Construction and application of thermogalvanic hydrogels

Wei Liu , Yi Fang , Xiaolin Lyu , Xiangfang Peng , Zhong-Zhen Luo , Zhigang Zou

Soft Science ›› 2024, Vol. 4 ›› Issue (4) : 44

PDF
Soft Science ›› 2024, Vol. 4 ›› Issue (4) :44 DOI: 10.20517/ss.2024.59
Review Article

Construction and application of thermogalvanic hydrogels

Author information +
History +
PDF

Abstract

Low-grade heat (below 373 Kelvins) is abundant and ubiquitous, yet the lack of cost-effective recovery technologies frequently impedes its effective utilization. The advent of thermogalvanic hydrogel thermocells has garnered significant attention due to their high thermopower, inherent flexibility, low cost, and scalability. Thermogalvanic hydrogels have significantly enhanced their thermoelectric performance, resulting in the development of functional materials that exhibit flexibility, stretchability, self-healing, and frost resistance. However, there are substantial challenges in developing multifunctional thermogalvanic hydrogels that combine high power density and efficiency with practical applicability. This review discusses the synthesis of the novel redox couple, improving the performance of electrolytes to increase thermopower, creating electrodes with extensive surface areas for better current density and flexibility, and optimizing thermocell structure design to improve performance further. This comprehensive review aims to propel progress toward higher performance levels and broader applications of thermogalvanic hydrogel thermocells.

Keywords

Thermogalvanic hydrogel / thermocell / thermogalvanic effect / thermopower / energy output

Cite this article

Download citation ▾
Wei Liu, Yi Fang, Xiaolin Lyu, Xiangfang Peng, Zhong-Zhen Luo, Zhigang Zou. Construction and application of thermogalvanic hydrogels. Soft Science, 2024, 4(4): 44 DOI:10.20517/ss.2024.59

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Forman C,Pardemann R.Estimating the global waste heat potential.Renew Sustain Energy Rev2016;57:1568-79

[2]

Duan J,Liu K.P-N conversion in thermogalvanic cells induced by thermo-sensitive nanogels for body heat harvesting.Nano Energy2019;57:473-9

[3]

Wang H,Xie W.Thermosensitive-CsI3-crystal-driven high-power I-/I3- thermocells.Cell Rep Phys Sci2022;3:100737

[4]

Gao X,Sun J,Cui G.A review on realizing rechargeable batteries based on SOCl2/SO2 electrolyte systems.MetalMat2024;1:e19

[5]

Wu M,He J.Hierarchically 3D fibrous electrode for high-performance flexible AC-line filtering in fluctuating energy harvesters.Adv Funct Mater2023;33:2305039

[6]

Zhang D,Solco SFD,Suwardi A.Energy harvesting through thermoelectrics: topological designs and materials jetting technology.Soft Sci2023;3:1

[7]

Liu Z,Le Q,Li J.Giant thermoelectric properties of ionogels with cationic doping.Adv Energy Mater2022;12:2200858

[8]

Yang Y,Ghasemi H.Charging-free electrochemical system for harvesting low-grade thermal energy.Proc Natl Acad Sci U S A2014;111:17011-6 PMCID:PMC4260536

[9]

Rahimi M,Zhang F.Emerging electrochemical and membrane-based systems to convert low-grade heat to electricity.Energy Environ Sci2018;11:276-85

[10]

Wu M,Cai S.Weak electron-phonon coupling and enhanced thermoelectric performance in n-type PbTe-Cu2 Se via dynamic phase conversion.Adv Energy Mater2023;13:2203325

[11]

Soo XYD,Cheong AKH.Electrospun PEO/PEG fibers as potential flexible phase change materials for thermal energy regulation.Exploration2024;4:20230016 PMCID:PMC10867375

[12]

Yun J.Recent progress in thermal management for flexible/wearable devices.Soft Sci2023;3:12

[13]

Yang R,Guo W.New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity.Chin J Struct Chem2024;43:100268

[14]

Xu C,Zhang J,Tian H.Adaptable and wearable thermocell based on stretchable hydrogel for body heat harvesting.Adv Energy Mater2022;12:2201542

[15]

Liu Y,Zhou Y.Advanced wearable thermocells for body heat harvesting.Adv Energy Mater2020;10:2002539

[16]

Cao T,Li M.Advances in bismuth-telluride-based thermoelectric devices: progress and challenges.eScience2023;3:100122

[17]

