Micro-cylindrical/fibric electronic devices: materials, fabrication, health and environmental monitoring

Hongyang Wang , Hao Wu , Dong Ye , Chenyang Zhao , Qingshuang Wu , Sen Wang , Zhiwei Zhang , Mingtao Zeng , Hanghang Wei , YongAn Huang

Soft Science ›› 2024, Vol. 4 ›› Issue (4) : 41

PDF
Soft Science ›› 2024, Vol. 4 ›› Issue (4) :41 DOI: 10.20517/ss.2024.53
Review Article

Micro-cylindrical/fibric electronic devices: materials, fabrication, health and environmental monitoring

Author information +
History +
PDF

Abstract

Micro-cylindrical electronic devices represent a rapidly emerging class of electronics distinguished by their unique geometries and superior mechanical properties. These features enable a broad range of applications across fields such as wearable fibric devices, surgical robotics, and implantable medical devices. The choice of micro-cylindrical substrate materials is crucial in determining device performance, as their high curvature and excellent flexibility offer an ideal foundation for functional integration. This paper systematically reviews a wide array of substrate materials suitable for micro-cylindrical electronic devices, analyzing their differences and application potential in terms of mechanical stability, biocompatibility, and processability. The unique requirements of micro-cylindrical devices, specifically their flexibility, integrative capabilities, and lightweight nature, challenge conventional planar fabrication processes, which often fall short of meeting these demands. Thus, we further examine custom fabrication techniques tailored for micro-cylindrical electronics, assessing advantages, limitations, and specific applications of each approach. Additionally, we analyze the current application requirements and developmental progress of these devices across multiple fields. This review also outlines future directions in this field, focusing on enhancing fabrication precision, improving material compatibility and biocompatibility, and advancing integration and intelligent functionalities. With a comprehensive overview, this review aims to provide a valuable reference for the research and development of micro-cylindrical electronic devices, promoting technological advancements and innovation in emerging applications.

Keywords

Micro-cylindrical electronics / fibric electronic systems / conformal manufacturing / wearable devices / surgical robotics / implantable medicine

Cite this article

Download citation ▾
Hongyang Wang, Hao Wu, Dong Ye, Chenyang Zhao, Qingshuang Wu, Sen Wang, Zhiwei Zhang, Mingtao Zeng, Hanghang Wei, YongAn Huang. Micro-cylindrical/fibric electronic devices: materials, fabrication, health and environmental monitoring. Soft Science, 2024, 4(4): 41 DOI:10.20517/ss.2024.53

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zheng Y,Chen P.Semiconductor fibers for textile integrated electronic systems.Natl Sci Rev2024;11:nwae143 PMCID:PMC11089816

[2]

Park J,Kim J,Wang J.Biopsy needle integrated with multi-modal physical/chemical sensor array.Biosens Bioelectron2020;148:111822

[3]

Yu D,Wei L.Emergence of fiber supercapacitors.Chem Soc Rev2015;44:647-62

[4]

Khan AQ,Li J.Recent developments in artificial spider silk and functional gel fibers.SmartMat2023;4:e1189

[5]

Cai J,Li Z.Flexible temperature sensors constructed with fiber materials.Adv Mater Technol2022;7:2101182

[6]

Wu Y,Li X.A stretchable all-nanofiber iontronic pressure sensor.Soft Sci2023;3:33

[7]

Li X,Li K.Electrospun micro/nanofiber-based biomechanical sensors.ACS Appl Polym Mater2023;5:6720-46

[8]

Cui X,Wang R.Fibrous triboelectric nanogenerators: fabrication, integration, and application.J Mater Chem A2022;10:15881-905

[9]

Zhong Y,Chen Z.High-performance fiber-shaped vertical organic electrochemical transistors patterned by surface photolithography.Chem Mater2023;35:9739-46

[10]

Wu F,Cheng Y.A stretchable and helically structured fiber nanogenerator for multifunctional electronic textiles.Nano Energy2022;101:107588

[11]

Wang L,Wang Z.Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers.Nat Biomed Eng2020;4:159-71

[12]

Pu Z,Han R.A flexible enzyme-electrode sensor with cylindrical working electrode modified with a 3D nanostructure for implantable continuous glucose monitoring.Lab Chip2018;18:3570-7

[13]

Jordan CD,Wadhwa A.Wireless resonant circuits printed using aerosol jet deposition for MRI catheter tracking.IEEE Trans Biomed Eng2020;67:876-82 PMCID:PMC6995687

[14]

Peng Z,Lv H.Electric field-driven microscale 3D printing of flexible thin-walled tubular mesh structures of molten polymers.Materi Design2023;225:111433

[15]

Zhang C,Pu Z,Ouyang W.Fabricating 1D stretchable fiber-shaped electronics based on inkjet printing technology for wearable applications.Nano Energy2023;113:108574

[16]

Jose M,Neumaier L.Future thread: printing electronics on fibers.ACS Appl Mater Interfaces2024;16:7996-8005

[17]

Horiuchi T.Fabrication of fine and high-density multithread spirals on inner surfaces of small-diameter pipes using laser scan lithography.Jpn J Appl Phys2014;53:06JM10

[18]

Hwang S,Lee A.Integration of multiple electronic components on a microfibre towards an emerging electronic textile platform.Nat Commun2022;13:3173 PMCID:PMC9178034

[19]

Tamaki S,Kuki T,Furusawa Y.Neural probe with multiple optical stimulation in depth direction.Electron Commun Jpn2017;100:45-54

[20]

Ham S,Jang S.One-dimensional organic artificial multi-synapses enabling electronic textile neural network for wearable neuromorphic applications.Sci Adv2020;6:eaba1178 PMCID:PMC10662591

[21]

