Towards ultrastretchability, multimodal instability, and static nonreciprocity in kirigami metamaterials

Yafei Wang , Mingchao Liu , Pooya Sareh , Ji Liu , Weicheng Huang

Soft Science ›› 2025, Vol. 5 ›› Issue (2) : 19

PDF
Soft Science ›› 2025, Vol. 5 ›› Issue (2) :19 DOI: 10.20517/ss.2024.73
Mini Review

Towards ultrastretchability, multimodal instability, and static nonreciprocity in kirigami metamaterials

Author information +
History +
PDF

Abstract

Kirigami, known for its ultra-softness, ultra-lightness, and high stretchability, is at the forefront of research in advanced materials and structural design. However, its inherent flexibility and sensitivity pose significant challenges for mechanical characterization, as conventional rigid-body assumptions are inadequate. Key hurdles include developing flexible tensile mechanics and designing high-curvature structures to prevent fracture at cut edges. Despite advancements in nanoscale synthesis and large-scale deployable kirigami systems that enhance geometric and material design, the lack of robust models to describe complex in-plane and out-of-plane buckling under extreme conditions hampers further theoretical and applied progress. Current reciprocal mechanics theories struggle to capture the nonlinearities, multi-stability, and asymmetry characteristic of kirigami deformation. Static nonreciprocity offers a promising alternative by distinguishing forward and reverse mechanical responses, breaking time-reversal symmetry, and providing deeper mechanical insights. Moving forward, establishing a framework based on nonreciprocal properties will be essential to overcoming existing challenges, driving breakthroughs in kirigami mechanics, and enabling innovative applications in areas such as soft robotics, deployable systems, and flexible electronics.

Keywords

Kirigami metamaterials / ultrastretchability / multimodal instability / static nonreciprocity

Cite this article

Download citation ▾
Yafei Wang, Mingchao Liu, Pooya Sareh, Ji Liu, Weicheng Huang. Towards ultrastretchability, multimodal instability, and static nonreciprocity in kirigami metamaterials. Soft Science, 2025, 5(2): 19 DOI:10.20517/ss.2024.73

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bertoldi K,Christensen J.Flexible mechanical metamaterials.Nat Rev Mater2017;2:17066

[2]

Tao J,Deshpande V.Engineering by cuts: how kirigami principle enables unique mechanical properties and functionalities.Adv Sci2022;10:e2204733 PMCID:PMC9811446

[3]

Yang X,Zhao H.Morphing matter: from mechanical principles to robotic applications.Soft Sci2023;3:38

[4]

Jin L.Engineering kirigami frameworks toward real-world applications.Adv Mater2024;36:2308560

[5]

Zhang Q,Zhao Z.A brief review of mechanical designs for additive manufactured soft materials.Soft Sci2022;2:2

[6]

Yang X,Li TL.Kirigami electronics for long-term electrophysiological recording of human neural organoids and assembloids.Nat Biotechnol2024;42:1836-43 PMCID:PMC11260907

[7]

Zhang H.Kirigami design and modeling for strong, lightweight metamaterials.Adv Funct Mater2022;32:2107401

[8]

Meng Z,Yan H,Chen CQ.Deployable mechanical metamaterials with multistep programmable transformation.Sci Adv2022;8:eabn5460 PMCID:PMC9176747

[9]

Wang J,Zhu Z,Wang D.Untethered kirigami soft robots with programmable locomotion.Appl Phys Rev2023;10:041405

[10]

Kim J.Coupled mechanics in skin-interfaced electronics via computer vision methods.Soft Sci2024;4:12

[11]

Blees MK,Rose PA.Graphene kirigami.Nature2015;524:204-7

[12]

Shyu TC,Dodd PM.A kirigami approach to engineering elasticity in nanocomposites through patterned defects.Nat Mater2015;14:785-9

[13]

Liu Q,Sinhmar H.Electronically configurable microscopic metasheet robots.Nat Mater2025;24:109-15

[14]

Yang Y,Holmes DP.Grasping with kirigami shells.Sci Robot2021;6:eabd6426

[15]

Hwang D,Haque ABMT.Shape morphing mechanical metamaterials through reversible plasticity.Sci Robot2022;7:eabg2171

[16]

Babaee S,Rafsanjani A,Bertoldi K.Bioinspired kirigami metasurfaces as assistive shoe grips.Nat Biomed Eng2020;4:778-86

[17]

Wang W,Rodrigue H.Kirigami/origami-based soft deployable reflector for optical beam steering.Adv Funct Mater2017;27:1604214

[18]

Wang Y,Zhang Y.Graphene kirigami as reinforcement and interfacial bonding effect for toughness and strength of silicon-based nanocomposites.Comp Mater Sci2019;159:306-15

[19]

Zhang J,Wang Y,Wang C.Flexible kirigami with local cylindrical shell design for stretchable microstrip antenna.Compos Struct2022;296:115879

[20]

He R,Liang J,Feng J.Crystallographically programmed kirigami metamaterials.J Mech Phys Solids2024;193:105903

[21]

Shi P,Feng J.Highly stretchable graphene kirigami with tunable mechanical properties.Phys Rev E2024;109:035002

[22]

An N,Zhou J,Bertoldi K.Programmable hierarchical kirigami: programmable hierarchical kirigami.Adv Funct Mater2020;30:1906711

[23]

Jin L,Deng B,Bertoldi K.Kirigami-inspired inflatables with programmable shapes.Adv Mater2020;32:e2001863

[24]