Fan Y,Li J.Engineering thermoelectric performance of α -GeTe by ferroelectric distortion.Energy Environ Mater2024;7:e12535

[18]

Hong M,Lyu W.Advances in printing techniques for thermoelectric materials and devices.Soft Sci2023;3:29

[19]

Shen L,Liu P.A lamellar-ordered poly[bi(3,4-ethylenedioxythiophene)-alt-thienyl] for efficient tuning of thermopower without degenerated conductivity.Soft Sci2023;3:20

[20]

He J.Advances in thermoelectric materials research: looking back and moving forward.Science2017;357:eaak9997

[21]

Zong Y,Li X.Bacterial cellulose-based hydrogel thermocells for low-grade heat harvesting.Chem Eng J2022;433:134550

[22]

Guo M,Guo W.Achieving superior thermoelectric performance in Ge4Se3 Te via symmetry manipulation with I-V-VI2 alloying.Adv Funct Mater2024;34:2313720

[23]

Liu Z,He H,Ouyang J.Significant enhancement in the thermoelectric properties of ionogels through solid network engineering.Adv Funct Mater2022;32:2109772

[24]

Rehan M,Jeong I.Defect engineering in earth-abundant Cu2 ZnSnSe4 absorber using efficient alkali doping for flexible and tandem solar cell applications.Energy Environ Mater2024;7:e12604

[25]

Ming H,Chen Z.Chemical pressure-driven band convergence and discordant atoms intensify phonon scattering leading to high thermoelectric performance in SnTe.J Am Chem Soc2024;Online ahead of print:

[26]

Chen Z,Hao S.GaSb doping facilitates conduction band convergence and improves thermoelectric performance in n-type PbS.Energy Environ Sci2023;16:1676-84

[27]

Satoh N,Kawakita J.A hierarchical design for thermoelectric hybrid materials: Bi2Te3 particles covered by partial Au skins enhance thermoelectric performance in sticky thermoelectric materials.Soft Sci2022;2:15

[28]

He W,Wu H.High thermoelectric performance in low-cost SnS0.91Se0.09 crystals.Science2019;365:1418-24

[29]

Dupont MF,Pringle JM.Thermo-electrochemical cells for waste heat harvesting - progress and perspectives.Chem Commun2017;53:6288-302

[30]

Yu B,Cong H.Thermosensitive crystallization-boosted liquid thermocells for low-grade heat harvesting.Science2020;370:342-6

[31]

Han Y,Hu R et al.High-thermopower polarized electrolytes enabled by methylcellulose for low-grade heat harvesting.Sci Adv2022;8:eabl5318 PMCID:PMC8856612

[32]

Lu X,Zhu K.Swift assembly of adaptive thermocell arrays for device-level healable and energy-autonomous motion sensors.Nanomicro Lett2023;15:196 PMCID:PMC10421839

[33]

Zhang D,Ye F.Stretchable thermogalvanic hydrogel thermocell with record-high specific output power density enabled by ion-induced crystallization.Energy Environ Sci2022;15:2974-82

[34]

Li Q,Wang S.Anionic entanglement-induced giant thermopower in ionic thermoelectric material Gelatin-CF3SO3K-CH3SO3K.eScience2023;3:100169

[35]

Shi X,Li Y.Double hydrogen-bonding reinforced high-performance supramolecular hydrogel thermocell for self-powered sensing remote-controlled by light.Adv Funct Mater2023;33:2211720

[36]

Liu C,Feng SP.Portable green energy out of the blue: hydrogel-based energy conversion devices.Soft Sci2023;3:10

[37]

Li T,Lacey SD.Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting.Nat Mater2019;18:608-13

[38]

Han CG,Li Q.Giant thermopower of ionic gelatin near room temperature.Science2020;368:1091-8

[39]

Zhang J,Wang Z,Li X.Low-grade thermal energy harvesting and self-powered sensing based on thermogalvanic hydrogels.Micromachines2023;14:155 PMCID:PMC9863090

[40]

Duan J,Yu B.Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest.Nat Commun2018;9:5146 PMCID:PMC6279834

[41]

Lin Y,Hong S.Highly conductive triple network hydrogel thermoelectrochemical cells with low-grade heat harvesting.J Power Sources2024;609:234647

[42]

Hu J,Li J,Liu Y.Double selective ionic gel with excellent thermopower and ultra-high energy density for low-quality thermal energy harvesting.Energy Environ Sci2024;17:1664-76

[43]