Fabiano S.Stretchable helix-structured fibre electronics.Nat Electron2021;4:864-5

[22]

Wang Q,Wang Y,Dong L.Tape nanolithography: a rapid and simple method for fabricating flexible, wearable nanophotonic devices.Microsyst Nanoeng2018;4:31 PMCID:PMC6220255

[23]

Ye C,Yang S.Recent research on preparation and application of smart joule heating fabrics.Small2024;20:e2309027

[24]

Park J,Jeong Y.A review of recent advancements in sensor-integrated medical tools.Adv Sci2024;11:e2307427 PMCID:PMC11132050

[25]

Paulk AC,Khanna AR.Large-scale neural recordings with single neuron resolution using Neuropixels probes in human cortex.Nat Neurosci2022;25:252-63

[26]

Liu J,Yang W.Recent progress in flexible piezoelectric devices toward human-machine interactions.Soft Sci2022;2:22

[27]

Wang P,Sun G.Natural human skin-inspired wearable and breathable nanofiber-based sensors with excellent thermal management functionality. Adv Fiber Mater 2024.

[28]

Sun X,Zhang L.Enhanced electromechanical conversion via in situ grown CsPbBr3 nanoparticles/poly(vinylidene fluoride) fibers for physiological signal monitoring.Soft Sci2022;2:1

[29]

Zhang C,Zhang L.A dual-mode fiber-shaped flexible capacitive strain sensor fabricated by direct ink writing technology for wearable and implantable health monitoring applications.Microsyst Nanoeng2023;9:158 PMCID:PMC10739884

[30]

Zhang M,Zhang C,Jiang Z.Smart optical fiber fabric based on side-emitting and side-coupling for pulse and blood oxygen measurement.Text Res J2023;93:3382-92

[31]

Tian S,Deng H,Zhang X.Flexible pressure and temperature sensors towards e-skin: material, mechanism, structure and fabrication.Soft Sci2023;3:30

[32]

Liu Y,Sun H.A high-density 1,024-channel probe for brain-wide recordings in non-human primates.Nat Neurosci2024;27:1620-31

[33]

Lozano AM,Bergman H.Deep brain stimulation: current challenges and future directions.Nat Rev Neurol2019;15:148-60 PMCID:PMC6397644

[34]

Nazempour R,Ye Z,Lv X.Emerging applications of optical fiber-based devices for brain research.Adv Fiber Mater2022;4:24-42

[35]

Sellers KK,Zhou J.Thin-film microfabrication and intraoperative testing of µECoG and iEEG depth arrays for sense and stimulation.J Neural Eng2021;18:045014 PMCID:PMC10495194

[36]

Huang S,Yao C.Petromyzontidae-biomimetic multimodal microneedles-integrated bioelectronic catheters for theranostic endoscopic surgery.Adv Funct Mater2023;33:2214485

[37]

Hong G.Novel electrode technologies for neural recordings.Nat Rev Neurosci2019;20:330-45 PMCID:PMC6531316

[38]

Wang Z,Wang Z.Designer patterned functional fibers via direct imprinting in thermal drawing.Nat Commun2020;11:3842 PMCID:PMC7395721

[39]

Uzun D,Bruce CG.Interventional device tracking under MRI via alternating current controlled inhomogeneities.Magn Reson Med2024;92:346-60 PMCID:PMC11055668

[40]

Yang Z,Sun B,Ding G.Fabrication of electromagnetically-driven tilted microcoil on polyimide capillary surface for potential single-fiber endoscope scanner application.Micromachines2018;9:61 PMCID:PMC6187849

[41]

Huang F,Yan X.High-linearity, ultralow-detection-limit, and rapid-response strain sensing yarn for data gloves.J Ind Text2022;51:4554S-70S

[42]

Kara G,Sharma K.Conformal integration of an inkjet-printed PbS QDs-graphene IR photodetector on a polymer optical fiber.Adv Mater Technol2023;8:2201922

[43]

Kwon S,Nam M.Recent progress of fiber shaped lighting devices for smart display applications - a fibertronic perspective.Adv Mater2020;32:e1903488

[44]

Lee K,Ro YG.Flexible, scalable, high channel count stereo-electrode for recording in the human brain.Nat Commun2024;15:218 PMCID:PMC10794240

[45]

Bilgin MB,Lazovic J.Radio frequency sensing-based in situ temperature measurements during magnetic resonance imaging interventional procedures.Adv Mater Technol2022;7:2101625

[46]

Yun J,Kim H.Electrical impedance spectroscopy on a needle for safer Veress needle insertion during laparoscopic surgery.Sensor Actuat B Chem2017;250:453-60

[47]

Baysoy E,Ozsoy C,Kocaturk O.Thin film based semi-active resonant marker design for low profile interventional cardiovascular MRI devices.MAGMA2017;30:93-101

[48]

Gerbella M,Pothof F.Histological assessment of a chronically implanted cylindrically-shaped, polymer-based neural probe in the monkey.J Neural Eng2021;18:024001

[49]

Fiáth R,Csikós V.Long-term recording performance and biocompatibility of chronically implanted cylindrically-shaped, polymer-based neural interfaces.Biomed Tech2018;63:301-15

[50]

Hayat S,Yoo H.Modeling and in vitro measurement of a compact antenna for intravascular catheter tracking and imaging system.IEEE Trans Instrum Meas2023;72:1-14

[51]

Yun J,Lee JH.Improvement of depth profiling into biotissues using micro electrical impedance spectroscopy on a needle with selective passivation.Sensors2016;16:2207 PMCID:PMC5191185

[52]

Ganesana M,Maniar Y,Venton BJ.Development of a novel micro biosensor for in vivo monitoring of glutamate release in the brain.Biosens Bioelectron2019;130:103-9 PMCID:PMC6449154

