A review: exploring the designs of bio-bots

Shuchang He , Songyuan Liu , Xuegang Li , Maosheng Ye , Huaping Wu , Jizhou Song

Soft Science ›› 2025, Vol. 5 ›› Issue (1) : 5

PDF
Soft Science ›› 2025, Vol. 5 ›› Issue (1) :5 DOI: 10.20517/ss.2024.50
Review Article

A review: exploring the designs of bio-bots

Author information +
History +
PDF

Abstract

Biohybrid robots (bio-bots), made of biocompatible skeletons with living drives (e.g., biological living tissues or cells), represent a new direction of robotics technology due to their attractive advantages of softness, flexibility, adaptability and biocompatibility, accompanied by the remarkable capabilities of self-assembly, self-healing, and self-replication. This paper provides a brief review of recent advances of bio-bots from a functional view, including walking, swimming and non-locomotion bio-bots, by exploring their structure designs along with their operational principles. The performances of these bio-bots are summarized and compared followed by the discussions of challenges and perspectives, which provide valuable insight and guidance for future developments of bio-bots.

Keywords

Biohybrid robot / bio-bot / robotics technology / structure design / living drive

Cite this article

Download citation ▾
Shuchang He, Songyuan Liu, Xuegang Li, Maosheng Ye, Huaping Wu, Jizhou Song. A review: exploring the designs of bio-bots. Soft Science, 2025, 5(1): 5 DOI:10.20517/ss.2024.50

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chan V,Bashir R.Utilization and control of bioactuators across multiple length scales.Lab Chip2014;14:653-70

[2]

Semini C,Guglielmino E,Cannella F.Design of HyQ - a hydraulically and electrically actuated quadruped robot.Proc Inst Mech Eng Part I J Syst Control Eng2011;225:831-49

[3]

Hutter M,Lauber A.ANYmal - toward legged robots for harsh environments.Adv Robot2017;31:918-31

[4]

Kimura H,Sakurama K.Realization of dynamic walking and running of the quadruped using neural oscillator.Auton Robot1999;7:247-58

[5]

Biswal P.Development of quadruped walking robots: a review.Ain Shams Eng J2021;12:2017-31

[6]

Fan Y,Wang C,Tang Z.A review of quadruped robots: structure, control, and autonomous motion.Adv Intell Syst2024;6:2300783

[7]

Ha S.Quadrupedal robots trot into the wild.Sci Robot2020;5:eabe5218

[8]

Kim D.Quadruped robots venture into the wild with open eyes.Sci Robot2022;7:eabn6798

[9]

Marquet, F.; Krut, S.; Company, O.; Pierrot, F. ARCHI: a new redundant parallel mechanism - modeling, control and first results. In Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, USA, October 29, 2001 - November 03, 2001; Publisher: IEEE; pp 183-188.

[10]

Gravagne, I.A.; Walker, I.D. On the kinematics of remotely-actuated continuum robots. In Proceedings of the 2000 IEEE International Conference on Robotics and Automation 2000 ICRA. Millennium Conference, San Francisco, USA, April 24-28, 2000; Publisher: IEEE; pp 2544-50.

[11]

Burgner-kahrs J,Choset H.Continuum robots for medical applications: a survey.IEEE Trans Robot2015;31:1261-80

[12]

Pfeifer R,Iida F.Self-organization, embodiment, and biologically inspired robotics.Science2007;318:1088-93

[13]

Guo B,Zhao Z,Lei H.Design and experiments of an origami-inspired pneumatic flexible manipulator.Acta Mech Solida Sin2023;36:254-61

[14]

Teoh, Z.E.; Fuller, S.B.; Chirarattananon, P.; Prez-Arancibia, N.O.; Greenberg, J.D.; Wood, R.J. A hovering flapping-wing microrobot with altitude control and passive upright stability. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, October 7-12, 2012; Publisher: IEEE; pp 3209-16.

[15]

Morrow, J.; Shin, H.S.; Phillips-Grafflin, C. Improving soft pneumatic actuator fingers through integration of soft sensors, position and force control, and rigid fingernails. In 2016 IEEE International Conference on Robotics and Automation, Stockholm, Sweden, May 16-21, 2016; Publisher: IEEE; pp 5024-503.

