P,Gazit E.A personalized multifunctional 3D printed shape memory-displaying, drug releasing tracheal stent.Adv Funct Mater2021;31:2108436

[151]

Lin C,Wang Q.Mass-producible near-body temperature-triggered 4D printed shape memory biocomposites and their application in biomimetic intestinal stents.Compos Part B Eng2023;256:110623

[152]

Hegde C,Tan JMR,Chen X.Sensing in soft robotics.ACS Nano2023;17:15277-307 PMCID:PMC10448757

[153]

Ali M,Fah YF,Vahdati N.4D printed thermochromic Fresnel lenses for sensing applications.Compos Part B Eng2022;230:109514

[154]

Wu H,Ma Z.A material combination concept to realize 4D printed products with newly emerging property/functionality.Adv Sci2020;7:1903208 PMCID:PMC7201257

[155]

Huang H,Zou M.Four-dimensional printing of a fiber-tip multimaterial microcantilever as a magnetic field sensor.ACS Photonics2023;10:1916-24

[156]

Kim K,Bae J.4D printing of hygroscopic liquid crystal elastomer actuators.Small2021;17:e2100910

[157]

Li L,Xu W.Bioinspired 3D-nanoprinted optical sensilla for bidirectional respiratory monitoring.Nano Lett2025;25:5452-60

[158]

Qin J,Yang G.A bio-inspired magnetic soft robotic fish for efficient solar-energy driven water purification.Small Methods2025;9:e2400880

[159]

Liu B,Xin C.4D direct laser writing of submerged structural colors at the microscale.Small2023;19:e2204630

[160]

Zhang B,Cheng J.Mechanically robust and UV-curable shape-memory polymers for digital light processing based 4D printing.Adv Mater2021;33:e2101298

[161]

Folio D.Two-dimensional robust magnetic resonance navigation of a ferromagnetic microrobot using Pareto optimality.IEEE Trans Robot2017;33:583-93

[162]

Li N,Tous C.Human-scale navigation of magnetic microrobots in hepatic arteries.Sci Robot2024;9:eadh8702

[163]

Yang L,Yang Z,Zhang L.Mobile ultrasound tracking and magnetic control for long-distance endovascular navigation of untethered miniature robots against pulsatile flow.Adv Intell Syst2022;4:2100144

[164]

Del Campo Fonseca A,Droux J.Ultrasound trapping and navigation of microrobots in the mouse brain vasculature.Nat Commun2023;14:5889 PMCID:PMC10514062

[165]

Li D,Lam W,Wei T.Automated in vivo navigation of magnetic-driven microrobots using OCT imaging feedback.IEEE Trans Biomed Eng2020;67:2349-58

[166]

Li T,Sun B.Bioinspired claw-engaged and biolubricated swimming microrobots creating active retention in blood vessels.Sci Adv2023;9:eadg4501 PMCID:PMC10162671

[167]

Go G,Nguyen KT.Multifunctional microrobot with real-time visualization and magnetic resonance imaging for chemoembolization therapy of liver cancer.Sci Adv2022;8:eabq8545 PMCID:PMC9674283

[168]

Sun M,Zhang Z.Magnetic microswarm and fluoroscopy-guided platform for biofilm eradication in biliary stents.Adv Mater2022;34:e2201888

AI Summary AI Mindmap
PDF

8

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/