[53]

Zhang R,Cai S,Xu Y.A solid-state wire-shaped supercapacitor based on nylon/Ag/polypyrrole and nylon/Ag/MnO2 electrodes.Polymers2023;15:1627 PMCID:PMC10097388

[54]

Zhao Y,Dong S.Review of wearable optical fiber sensors: drawing a blueprint for human health monitoring.Opt Laser Technol2023;161:109227

[55]

Dong Y,Yang Y.Multiple covalent modification enables nylon fiber biosensor with robust scrub-resistant and signal-capture ability for multiscenario health monitoring and security warning.Int J Biol Macromol2024;281:136518

[56]

Wang Z,Yin R.Breathable and waterproof conductive cotton fabric pressure sensor with distinguished electrothermal and electromagnetic interference shielding performances.Appl Mater Today2024;38:102256

[57]

Wang S,Sun H.Functionalization of fiber devices: materials, preparations and applications.Adv Fiber Mater2022;4:324-41

[58]

Sheng F,Zhang B,Dong K.Flourishing electronic textiles towards pervasive, personalized and intelligent healthcare.Soft Sci2024;4:2

[59]

Liu T,Liu H.Heat-resistant and high-performance solid-state supercapacitors based on poly(para-phenylene terephthalamide) fibers via polymer-assisted metal deposition.ACS Appl Mater Interfaces2021;13:18100-9

[60]

Ge J,Zhang FR.A stretchable electronic fabric artificial skin with pressure-, lateral strain-, and flexion-sensitive properties.Adv Mater2016;28:722-8

[61]

Yang Z,Chen X,Peng H.A highly stretchable, fiber-shaped supercapacitor.Angew Chem Int Ed Engl2013;52:13453-7

[62]

Wang Y,Guo X.Conductive polymers for stretchable supercapacitors.Nano Res2019;12:1978-87

[63]

Xu W,Zhang W.Flexible airflow-strain dual response sensor with high sensitivity based on polyurethane conductive fiber flocked carbon fibers.J Mater Sci Mater Electron2024;35:13443

[64]

Li P,Wang S.Highly stretchable electromechanical sensors with ionotronic knots based on hydrogel fibers.Adv Mater Technol2024;9:2302202

[65]

Ding H,Wang H.An ultrastretchable, high-performance, and crosstalk-free proximity and pressure bimodal sensor based on ionic hydrogel fibers for human-machine interfaces.Mater Horiz2022;9:1935-46

[66]

Niu Q,Fan S,Zhang Y.3D printing silk fibroin/polyacrylamide triple-network composite hydrogels with stretchability, conductivity, and strain-sensing ability as bionic electronic skins.ACS Biomater Sci Eng2024;10:3489-99

[67]

Yin Z,Wang C.Splash-resistant and light-weight silk-sheathed wires for textile electronics.Nano Lett2018;18:7085-91

[68]

Li C,Fitzpatrick V.Design of biodegradable, implantable devices towards clinical translation.Nat Rev Mater2020;5:61-81

[69]

Kwon CH,Shin D.High-power hybrid biofuel cells using layer-by-layer assembled glucose oxidase-coated metallic cotton fibers.Nat Commun2018;9:4479 PMCID:PMC6203850

[70]

Chen C,Li J,Shi X.Functional fiber materials to smart fiber devices.Chem Rev2023;123:613-62

[71]

Xiao R,Xu BB,Liu X.Fiber surface/interfacial engineering on wearable electronics.Small2021;17:e2102903

[72]

Li WJ,Ho C.Sensors and actuators on non-planar substrates.Sensor Actuat A Phys1999;73:80-8

[73]

Goto S,Chen JJ,Esashi M.Fabrication techniques for multilayer metalization and patterning, and surface mounting of components on cylindrical substrates for tube-shaped micro-tools. In: 2006 International Conference on Microtechnologies in Medicine and Biology; 2006 May 09-12; Okinawa, Japan. IEEE; 2006. pp. 217-20.

[74]

de Miranda R, Zamponi C, Quandt E. Rotational UV lithography device for cylindrical substrate exposure.Rev Sci Instrum2009;80:015103

[75]

Joshima Y,Horiuchi T.Application of laser scan lithography to fabrication of microcylindrical parts.Jpn J Appl Phys2004;43:4031

[76]

Horiuchi T.Micro-fabrication of air-bearing grooves onto inner surfaces of fine copper pipes.Microelect Eng2013;110:422-6

[77]

Horiuchi T.New laser-scan exposure system for delineating precise helical patterns onto sub-50-µm wires.Jpn J Appl Phys2012;51:06FL01

[78]

Horiuchi T,Yasunaga K.Lithography onto surfaces of fine-diameter pipes using rotary scan-projection exposure.J Photopol Sci Technol2015;28:273-8

[79]

Doll PW,Käßer L.Rotational UV-lithography using flexible chromium-coated polymer masks for the fabrication of microstructured dental implant surfaces: a proof of concept.J Micromech Microeng2020;30:045008

[80]

Park J,Kim B.Fabrication of metallic microstructure on curved substrate by optical soft lithography and copper electroplating.Sensor Actuat A Phys2011;168:105-11

[81]

Yang Z,Itoh T.New fabrication method of three-electrode system on cylindrical capillary surface as a flexible implantable microneedle.Surf Rev Lett2013;20:1350027

[82]

Haga Y,Goto S,Esashi M.Development of minimally invasive medical tools using laser processing on cylindrical substrates.Electr Eng Jpn2011;176:65-74

[83]

Liao M,Hong Y.Industrial scale production of fibre batteries by a solution-extrusion method.Nat Nanotechnol2022;17:372-7