[16]

Stokes AA,Morin SA,Whitesides GM.A hybrid combining hard and soft robots.Soft Robotics2014;1:70-4

[17]

Li T,Liang Y.Fast-moving soft electronic fish.Sci Adv2017;3:e1602045 PMCID:PMC5381956

[18]

Shintake J,Schubert B,Shea H.Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators.Adv Mater2016;28:231-8

[19]

Shian S,Clarke DR.Dielectric elastomer based “grippers” for soft robotics.Adv Mater2015;27:6814-9

[20]

Ji X,Cacucciolo V.An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators.Sci Robot2019;4:eaaz6451

[21]

Yang S.A tutorial on the stability and bifurcation analysis of the electromechanical behaviour of soft materials.Appl Mech Rev2023;75:044801

[22]

Xia Y,Zhang F,Leng J.A review of shape memory polymers and composites: mechanisms, materials, and applications.Adv Mater2021;33:e2000713

[23]

Keneth E, Kamyshny A, Totaro M, Beccai L, Magdassi S. 3D printing materials for soft robotics.Adv Mater2021;33:e2003387

[24]

Zhang C,Zhang K,Zhao Q.Repeatedly programmable liquid crystal dielectric elastomer with multimodal actuation.Adv Mater2024;36:e2313078

[25]

Ni C,Yin Y.Shape memory polymer with programmable recovery onset.Nature2023;622:748-53

[26]

Wang C,Chen J.Soft ultrathin electronics innervated adaptive fully soft robots.Adv Mater2018;30:1870087

[27]

He Q,Song Z.Bioinspired design of vascular artificial muscle.Adv Mater Technol2019;4:1800244

[28]

He Q,Wang Y,Cai S.Recyclable and self-repairable fluid-driven liquid crystal elastomer actuator.ACS Appl Mater Interfaces2020;12:35464-74

[29]

He Q,Wang Y,Tolley MT.Electrically controlled liquid crystal elastomer-based soft tubular actuator with multimodal actuation.Sci Adv2019;5:eaax5746 PMCID:PMC6788870

[30]

Ramezani A,Hutchinson S.A biomimetic robotic platform to study flight specializations of bats.Sci Robot2017;2:eaal2505

[31]

Karásek M,De Wagter C,de Croon GCHE.A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns.Science2018;361:1089-94

[32]

Li G,Zhou F.Self-powered soft robot in the Mariana Trench.Nature2021;591:66-71

[33]

Yin C,Fu S.Visible light-driven jellyfish-like miniature swimming soft robot.ACS Appl Mater Interfaces2021;13:47147-54

[34]

Ren Z,Dong X.Multi-functional soft-bodied jellyfish-like swimming.Nat Commun2019;10:2703 PMCID:PMC6606650

[35]

Wang Y,Liu M.Insect-scale jumping robots enabled by a dynamic buckling cascade.Proc Natl Acad Sci U S A2023;120:e2210651120 PMCID:PMC9945960

[36]

Chen R,Guo J.Legless soft robots capable of rapid, continuous, and steered jumping.Nat Commun2021;12:7028 PMCID:PMC8651723

[37]

Di Y,Wen Y.Inchworm-inspired soft robot with controllable locomotion based on self-sensing of deformation.IEEE Robot Autom Lett2024;9:4345-52

[38]

Zhang Z,Wang S,Liang B.Design and modeling of a parallel-pipe-crawling pneumatic soft robot.IEEE Access2019;7:134301-17

[39]

Sun Y,Wu M.Origami-inspired folding assembly of dielectric elastomers for programmable soft robots.Microsyst Nanoeng2022;8:37 PMCID:PMC8971403

[40]

Sitti M.Miniature soft robots - road to the clinic.Nat Rev Mater2018;3:74-5

[41]

Cianchetti M,Menciassi A.Biomedical applications of soft robotics.Nat Rev Mater2018;3:143-53

[42]

Pena-Francesch A,Demirel MC.Biosynthetic self-healing materials for soft machines.Nat Mater2020;19:1230-5 PMCID:PMC7610468

[43]

Yang GZ,Dupont PE.The grand challenges of Science Robotics.Sci Robot2018;3:eaar7650

[44]

Raman R,Seo Y.Damage, healing, and remodeling in optogenetic skeletal muscle bioactuators.Adv Healthc Mater2017;6:1700030 PMCID:PMC8257561

[45]

Wang W,Ahmed S,Sen A.Small power: autonomous nano- and micromotors propelled by self-generated gradients.Nano Today2013;8:531-54

[46]

Sakar MS,Boudou T.Formation and optogenetic control of engineered 3D skeletal muscle bioactuators.Lab Chip2012;12:4976-85 PMCID:PMC3586563

[47]