Li Q,Wang S.High thermopower of agarose-based ionic thermoelectric Gel through micellization effect decoupling the cation/anion thermodiffusion.Adv Funct Mater2023;33:2305835

[44]

Zhang Z,Li Z.Hydrogel materials for sustainable water resources harvesting & treatment: synthesis, mechanism and applications.Chem Eng J2022;439:135756

[45]

Li L,Yu F.Double network hydrogels for energy/environmental applications: challenges and opportunities.J Mater Chem A2022;10:9215-47

[46]

Huang H,Ren X.High-strength hydrogels: fabrication, reinforcement mechanisms, and applications.Nano Res2023;16:3475-515

[47]

Yan X,Bakry AM,Liu X.Advances in enhancing the mechanical properties of biopolymer hydrogels via multi-strategic approaches.Int J Biol Macromol2024;272:132583

[48]

Wang Y,Huang Q.High-strength ionic hydrogel constructed by metal-free physical crosslinking strategy for enhanced uranium extraction from seawater.Chem Eng J2024;479:147875

[49]

Yang J,Zhao L,Luo H.Constructions and properties of physically cross-linked hydrogels based on natural polymers.Polym Rev2023;63:574-612

[50]

GhavamiNejad A,Wu XY.Crosslinking strategies for 3D bioprinting of polymeric hydrogels.Small2020;16:e2002931 PMCID:PMC7754762

[51]

Yuan Y,Fan D.A physicochemical double cross-linked multifunctional hydrogel for dynamic burn wound healing: shape adaptability, injectable self-healing property and enhanced adhesion.Biomaterials2021;276:120838

[52]

Ettoumi F,Xu Y.Supramolecular assembly of dual crosslinked nanocomposite polysaccharides hydrogel: integration of injectable, self-healing, and pH-responsive platform for sustained delivery of polyphenols.Food Hydrocoll2024;154:110108

[53]

Li W,Liu Z.Nanoconfined polymerization limits crack propagation in hysteresis-free gels.Nat Mater2024;23:131-8

[54]

Zhan W,Lyu X,Yu Y.An ultra-tough and super-stretchable ionogel with multi functions towards flexible iontronics.Sci China Mater2023;66:1539-50

[55]

Gong Y,Lyu X.A mechanically robust, self-healing, and adhesive biomimetic camouflage ionic conductor for aquatic environments.Adv Funct Mater2023;33:2305314

[56]

Zhang D,Liu L.Boosting thermoelectric performance of thermogalvanic hydrogels by structure engineering induced by liquid nitrogen quenching.Adv Energy Mater2024;14:2303358

[57]

Sang S,Wang W.Finger temperature-driven thermogalvainc gel-based smart pen: utilized for identity recognition, stroke analysis, and grip posture assessment.Nano Energy2024;123:109366

[58]

Cheng H,Liu Z,Zhao Y.Ionic thermoelectrics: principles, materials and applications.J Mater Chem C2022;10:433-50

[59]

Yu M,Li Y.Ionic thermoelectric gels and devices: progress, opportunities, and challenges.EnergyChem2024;6:100123

[60]

Qian X,Huang Q,Yang R.Thermodynamics of ionic thermoelectrics for low-grade heat harvesting.ACS Energy Lett2024;9:679-706

[61]

Li Z,He X,Niu Y.Recent progress on the thermoelectric effect for electrochemistry.J Mater Chem A2024;12:13623-46

[62]

Liu Y,Ling W.Thermo-electrochemical cells for heat to electricity conversion: from mechanisms, materials, strategies to applications.Energy Environ Sci2022;15:3670-87

[63]

Liu L,Bai P.Strong tough thermogalvanic hydrogel thermocell with extraordinarily high thermoelectric performance.Adv Mater2023;35:e2300696

[64]

Wei S,Wu D.Constructing flexible film electrode with porous layered structure by MXene/SWCNTs/PANI ternary composite for efficient low-grade thermal energy harvest.Adv Funct Mater2023;33:2209806

[65]

Wang Y,Xin X.In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production.Science2023;381:291-6

[66]

Liu Y,Odunmbaku GO.Solvent effect on the Seebeck coefficient of Fe2+/Fe3+ hydrogel thermogalvanic cells†.J Mater Chem A2022;10:19690-8

[67]

Jia B,Xie L.Pseudo-nanostructure and trapped-hole release induce high thermoelectric performance in PbTe.Science2024;384:81-6

[68]

Liu H,Pan L.Rational triple optimizations boost near-room-temperature thermoelectric performance of BiSe.Acta Mater2024;280:120343