[84]

Xie Y,Tang Y.Hierarchically nanostructured carbon fiber-nickel-carbon nanotubes for high-performance supercapacitor electrodes.Mater Lett2017;186:70-3

[85]

Yildirim DK,Uzun D.A 20-gauge active needle design with thin-film printed circuitry for interventional MRI at 0.55T.Magn Reson Med2021;86:1786-801 PMCID:PMC8379519

[86]

Zulkifli NA,Kim M.3D-printed magnetic-based air pressure sensor for continuous respiration monitoring and breathing rehabilitation.Soft Sci2024;4:20

[87]

Zeng Y,Zhao F.3D printing of high-temperature thick film platinum resistance temperature detector array.Addit Manuf2023;73:103654

[88]

Chen G,Zhao F.Conformal fabrication of functional polymer-derived ceramics thin films.Surf Coat Technol2023;464:129536

[89]

Fang B,Chang D.Scalable production of ultrafine polyaniline fibres for tactile organic electrochemical transistors.Nat Commun2022;13:2101 PMCID:PMC9018749

[90]

Zhang G,Qian L,Wang F.A microscale 3D printing based on the electric-field-driven jet.3D Print Addit Manuf2020;7:37-44 PMCID:PMC9586217

[91]

Hobbie HA,Smith BN,Franklin AD.Conformal printed electronics on flexible substrates and inflatable catheters using lathe-based aerosol jet printing.Npj Flex Electron2024;8:54 PMCID:PMC11364510

[92]

Wang K,Wang C.Customizable and scalable manufacture of aesthetic ionic conductive silk yarns for e-textile devices.Chem Eng J2024;487:150645

[93]

Fu L,Liu Z.Carbon nanotubes coated with alumina as gate dielectrics of field-effect transistors.Adv Mater2006;18:181-5

[94]

Carey T,Doolan L.Knot architecture for biocompatible and semiconducting 2D electronic fiber transistors.Small Methods2024;8:e2301654

[95]

Lee GH,Jeon W.Conductance stable and mechanically durable bi-layer EGaIn composite-coated stretchable fiber for 1D bioelectronics.Nat Commun2023;14:4173 PMCID:PMC10345103

[96]

Woo S,Kim J,Lee J.Fiber-based flexible ionic diode with high robustness and rectifying performance: toward electronic textile circuits.Adv Elect Mater2024;10:2300653

[97]

Liao M,Ye L.A high-capacity aqueous zinc-ion battery fiber with air-recharging capability.J Mater Chem A2021;9:6811-8

[98]

Han J,Zhang J.Multifunctional coaxial energy fiber toward energy harvesting, storage, and utilization.ACS Nano2021;15:1597-607

[99]

Cheung CL,Fang G.Omnidirectional monolithic marker for intra-operative MR-based positional sensing in closed MRI.IEEE Trans Med Imaging2024;43:439-48

[100]

Wasylczyk P,Tiwari MK,Bergeles C.Bio-compatible piezoresistive pressure sensing skin sleeve for millimetre-scale flexible robots: design, manufacturing and pitfalls. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2019 Jul 23-27; Berlin, Germany. IEEE; 2019. pp. 1657-61.

[101]

Yang Z,Itoh T.A novel MEMS compatible lab-on-a-tube technology.Lab Chip2014;14:4604-8

[102]

Detert M,Deckert M,Schmidt B.Using the hot embossing technology for the realization of microtechnical structures in medical imaging.Biomed Tech2012;57:599-602

[103]

Pothof F,Patel M,Paul O.128-Channel deep brain recording probe with heterogenously integrated analog CMOS readout for focal epilepsy localization. In: 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS); 2015 Jun 21-25; Anchorage, USA. IEEE; 2015. pp. 1711-4.

[104]

Pothof F,Leupold J.Fabrication and characterization of a high-resolution neural probe for stereoelectroencephalography and single neuron recording. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2014 Aug 26-30; Chicago, USA. IEEE; 2014. pp. 5244-7.

[105]

Schwaerzle M,Paul O.High-resolution optrode with integrated light source for deeper brain regions.Procedia Eng2015;120:924-7

[106]

Mekaru H,Ohtomo A,Goto H.Soft patterning on cylindrical surface of plastic optical fiber.J Vac Sci Technol B2011;29:06FC07

[107]

Mekaru H,Takagi H,Goto H.High-speed imprinting on plastic optical fibers using cylindrical mold with hybrid microstructures.Microelect Eng2013;110:156-62

[108]

Ding Y,Wu Y.Porous conductive textiles for wearable electronics.Chem Rev2024;124:1535-648

[109]

Sadri B.Fibrous wearable and implantable bioelectronics.Appl Phys Rev2023;10:031303 PMCID:PMC10364553

[110]

Zhou S,Zhang Q.Recent advance on fiber optic SPR/LSPR-based ultra-sensitive biosensors using novel structures and emerging signal amplification strategies.Opt Laser Technol2024;175:110783

[111]

Guo J,Yang C,Kong L.Stretchable and temperature-sensitive polymer optical fibers for wearable health monitoring.Adv Funct Mater2019;29:1902898

[112]

Abdelaziz MEMK,Gil Rosa B.Fiberbots: robotic fibers for high-precision minimally invasive surgery.Sci Adv2024;10:eadj1984 PMCID:PMC10798568

[113]

Park J,Kim J.Microscale biosensor array based on flexible polymeric platform toward lab-on-a-needle: real-time multiparameter biomedical assays on curved needle surfaces.ACS Sens2020;5:1363-73

[114]

Lin R,Li RR.Needle-integrated ultrathin bioimpedance microsensor array for early detection of extravasation.Biosens Bioelectron2022;216:114651

[115]