Legant WR,Yang MT,McMeeking RM.Microfabricated tissue gauges to measure and manipulate forces from 3D microtissues.Proc Natl Acad Sci U S A2009;106:10097-102 PMCID:PMC2700905

[48]

Bajaj P,Millet L.Patterning the differentiation of C2C12 skeletal myoblasts.Integr Biol2011;3:897-909

[49]

Leng Y,Zheng F.Advances in in vitro models of neuromuscular junction: focusing on organ-on-a-chip, organoids, and biohybrid robotics.Adv Mater2023;35:e2211059

[50]

Gao C,Pan X.Neuromuscular organoids model spinal neuromuscular pathologies in C9orf72 amyotrophic lateral sclerosis.Cell Rep2024;43:113892

[51]

Aydin O,Elhebeary M.Development of 3D neuromuscular bioactuators.APL Bioeng2020;4:016107 PMCID:PMC7064368

[52]

Shin MK,Lee JE.Generation of skeletal muscle organoids from human pluripotent stem cells to model myogenesis and muscle regeneration.Int J Mol Sci2022;23:5108 PMCID:PMC9103168

[53]

Raman R,Bashir R.A modular approach to the design, fabrication, and characterization of muscle-powered biological machines.Nat Protoc2017;12:519-33

[54]

Gapinske L,Caro-Rivera LM.Cryopreservation alters tissue structure and improves differentiation of engineered skeletal muscle.Tissue Eng Part A2023;29:557-68

[55]

Mestre R,Lefaix L.Improved performance of biohybrid muscle‐based bio‐bots doped with piezoelectric boron nitride nanotubes.Adv Materials Technologies2023;8:2200505

[56]

Kaufman CD,Cvetkovic C.Emergence of functional neuromuscular junctions in an engineered, multicellular spinal cord-muscle bioactuator.APL Bioeng2020;4:026104 PMCID:PMC7190368

[57]

Xi J,Montemagno CD.Self-assembled microdevices driven by muscle.Nat Mater2005;4:180-184

[58]

Feinberg AW,Shevkoplyas SS,Whitesides GM.Muscular thin films for building actuators and powering devices.Science2007;317:1366-70

[59]

Chan V,Collens MB,Saif TA.Development of miniaturized walking biological machines.Sci Rep2012;2:857 PMCID:PMC3498929

[60]

Kim J,Yang S.Establishment of a fabrication method for a long-term actuated hybrid cell robot.Lab Chip2007;7:1504-8

[61]

Kim TH,Lee C.Bio-inspired hybrid carbon nanotube muscles.Sci Rep2016;6:26687 PMCID:PMC4879622

[62]

Sun L,Bian F.Bioinspired soft robotic caterpillar with cardiomyocyte drivers.Adv Funct Mater2020;30:1907820

[63]

Zhang C,Wang W.Steering muscle-based bio-syncretic robot through bionic optimized biped mechanical design.Soft Robot2024;11:484-93

[64]

Kim Y,Zhang X.Remote control of muscle-driven miniature robots with battery-free wireless optoelectronics.Sci Robot2023;8:eadd1053

[65]

Wang J,Kim Y,Bashir R.Multi-actuator light-controlled biological robots.APL Bioeng2022;6:036103 PMCID:PMC9417571

[66]

Kinjo R,Jo B.Biohybrid bipedal robot powered by skeletal muscle tissue.Matter2024;7:948-62

[67]

Cvetkovic C,Chan V.Three-dimensionally printed biological machines powered by skeletal muscle.Proc Natl Acad Sci U S A2014;111:10125-30 PMCID:PMC4104884

[68]

Pagan-diaz GJ,Grant L.Simulation and fabrication of stronger, larger, and faster walking biohybrid machines.Adv Funct Mater2018;28:1801145

[69]

Raman R,Uzel SG.Optogenetic skeletal muscle-powered adaptive biological machines.Proc Natl Acad Sci U S A2016;113:3497-502 PMCID:PMC4822586

[70]

Nawroth JC,Feinberg AW.A tissue-engineered jellyfish with biomimetic propulsion.Nat Biotechnol2012;30:792-7 PMCID:PMC4026938

[71]

Takemura, R.; Akiyama, Y.; Hoshino, T.; Morishima, K. Chemical switching of jellyfish-shaped micro robot consisting only of cardiomyocyte gel. In 16th International Solid-State Sensors, Actuators and Microsystems Conference, Beijing, China, June 5-9, 2011; Publisher: IEEE; pp 2442-5.