Chaudhary G,Han Q,Mahadevan L.Geometric mechanics of ordered and disordered kirigami.Proc R Soc A2023;479:20220822

[25]

Dudte LH,Becker KP.An additive framework for kirigami design.Nat Comput Sci2023;3:443-54

[26]

Choi GPT,Mahadevan L.Explosive rigidity percolation in kirigami.Proc R Soc A2023;479:20220798

[27]

Liu Z,Bo R.A three-dimensionally architected electronic skin mimicking human mechanosensation.Science2024;384:987-94

[28]

Veenstra J,Guo X,Meinersen CV.Non-reciprocal topological solitons in active metamaterials.Nature2024;627:528-33

[29]

Coulais C,Alù A.Static non-reciprocity in mechanical metamaterials.Nature2017;542:461-4

[30]

Isobe M.Initial rigid response and softening transition of highly stretchable kirigami sheet materials.Sci Rep2016;6:24758 PMCID:PMC4846813

[31]

Xu L,Kim Y,Lyu J.Kirigami nanocomposites as wide-angle diffraction gratings.ACS Nano2016;10:6156-62

[32]

Wang Y,Tan H.Geometry-dependent stretchability and stiffness of ribbon kirigami based on large curvature curved beam model.Int J Solids Struct2020;182-183:236-53

[33]

Hong Y,Wu S,Zhu Y.Boundary curvature guided programmable shape-morphing kirigami sheets.Nat Commun2022;13:530 PMCID:PMC8792031

[34]

Wang Y.Effect of temperature difference on the mechanical responses of ribbon kirigami: toward the highly stretchable conductors.Int J Mech Sci2020;168:105301

[35]

Wang Y,Du Y,Liu Y.Substantial curvature effects on compliant serpentine mechanics.Mech Mater2023;184:104732

[36]

Wang Y.Buckling of ultrastretchable kirigami metastructures for mechanical programmability and energy harvesting.Int J Solids Struct2021;213:93-102

[37]

Yang Y,Holmes DP.Multistable kirigami for tunable architected materials.Phys Rev Mater2018;2:110601

[38]

Wang Y.Mechanics of strain-limiting wrinkled kirigami for flexible devices: high flexibility, stretchability and compressibility.Int J Solids Struct2022;238:111382

[39]

Zhang Y,Tao Q,Wang C.Deep learning of buckling instability in geometrically symmetry-breaking kirigami.Int J Mech Sci2024;280:109331

[40]

Tang Y,Yang S,Kamien RD.Programmable kiri-kirigami metamaterials.Adv Mater2017;29:1604262

[41]

Moshe M,Shankar S.Kirigami mechanics as stress relief by elastic charges.Phys Rev Lett2019;122:048001

[42]

Sadik S.On local kirigami mechanics I: isometric conical solutions.J Mech Phys Solids2021;151:104370

[43]

Sadik S,Dias MA.On local kirigami mechanics II: stretchable creased solutions.J Mech Phys Solids2022;161:104812

[44]

Chen Y,Hu S.Design–material transition threshold of ribbon kirigami.Mater Design2024;242:112979

[45]

Hanakata PZ,Campbell DK.Accelerated search and design of stretchable graphene kirigami using machine learning.Phys Rev Lett2018;121:255304

[46]

Liu M,Vella D.Tapered elasticæ as a route for axisymmetric morphing structures.Soft Matter2020;16:7739-50

[47]

Politecnica AS. SBINBEN: smart bio-inspired building envelopes. 2024. https://www.youtube.com/watch?v=b8JnACyN8x4. (accessed 2025-02-27)

[48]

Wang Y,Xu F.Strain stiffening retards growth instability in residually stressed biological tissues.J Mech Phys Solids2023;178:105360

[49]

Wang Y,Chen X.Electroactive differential growth and delayed instability in accelerated healing tissues.J Mech Phys Solids2024;193:105867

[50]

Fan X,Chen S.Design and fabrication of a reconfigurable and flexible frequency selective surface with a buckling dipole via mechanical stretching.Soft Sci2021;1:13

[51]

Zhao R,Yuk H.Kirigami enhances film adhesion.Soft Matter2018;14:2515-25

[52]

Shuai Y,Bo R,Lv Z.A wrinkling-assisted strategy for controlled interface delamination in mechanically-guided 3D assembly.J Mech Phys Solids2023;173:105203

[53]

Huang X,Li B.Wrinkling of thin films on a microstructured substrate.Mech Adv Mater Struct2018;25:975-81

[54]

Zhang Y,Liu M.Shape-morphing structures based on perforated kirigami.Extreme Mech Lett2022;56:101857

[55]

Dang X,Paulino GH.Folding a single high-genus surface into a repertoire of metamaterial functionalities.Proc Natl Acad Sci U S A2024;121:e2413370121 PMCID:PMC11573573

[56]

Shaat M,Khan MO,Alzo'ubi A.Metamaterials with giant and tailorable nonreciprocal elastic moduli.Phys Rev Appl2020;14:014005

[57]

Janbaz S.Diffusive kinks turn kirigami into machines.Nat Commun2024;15:1255 PMCID:PMC10858914

[58]

Dykstra DMJ.Inverse design of multishape metamaterials.Phys Rev Appl2024;22:064013

[59]

Nassar H,Fleury R.Nonreciprocity in acoustic and elastic materials.Nat Rev Mater2020;5:667-85

[60]

Morikawa Y,Sawahata H.Ultrastretchable kirigami bioprobes.Adv Healthc Mater2018;7:1701100

AI Summary AI Mindmap
PDF

93

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/