Liu Z,Huang J,Wang Z.A review: flexible devices for nerve stimulation.Soft Sci2024;4:4

[116]

Vazquez R,Winkler SA.Stretchable sensor materials applicable to radiofrequency coil design in magnetic resonance imaging: a review.Sensors2024;24:3390 PMCID:PMC11174967

[117]

Yaras YS,Herzka DA.Real-time device tracking under MRI using an acousto-optic active marker.Magn Reson Med2021;85:2904-14 PMCID:PMC7902374

[118]

Jin J,Zhang Z,Wang Y.Progress on flexible tactile sensors in robotic applications on objects properties recognition, manipulation and human-machine interactions.Soft Sci2023;3:8

[119]

Sun G,Jiang Y,Meng C.Recent advances in flexible and soft gel-based pressure sensors.Soft Sci2022;2:17

[120]

Kim J,Lee M.Progresses and perspectives of 1D soft sensing devices for healthcare applications.Adv Funct Mater2024;34;2406651

[121]

Duan S,Hong J.Water-modulated biomimetic hyper-attribute-gel electronic skin for robotics and skin-attachable wearables.ACS Nano2023:1355-71

[122]

Zhu P,Pang J,Zhang S.Latest developments and trends in electronic skin devices.Soft Sci2024;4:17

[123]

Kim KH,Ko YJ.Body-attachable multifunctional electronic skins for bio-signal monitoring and therapeutic applications.Soft Sci2024;4:24

[124]

Gao W,He J.Recent advances in ultrathin materials and their applications in e-skin.InfoMat2023;5:e12426

[125]

Hao Y,Liu H.A stretchable, breathable, and self-adhesive electronic skin with multimodal sensing capabilities for human-centered healthcare.Adv Funct Mater2023;33:2303881

[126]

Yang JC,Kwon SY,Bao Z.Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics.Adv Mater2019;31:e1904765

[127]

Mi Q,Ge D.Scalable manufacture of efficient, highly stable, and compact 3D imitation skin-based elastic triboelectric nanogenerator for energy harvesting and self-powered sensing.Nano Energy2024;131:110283

[128]

Ge D,Gong R.Mass-producible 3D hair structure-editable silk-based electronic skin for multiscenario signal monitoring and emergency alarming system.Adv Funct Mater2023;33:2305328

[129]

Lai Y,Lu C.Extraordinarily sensitive and low-voltage operational cloth-based electronic skin for wearable sensing and multifunctional integration uses: a tactile-induced insulating-to-conducting transition.Adv Funct Mater2016;26:1286-95

[130]

Jiang L,Wang W.Soft materials for wearable supercapacitors.Soft Sci2021;1:5

[131]

Yan C,Kang W.Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors.Adv Mater2014;26:2022-7

[132]

Geng W,Menon C.Conductive thermoplastic elastomer composite capacitive strain sensors and their application in a wearable device for quantitative joint angle prediction.ACS Appl Polym Mater2021;3:122-9

[133]

Zhou J,Fei P.Flexible piezotronic strain sensor.Nano Lett2008;8:3035-40

[134]

Shuai L,Zhang P,Pu X.Stretchable, self-healing, conductive hydrogel fibers for strain sensing and triboelectric energy-harvesting smart textiles.Nano Energy2020;78:105389

[135]

Dong L,Bian C,Wang J.A high sensitivity optical fiber strain sensor based on hollow core tapering.Opt Fiber Technol2020;56:102179

[136]

Liu S,He J,Wu Q.Fabrication techniques and sensing mechanisms of textile-based strain sensors: from spatial 1D and 2D perspectives.Adv Fiber Mater2024;6:36-67

[137]

Li L,Xiong Y.Ultrastretchable fiber sensor with high sensitivity in whole workable range for wearable electronics and implantable medicine.Adv Sci2018;5:1800558 PMCID:PMC6145303

[138]

Zhang J,Chen K,Li G.Revolutionizing digital healthcare networks with wearable strain sensors using sustainable fibers.SusMat2024;4:e207

[139]

Wei X,Meng C,Shi Q.Multimodal electronic textiles for intelligent human-machine interfaces.Soft Sci2023;3:17

[140]

Sheng F,Zhang Y.Ultrastretchable organogel/silicone fiber-helical sensors for self-powered implantable ligament strain monitoring.ACS Nano2022;16:10958-67

[141]

Ning C,Jiang Y.Helical fiber strain sensors based on triboelectric nanogenerators for self-powered human respiratory monitoring.ACS Nano2022;16:2811-21

[142]

Zhou Z,Li X.Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays.Nat Electron2020;3:571-8

[143]

Frutiger A,Vogt DM.Capacitive soft strain sensors via multicore-shell fiber printing.Adv Mater2015;27:2440-6

[144]

Lee J,Pellegrino GS.Stretchable and suturable fibre sensors for wireless monitoring of connective tissue strain.Nat Electron2021;4:291-301

[145]

Tu J,Li W.Electronic skins with multimodal sensing and perception.Soft Sci2023;3:24

[146]

Lan L,Yao Y,Ying Y.One-step and spontaneous in situ growth of popcorn-like nanostructures on stretchable double-twisted fiber for ultrasensitive textile pressure sensor.ACS Appl Mater Interfaces2020;12:10689-96

[147]

Jiang X,Fu Y.Highly compressible and sensitive pressure sensor under large strain based on 3D porous reduced graphene oxide fiber fabrics in wide compression strains.ACS Appl Mater Interfaces2019;11:37051-9

[148]

Lan L,Yao Y,Ying Y.A stretchable and conductive fiber for multifunctional sensing and energy harvesting.Nano Energy2021;84:105954

[149]