[72]

Park SJ,Park KS.Phototactic guidance of a tissue-engineered soft-robotic ray.Science2016;353:158-62 PMCID:PMC5526330

[73]

Lee KY,Matthews DG.An autonomously swimming biohybrid fish designed with human cardiac biophysics.Science2022;375:639-47 PMCID:PMC8939435

[74]

Shin SR,Miccoli B.Electrically driven microengineered bioinspired soft robots.Adv Mater2018;30:1704189 PMCID:PMC6082116

[75]

Tetsuka H,Wang T,Shin SR.Wirelessly powered 3D printed hierarchical biohybrid robots with multiscale mechanical properties.Adv Funct Mater2022;32:2202674 PMCID:PMC9603592

[76]

Xu B,Hu Y.A remotely controlled transformable soft robot based on engineered cardiac tissue construct.Small2019;15:e1900006

[77]

Aydin O,Nuethong S.Neuromuscular actuation of biohybrid motile bots.Proc Natl Acad Sci U S A2019;116:19841-7 PMCID:PMC6778261

[78]

Williams BJ,Rajagopalan J.A self-propelled biohybrid swimmer at low Reynolds number.Nat Commun2014;5:3081

[79]

Zhang C,Wang W,Liu L.A manta ray-inspired biosyncretic robot with stable controllability by dynamic electric stimulation.Cyborg Bionic Syst2022;2022:2022/9891380

[80]

He S,Wu Y,Song J.A spring-shaped biohybrid swimmer powered by engineered skeletal muscle.Sci Sin-Phys Mech As2024;54:264509. (in Chinese)

[81]

Guix M,Patiño T.Biohybrid soft robots with self-stimulating skeletons.Sci Robot2021;6:eabe7577

[82]

Holley MT,Danielson C,Park K.Development and characterization of muscle-based actuators for self-stabilizing swimming biorobots.Lab Chip2016;16:3473-84

[83]

Shin SR,Zalabany M.Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators.ACS Nano2013;7:2369-80 PMCID:PMC3609875

[84]

Yalikun Y,Hiroki M.Insect muscular tissue-powered swimming robot.Actuators2019;8:30

[85]

Tanaka Y,Shimizu T.An actuated pump on-chip powered by cultured cardiomyocytes.Lab Chip2006;6:362-8

[86]

Tanaka Y,Shimizu T,Okano T.A micro-spherical heart pump powered by cultured cardiomyocytes.Lab Chip2007;7:207-12

[87]

Park J,Baek J.Micro pumping with cardiomyocyte-polymer hybrid.Lab Chip2007;7:1367-70

[88]

Li Z,Aydin O.Biohybrid valveless pump-bot powered by engineered skeletal muscle.Proc Natl Acad Sci U S A2019;116:1543-8 PMCID:PMC6358718

[89]

Li Z,Joy MSH.Adaptive biohybrid pumping machine with flow loop feedback.Biofabrication2022;14:025009

[90]

Li Z.Mechanics of biohybrid valveless pump-bot.Journal of Applied Mechanics2021;88:111004

[91]

Hasebe A,Takeoka S.Biohybrid actuators based on skeletal muscle-powered microgrooved ultrathin films consisting of poly(styrene-block-butadiene-block-styrene).ACS Biomater Sci Eng2019;5:5734-43

[92]

Liu X,Lu Y.In vitro cardiomyocyte-driven biogenerator based on aligned piezoelectric nanofibers.Nanoscale2016;8:7278-86

[93]

Fu F,Chen Z,Zhao Y.Bioinspired living structural color hydrogels.Sci Robot2018;3:eaar8580

[94]

Akiyama Y,Funakoshi K,Iwabuchi K.Atmospheric-operable bioactuator powered by insect muscle packaged with medium.Lab Chip2013;13:4870-80

[95]

Kabumoto, K.; Hoshino, T.; Morishima, K. Bio-robotics using interaction between neuron and muscle for development of living prosthesis. In Proceedings of the 2010 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, Tokyo, Japan, September 26-29, 2010; Publisher: IEEE; pp 419-24.

[96]

Morimoto Y,Takeuchi S.Biohybrid robot powered by an antagonistic pair of skeletal muscle tissues.Sci Robot2018;3:eaat4440

[97]

Morimoto Y,Takeuchi S.Biohybrid robot with skeletal muscle tissue covered with a collagen structure for moving in air.APL Bioeng2020;4:026101 PMCID:PMC7127912

[98]

Liu L,Wang W,Wang Y.Regulation of C2C12 differentiation and control of the beating dynamics of contractile cells for a muscle-driven biosyncretic crawler by electrical stimulation.Soft Robot2018;5:748-60

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/