A scalable, robust and high-sensitivity fiber sensor for real-time body temperature monitoring
Pan Li , Jing Zhou , Yuyang Cui , Jingyu Ouyang , Ziyi Su , Yuqi Zou , Jun Liang , Fuhong Wang , Kaidong He , Yueheng Liu , Zihao Zeng , Fang Fang , Chong Hou , Ning Zhou , Tianhuan Peng , Quan Yuan , Guangming Tao
Soft Science ›› 2025, Vol. 5 ›› Issue (2) : 13
A scalable, robust and high-sensitivity fiber sensor for real-time body temperature monitoring
The fibrous temperature sensor with excellent flexibility, comfort, and ease of integration into fabrics is particularly suitable for body temperature monitoring. However, the detection stability of existing fibrous temperature sensors is greatly affected by external factors such as pressing, bending, twisting, pH, humidity, and human movement. Here, we propose a fibrous temperature sensor based on an optimized scalable ionic liquid immersion process. The proposed sensor exhibited excellent temperature response characteristics, good linearity, a high sensitivity of 2.61%/°C, and can resist disturbances caused by pressing, bending, and twisting deformation. Moreover, it can work normally in acidic and alkaline environments with good reliability and stability. To demonstrate its application potential, we successfully integrated the sensor into firefighter suits, sports wristbands, and infant suits for real-time temperature monitoring and early warning.
Wearable electronics / functional fiber / temperature sensors / real-time monitoring / health care
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
/
| 〈 |
|
〉 |