Chhetry A,Park JY.A flexible and highly sensitive capacitive pressure sensor based on conductive fibers with a microporous dielectric for wearable electronics.J Mater Chem C2017;5:10068-76

[150]

Chen Y,Xu R,Yu D.A highly sensitive and wearable pressure sensor based on conductive polyacrylonitrile nanofibrous membrane via electroless silver plating.Chem Eng J2020;394:124960

[151]

Fan W,Meng K.Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring.Sci Adv2020;6:eaay2840 PMCID:PMC7069695

[152]

Wang Y,Wei X,Li Z.A dual-mode electronic skin textile for pressure and temperature sensing.Chem Eng J2021;425:130599

[153]

Fan W,Wu F.An antisweat interference and highly sensitive temperature sensor based on poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) fiber coated with polyurethane/graphene for real-time monitoring of body temperature.ACS Nano2023;17:21073-82 PMCID:PMC10655239

[154]

Yun J.Recent progress in thermal management for flexible/wearable devices.Soft Sci2023;3:12

[155]

Wang W,Wang H.A breathable, stretchable, and self-calibrated multimodal electronic skin based on hydrogel microstructures for wireless wearables.Adv Funct Mater2024;34:2316339

[156]

Li Q,Tao XM.Review of flexible temperature sensing networks for wearable physiological monitoring.Adv Healthc Mater2017;6:1601371

[157]

Husain M.Preliminary investigations into the development of textile based temperature sensor for healthcare applications.Fibers2013;1:2-10

[158]

Kumar SRS,Alshareef HN.Enhanced high temperature thermoelectric response of sulphuric acid treated conducting polymer thin films.J Mater Chem C2016;4:215-21

[159]

Lee J,Chun S.Intrinsically strain-insensitive, hyperelastic temperature-sensing fiber with compressed micro-wrinkles for integrated textronics.Adv Mater Technol2020;5:2000073

[160]

Li F,Lin X,Zhang T.Wearable temperature sensor with high resolution for skin temperature monitoring.ACS Appl Mater Interfaces2022;14:43844-52

[161]

Trung TQ,Dang TML,Park SY.Freestanding, fiber-based, wearable temperature sensor with tunable thermal index for healthcare monitoring.Adv Healthc Mater2018;7:e1800074

[162]

Trung TQ,Ramasundaram S,Park SY.A stretchable strain-insensitive temperature sensor based on free-standing elastomeric composite fibers for on-body monitoring of skin temperature.ACS Appl Mater Interfaces2019;11:2317-27

[163]

Afroj S,Wang Z.Engineering graphene flakes for wearable textile sensors via highly scalable and ultrafast yarn dyeing technique.ACS Nano2019;13:3847-57 PMCID:PMC6497368

[164]

Bubnova O,Wang H.Semi-metallic polymers.Nat Mater2014;13:190-4

[165]

Ryu WM,Son Y,Park S.Thermally drawn multi-material fibers based on polymer nanocomposite for continuous temperature sensing.Adv Fiber Mater2023;5:1712-24

[166]

Wang Z,Liu J.A flexible bimodal sensor based on an electrospun nanofibrous structure for simultaneous pressure-temperature detection.Nanoscale2019;11:14242-9

[167]

Zhao X,Tang CY.Smart Ti3C2Tx MXene fabric with fast humidity response and joule heating for healthcare and medical therapy applications.ACS Nano2020;14:8793-805

[168]

Hu X,Zhu C.Upgrading electricity generation and electromagnetic interference shielding efficiency via phase-change feedback and simple origami strategy.Adv Sci2023;10:e2206835 PMCID:PMC10190587

[169]

Tan C,Wu XJ.Recent advances in ultrathin two-dimensional nanomaterials.Chem Rev2017;117:6225-331

[170]

Cheng Y,Wang R.Highly stretchable and conductive copper nanowire based fibers with hierarchical structure for wearable heaters.ACS Appl Mater Interfaces2016;8:32925-33

[171]

Li Y,Wang S.Dopamine-induced high fiber wetness for improved conductive fiber bundles with striated polypyrrole coating toward wearable healthcare electronics.Chem Eng J2024;485:149888

[172]

Villatoro E,Villatoro J,Albert J.Dual-mode comb plasmonic optical fiber sensing.ACS Sens2024;9:3027-36 PMCID:PMC11218750

[173]

Qian Y,Zhang D,Li B.A high-performance long-range surface plasmon resonance sensor based on the co-modification of carbon nanotubes and gold nanorods.Opt Fiber Technol2023;80:103460

[174]

Viegas D,Santos JL.Sensitivity improvement of a humidity sensor based on silica nanospheres on a long-period fiber grating.Sensors2009;9:519-27 PMCID:PMC3280760

[175]

Fenjan DA,Yusr HA.Graphene oxide-coated mach-zehnder interferometer based ammonia gas sensor.Nexo Rev Cient2024;36:1132-40

[176]

Zhang S,Zhang Y,Zheng W.Multichannel fiber optic SPR sensors: realization methods, application status, and future prospects.Laser Photonics Rev2022;16:2200009

[177]

Li Z,Liu F.Operando optical fiber monitoring of nanoscale and fast temperature changes during photo-electrocatalytic reactions.Light Sci Appl2022;11:220 PMCID:PMC9279429

[178]

Wang Q,Yin P.Research progress of resonance optical fiber sensors modified by low-dimensional materials.Laser Photonics Rev2023;17:2200859

[179]

Ning W,Zhou C.An ultrasensitive J-shaped optical fiber LSPR aptasensor for the detection of Helicobacter pylori.Anal Chim Acta2023;1278:341733

[180]