[69]

Liu Y,Zhang J.Green synthesis of air-stable tellurium nanowires via biomolecule-assisted hydrothermal for thermoelectrics†.Mater Adv2020;1:1125-33

[70]

Buckingham MA,Liu Y,Marken F.Thermogalvanic and thermocapacitive behavior of superabsorbent hydrogels for combined low-temperature thermal energy conversion and harvesting.ACS Appl Energy Mater2021;4:11204-14

[71]

Yang X,Khan SA.Thermogalvanic organohydrogel-based non-contact self-powered electronics for advancing smart agriculture.J Mater Chem C2024;12:3298-305

[72]

Zhou H,Kimizuka N.Supramolecular thermo-electrochemical cells: enhanced thermoelectric performance by host-guest complexation and salt-induced crystallization.J Am Chem Soc2016;138:10502-7

[73]

Liu Y,Chen S.A hydrogel thermoelectrochemical cell with high self-healability and enhanced thermopower both induced by zwitterions.J Mater Chem A2024;12:18582-92

[74]

Hsu C,Hong S.3D printed gelatin methacrylate hydrogel-based wearable thermoelectric generators.Adv Sustain Syst2024;8:2400039

[75]

Xu T,Qian Y.Semi-solid thermo-electrochemical cell based wearable power generator for body heat harvesting.Adv Funct Mater2024;34:2316068

[76]

Jia Y,Li J.Coordination enhanced high-seebeck coefficient n-type gel-based thermocells for low-grade energy harvesting and n-p type connected devices.J Power Sources2024;602:234400

[77]

Shen X,Hua Z.p-n conversion of thermogalvanic cells by harnessing the micellization of thermoresponsive diblock copolymers.ACS Appl Energy Mater2023;6:10147-54

[78]

Peng P,Liang L.Regulating thermogalvanic effect and mechanical robustness via redox ions for flexible quasi-solid-state thermocells.Nano Micro Lett2022;14:81 PMCID:PMC8956784

[79]

Kim T,Lee G.High thermopower of ferri/ferrocyanide redox couple in organic-water solutions.Nano Energy2017;31:160-7

[80]

DiSalvo FJ.Thermoelectric cooling and power generation.Science1999;285:703-6

[81]

Han C,Yang L.Remarkable high-temperature ionic thermoelectric performance induced by graphene in gel thermocells.Energy Environ Sci2024;17:1559-69

[82]

Zhu Y,Chen J.Ultra-high performance of ionic thermoelectric-electrochemical gel cells for harvesting low grade heat.Energy Environ Sci2024;17:4104-14

[83]

Kong S,Hu Y.Tellurium-nanowire-doped thermoelectric hydrogel with high stretchability and seebeck coefficient for low-grade heat energy harvesting.Nano Energy2023;115:108708

[84]

Liu Y,Dong X,Ouyang K.Recurrently gellable and thermochromic inorganic hydrogel thermogalvanic cells.Sci Adv2024;10:eadp4533 PMCID:PMC11277356

[85]

Chen J,Wu L.Environmentally tolerant ionic hydrogel with high power density for low-grade heat harvesting.ACS Appl Mater Interfaces2022;14:34714-21

[86]

Chen B,Xiao S,Zhang X.Giant negative thermopower of ionic hydrogel by synergistic coordination and hydration interactions.Sci Adv2021;7:eabi7233 PMCID:PMC8612679

[87]

Li N,Zheng X.Antimicrobial hydrogel with multiple pH-responsiveness for infected burn wound healing.Nano Res2023;16:11139-48

[88]

Wang L,Pan Y.Injectable photocurable Janus hydrogel delivering hiPSC cardiomyocyte-derived exosome for post-heart surgery adhesion reduction.Sci Adv2023;9:eadh1753 PMCID:PMC10403204

[89]

Li X,Bai C.Thermogalvanic hydrogels for self-powered temperature monitoring in extreme environments.J Mater Chem C2022;10:13789-96

[90]

Quickenden TI.A review of power generation in aqueous thermogalvanic cells.J Electrochem Soc1995;142:3985-94

[91]

Hu R,Luo X.Liquid thermocells enable low-grade heat harvesting.Matter2020;3:1400-2

[92]

Yang P,Chen Q.Wearable thermocells based on gel electrolytes for the utilization of body heat.Angew Chem Int Ed Engl2016;55:12050-3

[93]