Pathak A.Ultra-selective fiber optic SPR platform for the sensing of dopamine in synthetic cerebrospinal fluid incorporating permselective nafion membrane and surface imprinted MWCNTs-PPy matrix.Biosens Bioelectron2019;133:205-14

[181]

Gomez D,Hayes-gill BR,Korposh S.Polymeric optical fibre sensor coated by SiO2 nanoparticles for humidity sensing in the skin microenvironment.Sensor Actuat B Chem2018;254:887-95

[182]

Jain S,Gupta V.Smartphone integrated handheld long range surface plasmon resonance based fiber-optic biosensor with tunable SiO2 sensing matrix.Biosens Bioelectron2022;201:113919

[183]

Samavati Z,Ismail AF,Rahman MA.Comprehensive investigation of evanescent wave optical fiber refractive index sensor coated with ZnO nanoparticles.Opt Fiber Technol2019;52:101976

[184]

Chauhan M.ZnO nanostructures coated no-core fiber refractive index sensor.Mat Sci Semicon Proc2022;147:106757

[185]

Yin Z,Li K,Li J.Modulation of the sensing bandwidth of dual-channel SPR sensors by TiO2 film.Opt Laser Technol2024;169:110105

[186]

Imas JJ,Villar ID,Zamarreno CR.Mode transitions and thickness measurements during deposition of nanoscale TiO2 coatings on tilted fiber bragg gratings.J Lightwave Technol2022;40:6006-12

[187]

Imas JJ,Del Villar I,Zamarreño CR.All-fiber ellipsometer for nanoscale dielectric coatings.Opto Electron Adv2023;10:230048

[188]

Sangeetha M.Ultra sensitive molybdenum disulfide (MoS2)/graphene based hybrid sensor for the detection of NO2 and formaldehyde gases by fiber optic clad modified method.Opt Laser Technol2020;127:106193

[189]

Li X,Zhou X.In-situ detection scheme for EGFR gene with temperature and pH compensation using a triple-channel optical fiber biosensor.Anal Chim Acta2023;1263:341286

[190]

Wang Q,Song H,Jing J.A dual channel self-compensation optical fiber biosensor based on coupling of surface plasmon polariton.Opt Laser Technol2020;124:106002

[191]

Siyu E,Han B,Wu Q.Two-channel surface plasmon resonance sensor for simultaneous measurement of seawater salinity and temperature.IEEE Trans Instrum Meas2020;69:7191-9

[192]

Zheng W,Zhang YN,Zhao Y.An in-fiber sensor for simultaneous measurement of cholesterol concentration and temperature based on SPR and MMI.Anal Chim Acta2024;1287:342043

[193]

Xiang S,Miao X.An ultra-sensitive multi-functional optical micro/nanofiber based on stretchable encapsulation.Sensors2021;21:7437 PMCID:PMC8618424

[194]

Chen M,Liang H.Stretchable and strain-decoupled fluorescent optical fiber sensor for body temperature and movement monitoring.ACS Photonics2022;9:1415-24

[195]

Jiang Q,Chen Z.Wearable strain sensor integrating mechanoluminescent fiber with a flexible printed circuit.Opt Lett2024;49:1221-4

[196]

Guo J,Yang C,Kong L.Stretchable and upconversion-luminescent polymeric optical sensor for wearable multifunctional sensing.Opt Lett2019;44:5747-50

[197]

Quandt BM,Ferrario D.Body-monitoring with photonic textiles: a reflective heartbeat sensor based on polymer optical fibres.J R Soc Interface2017;14:20170060 PMCID:PMC5378150

[198]

Schift H,Schütz U,Vogelsang K.Surface structuring of textile fibers using roll embossing.Microelect Eng2006;83:855-8

[199]

Dai M,Sánchez C.Surface structuring of bi-component fibres with photoembossing.RSC Adv2012;2:9964

[200]

Mekaru H,Takagi H.Effect of buffer materials on thermal imprint on plastic optical fiber.Microsyst Technol2013;19:325-33

[201]

Wang S,Wang Q.Flexible optoelectronic multimodal proximity/pressure/temperature sensors with low signal interference.Adv Mater2023;35:e2304701

[202]

Mekaru H,Takagi H,Goto H.Development of reel-to-reel process system for roller-imprint on plastic fibers.Microelect Eng2011;88:2059-62

[203]

Yu C.Nanoimprint technology for patterning functional materials and its applications.Microelect Eng2015;132:98-119

[204]

Kooy N,Pin LT.A review of roll-to-roll nanoimprint lithography.Nanoscale Res Lett2014;9:320 PMCID:PMC4079920

[205]

Ohtomo A,Goto H,Takagi H.Fast and continuous patterning on the surface of plastic fiber by using thermal roller imprint.J Vac Sci Technol B2012;30:06FB01

[206]

Giovannini G,Boesel LF.Lab-on-a-fiber wearable multi-sensor for monitoring wound healing.Adv Healthc Mater2024;13:e2302603

[207]

Li Y,Meng C,Zhang L.A brief review of miniature flexible and soft tactile sensors for interventional catheter applications.Soft Sci2022;2:6

[208]

Park J,Kim K,Seo JB.Biopsy needle integrated with electrical impedance sensing microelectrode array towards real-time needle guidance and tissue discrimination.Sci Rep2018;8:264 PMCID:PMC5762724

[209]

Mishra V,Hartov A,Seigne J.Electrical property sensing biopsy needle for prostate cancer detection.Prostate2013;73:1603-13

[210]

Yu X,Ning X.Needle-shaped ultrathin piezoelectric microsystem for guided tissue targeting via mechanical sensing.Nat Biomed Eng2018;2:165-72

[211]

Park J,Jeong Y.Real-time internal steam pop detection during radiofrequency ablation with a radiofrequency ablation needle integrated with a temperature and pressure sensor: preclinical and clinical pilot tests.Adv Sci2021;8:e2100725 PMCID:PMC8498861

[212]

Jeong Y,Lee J,Park I.Ultrathin, biocompatible, and flexible pressure sensor with a wide pressure range and its biomedical application.ACS Sens2020;5:481-9

[213]

Park YL,Daniel B.Real-time estimation of 3-D needle shape and deflection for MRI-guided interventions.IEEE ASME Trans Mechatron2010;15:906-15 PMCID:PMC4577522

[214]

Zhou C,Wang J.Ferromagnetic soft catheter robots for minimally invasive bioprinting.Nat Commun2021;12:5072 PMCID:PMC8379157

[215]

Chen R,Anikeeva P.Neural recording and modulation technologies.Nat Rev Mater2017;2:16093 PMCID:PMC6707077

[216]

Pothof F,Patel M,Paul O.Heterogeneous integration of analog CMOS chips on flexible substrates for high-resolution deep brain epilepsy diagnosis.Procedia Eng2015;120:920-3

[217]

Raducanu BC,Lopez CM.Time multiplexed active neural probe with 1356 parallel recording sites.Sensors2017;17:2388 PMCID:PMC5677417

[218]

Steinmetz NA,Lebedeva A.Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain recordings.Science2021;372:eabf4588 PMCID:PMC8244810

[219]

Chen G,Zhou Q.Temperature-gated light-guiding hydrogel fiber for thermoregulation during optogenetic neuromodulation.Adv Fiber Mater2023;5:968-78

[220]

Kim Y,Yoo J.Multifunctional and flexible neural probe with thermally drawn fibers for bidirectional synaptic probing in the brain.ACS Nano2024;18:13277-85 PMCID:PMC11112973

[221]

Pu Z,Wu H,Yu H.Cylindrical electrochemical sensor fabricated by rotated inkjet printing on flexible substrate for glucose monitoring. In: 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS); 2017 Jun 18-22; Kaohsiung, Taiwan. IEEE; 2017. pp. 1241-4.

[222]

Marvin JS,Magloire V.A genetically encoded fluorescent sensor for in vivo imaging of GABA.Nat Methods2019;16:763-70

[223]

Krämer J,Grimm LM,Picchetti P.Molecular probes, chemosensors, and nanosensors for optical detection of biorelevant molecules and ions in aqueous media and biofluids.Chem Rev2022;122:3459-636 PMCID:PMC8832467

[224]

Musolino S,Tsiminis G,Monro TM.Portable optical fiber probe for in vivo brain temperature measurements.Biomed Opt Express2016;7:3069-77 PMCID:PMC4986814

[225]

Shin J,Bai W.Bioresorbable optical sensor systems for monitoring of intracranial pressure and temperature.Sci Adv2019;5:eaaw1899 PMCID:PMC6611687

[226]

Crane BC,Gopal P.The development of a continuous intravascular glucose monitoring sensor.J Diabetes Sci Technol2015;9:751-61 PMCID:PMC4525654

[227]

Forderhase AG,Norwood E,Sombers LA.Optimized fabrication of carbon-fiber microbiosensors for codetection of glucose and dopamine in brain tissue.ACS Sens2024;9:2662-72

[228]

Nan K,Chan WW.Low-cost gastrointestinal manometry via silicone-liquid-metal pressure transducers resembling a quipu.Nat Biomed Eng2022;6:1092-104

[229]

Nam S,Sunwoo SH.Needle-like multifunctional biphasic microfiber for minimally invasive implantable bioelectronics.Adv Mater2024;36:e2404101

[230]

Abdelaziz MEMK,Hamady M,Temelkuran B.X-ray to MR: the progress of flexible instruments for endovascular navigation.Prog Biomed Eng2021;3:032004

[231]

Settecase F,Lillaney P,Hetts SW.Magnetic resonance-guided passive catheter tracking for endovascular therapy.Magn Reson Imaging Clin N Am2015;23:591-605 PMCID:PMC4621770

[232]

Ratnayaka K,Hansen MS.Real-time MRI-guided right heart catheterization in adults using passive catheters.Eur Heart J2013;34:380-9 PMCID:PMC3561614

[233]

Ratnayaka K,Schenke WH.Magnetic resonance imaging-guided transcatheter cavopulmonary shunt.JACC Cardiovasc Interv2016;9:959-70 PMCID:PMC5227171

[234]

Yildirim KD,Campbell-Washburn AE,Kocaturk O.A cardiovascular magnetic resonance (CMR) safe metal braided catheter design for interventional CMR at 1.5 T: freedom from radiofrequency induced heating and preserved mechanical performance.J Cardiovasc Magn Reson2019;21:16 PMCID:PMC6404324

[235]

Chubb H,Whitaker J,Razavi R.Cardiac electrophysiology under MRI guidance: an emerging technology.Arrhythm Electrophysiol Rev2017;6:85-93 PMCID:PMC5517375

[236]

Saikus CE,Barbash IM.MRI-guided vascular access with an active visualization needle.J Magn Reson Imaging2011;34:1159-66 PMCID:PMC3201741

[237]

Kaiser M,Rube MA.Resonant marker design and fabrication techniques for device visualization during interventional magnetic resonance imaging.Biomed Tech2015;60:89-103

[238]

Su H,Cleary K.State of the art and future opportunities in MRI-guided robot-assisted surgery and interventions.Proc IEEE Inst Electr Electron Eng2022;110:968-92 PMCID:PMC9231642

[239]

Ellersiek D,Bruners P.A monolithically fabricated flexible resonant circuit for catheter tracking in magnetic resonance imaging.Sensor Actuat B Chem2010;144:432-6

AI Summary AI Mindmap
PDF

70

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/