Jin L,Macfarlane DR.Redox-active quasi-solid-state electrolytes for thermal energy harvesting.ACS Energy Lett2016;1:654-8

[94]

Yu B,Li J.All-day thermogalvanic cells for environmental thermal energy harvesting.Research2019;2019:2460953 PMCID:PMC6944521

[95]

Meng FL,Ding T,Ong WL.Modular deformable steam electricity cogeneration system with photothermal, water, and electrochemical tunable multilayers.Adv Funct Mater2020;30:2002867

[96]

Schönig M.Sensitive and fast measurement of surface temperature with a thermogalvanic cell.Appl Phys Lett2020;116:091601

[97]

Inoue D,Nitani H.Scaling relation between electrochemical seebeck coefficient for Fe2+/Fe3+ in organic solvent and its viscosity.J Phys Soc Jpn2021;90:033602

[98]

Fang R,Khan S A et al.Anhydrous thermogalvanic Gel for simultaneous waste heat recovery and thermal management of electronics.ACS Appl Polym Mater2023;5:4628-35

[99]

Jiao N,Macfarlane DR.Ionic liquid electrolytes for thermal energy harvesting using a cobalt redox couple.J Electrochem Soc2014;161:D3061-5

[100]

Lazar MA,MacFarlane DR.Enhanced thermal energy harvesting performance of a cobalt redox couple in ionic liquid-solvent mixtures.Phys Chem Chem Phys2016;18:1404-10

[101]

He J,MacFarlane DR.Temperature dependence of the electrode potential of a cobalt-based redox couple in ionic liquid electrolytes for thermal energy harvesting.Faraday Discuss2016;190:205-18

[102]

Li J,Han Z.High performance bacterial cellulose organogel-based thermoelectrochemical cells by organic solvent-driven crystallization for body heat harvest and self-powered wearable strain sensors.Adv Funct Mater2023;33:2306509

[103]

Liang Y,Morikawa M,Yamada T.High positive seebeck coefficient of aqueous i-/i3- thermocells based on host-guest interactions and LCST behavior of PEGylated α-Cyclodextrin.ACS Appl Energy Mater2021;4:5326-31

[104]

Artyukhov D,Gorshkov N.Harvesting waste thermal energy using a surface-modified carbon fiber-based thermo-electrochemical cell.Sustainability2021;13:1377

[105]

Kang TJ,Kozlov ME.Electrical power from nanotube and graphene electrochemical thermal energy harvesters.Adv Funct Mater2012;22:477-89

[106]

Abraham TJ,MacFarlane DR.Investigation of the kinetic and mass transport limitations in thermoelectrochemical cells with different electrode materials.Phys Chem Chem Phys2014;16:2527-32

[107]

Laux E,Journot T,Jeandupeux L.Aspects of protonic ionic liquid as electrolyte in thermoelectric generators.J Electron Mater2016;45:3383-9

[108]

Im H,Song H.High-efficiency electrochemical thermal energy harvester using carbon nanotube aerogel sheet electrodes.Nat Commun2016;7:10600 PMCID:PMC4742963

[109]

Tian C,Wang T.Thermogalvanic hydrogel electrolyte for harvesting biothermal energy enabled by a novel redox couple of SO4/32- ions.Nano Energy2023;106:108077

[110]

Li J,Khan SA,Huang Z.Self-powered information conversion based on thermogalvanic hydrogel with interpenetrating networks for nursing aphasic patients.Nano Energy2023;113:108612

[111]

Li J,Ma Z.Self-healable and stretchable PAAc/XG/Bi2Se0.3Te2.7 hybrid hydrogel thermoelectric materials.Energy Environ Mater2024;7:e12547

[112]

Fu M,Liu X,Lai X.Highly stretchable ionic hydrogels with enhanced thermoelectric performance and flame retardancy for intelligent fire protection.J Mater Chem A2024;12:27588-97

[113]

Hu Q,Chen X.Strong tough ionic organohydrogels with negative‐thermopower via the synergy of coordination interaction and hofmeister effect.Adv Funct Mater2024;34:2406968

[114]

Lyu X,Huang C.Tough and elastic hydrogel thermocells for heat energy utilization.Chem Eng J2024;493:152887

[115]

Zhang L,Yang Y.Flexible thermoelectric materials and devices: From materials to applications.Mater Today2021;46:62-108

[116]

Yang M,Wang X.Chaotropic effect-boosted thermogalvanic ionogel thermocells for all-weather power generation.Adv Mater2024;36:e2312249

[117]

Ma X,Cui X.Machine learning assisted self-powered identity recognition based on thermogalvanic hydrogel for intelligent security.Small2024;20:e2402700

[118]

Lu X,Liu Z.Robust, efficient, and recoverable thermocells with zwitterion-boosted hydrogel electrolytes for energy-autonomous and wearable sensing.Angew Chem Int Ed Engl2024;63:e202405357

[119]

Zhao J,Yu H.Regenerable aerogel‐based thermogalvanic cells for efficient low-grade heat harvesting from solar radiation and interfacial solar evaporation systems.EcoMat2023;5:e12302

[120]

Liang L,Shi XL.A flexible quasi-solid-state thermoelectrochemical cell with high stretchability as an energy-autonomous strain sensor.Mater Horiz2021;8:2750-60

[121]

Han Y,Du Y.Ultrasensitive flexible thermal sensor arrays based on high-thermopower ionic thermoelectric hydrogel.Adv Sci2023;10:e2302685 PMCID:PMC10477880

[122]

Fu M,Liu X.Highly stretchable, resilient, adhesive, and self‐healing ionic hydrogels for thermoelectric application.Adv Funct Mater2023;33:2306086

[123]

Wang Z,Zhang H.A hydrogel electrolyte toward a flexible zinc-ion battery and multifunctional health monitoring electronics.ACS Nano2024;18:7596-609

[124]

Wu G,Wang L,Chen G.Flexible gel-state thermoelectrochemical materials with excellent mechanical and thermoelectric performances based on incorporating Sn2+/Sn4+ electrolyte into polymer/carbon nanotube composites†.J Mater Chem A2018;6:3376-80

[125]

Zhao Q,Wu Z.Robust PEDOT:PSS-based hydrogel for highly efficient interfacial solar water purification.Chem Eng J2022;442:136284

[126]

Xu X,Qiu J.Photothermal-photocatalytic bifunctional highly porous hydrogel for efficient coherent sewage purification-clean water generation.Desalination2025;597:118364

[127]

Pu S,Chen K.Thermogalvanic hydrogel for synchronous evaporative cooling and low-grade heat energy harvesting.Nano Lett2020;20:3791-7

[128]

Fu X,Zhao Y.Stretchable and self-powered temperature-pressure dual sensing ionic skins based on thermogalvanic hydrogels.ACS Appl Mater Interfaces2022;14:44792-8

[129]

Tian Y,Li K.High-performance ionic thermoelectric materials and emerging applications of ionic thermoelectric devices.Mater Today Energy2023;36:101342

[130]

Sun W,Lin X.Heat source recognition sensor mimicking the thermosensation function of human skin.The Innovation2024;5:100673

[131]

Wang Z,Yang X,Zhang H.Thermogalvanic hydrogel-based e-skin for self-powered on-body dual-modal temperature and strain sensing.Microsyst Nanoeng2024;10:55 PMCID:PMC11055913

[132]

Wu X,Zheng X.Self-powered and green ionic-type thermoelectric paper chips for early fire alarming.ACS Appl Mater Interfaces2020;12:27691-9

[133]

Zhang Y,Ahmed Khan S.Deep-learning-assisted thermogalvanic hydrogel fiber sensor for self-powered in-nostril respiratory monitoring.J Colloid Interface Sci2025;678:143-9

[134]

Chen L,Rong X.Super-stretching and high-performance ionic thermoelectric hydrogels based on carboxylated bacterial cellulose coordination for self-powered sensors.Carbohydr Polym2023;321:121310

[135]

Tian C,Zhang Z,Zhang H.Thermoelectric hydrogel electronic skin for passive multimodal physiological perception.ACS Sens2024;9:840-8

[136]

Yang H,Li N,Huang Z.Thermogalvanic gel patch for self-powered human motion recognition enabled by photo-thermal-electric conversion.Chem Eng J2023;473:145247

[137]

Zhang Y,Zhang J.Thermoelectrocatalysis: an emerging strategy for converting waste heat into chemical energy.Natl Sci Rev2024;11:nwae036 PMCID:PMC10911810

[138]

Qi Y,Kong Y.Unraveling of cocatalysts photodeposited selectively on facets of BiVO4 to boost solar water splitting.Nat Commun2022;13:484 PMCID:PMC8789891

[139]

Qi Y,Gao Y.Redox-based visible-light-driven Z-scheme overall water splitting with apparent quantum efficiency exceeding 10%.Joule2018;2:2393-402

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/