High-performance metal oxide TFTs for flexible displays: materials, fabrication, architecture, and applications

Seong-Pil Jeon , Jeong-Wan Jo , Dayul Nam , Yong-Hoon Kim , Sung Kyu Park

Soft Science ›› 2025, Vol. 5 ›› Issue (1) : 1

PDF
Soft Science ›› 2025, Vol. 5 ›› Issue (1) :1 DOI: 10.20517/ss.2024.35
Review Article

High-performance metal oxide TFTs for flexible displays: materials, fabrication, architecture, and applications

Author information +
History +
PDF

Abstract

Flexible display technology is actively explored as a cornerstone of the next generation of wearables and soft electronics, set to revolutionize devices with its potential for lightweight, thin, and mechanically flexible features. Flexible thin-film transistors (TFTs) utilizing promising materials such as amorphous silicon (a-Si), low-temperature polysilicon (LTPS), metal oxides (MOs), and organic semiconductors are essential to enable flexible platforms. Among these, MO semiconductors stand out for flexible displays due to their high carrier mobility, low processing temperature requirements, excellent electrical uniformity, transparency to visible light, and cost-effectiveness. Furthermore, the maturity of MO TFT technology in the existing display industry and its compatibility with complementary-metal-oxide-semiconductor (CMOS) processes are driving active research toward integrated circuits for wearable electronics beyond display applications. Specifically, achieving both high mechanical flexibility and electrical performance in MO TFTs is crucial for implementing complex integrated circuits such as microprocessors and backplanes for ultra-high resolution augmented reality (AR)/virtual reality (VR) displays. Therefore, this review provides recent advances in high-mobility flexible MO TFTs, focusing on materials, fabrication processes, and device architecture engineering methods for implementing MO TFTs on flexible substrates, as well as strategies to reduce the impact of mechanical stress on MO TFTs. Next, MO TFT-based display and integrated circuit applications for next-generation flexible and stretchable electronics are introduced and discussed. Finally, the review concludes with an outlook on the potential achievements and prospects of MO TFTs in the development of next-generation flexible display technologies.

Keywords

Flexible electronics / metal oxide / thin-film transistors / high-k dielectric / wearable devices / flexible devices

Cite this article

Download citation ▾
Seong-Pil Jeon, Jeong-Wan Jo, Dayul Nam, Yong-Hoon Kim, Sung Kyu Park. High-performance metal oxide TFTs for flexible displays: materials, fabrication, architecture, and applications. Soft Science, 2025, 5(1): 1 DOI:10.20517/ss.2024.35

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Myny K.The development of flexible integrated circuits based on thin-film transistors.Nat Electron2018;1:30-9

[2]

Ohshima H.Mobile display technologies: past developments, present technologies, and future opportunities.Jpn J Appl Phys2014;53:03CA01

[3]

Hwang T,Kwon O.Inverters using only N-type indium gallium zinc oxide thin film transistors for flat panel display applications.Jpn J Appl Phys2011;50:03CB06

[4]

Chung K,Kim CW.Needs and solutions of future flat panel display for information technology industry. In: Digest. International Electron Devices Meeting; 2002 Dec 08-11; San Francisco, USA. IEEE; 2002. pp. 385-8.

[5]

Fukuda K.Recent progress in the development of printed thin-film transistors and circuits with high-resolution printing technology.Adv Mater2017;29:1602736

[6]

Zhang G,Haider M,Zhang D.Printing flexible thin-film transistors.Appl Phys Rev2023;10:031313

[7]

Acharya V,Mondal S.Electronic materials for solution-processed TFTs.Mater Res Express2023;10:082002

[8]

Park JW,Kim HJ.A review of low-temperature solution-processed metal oxide thin-film transistors for flexible electronics.Adv Funct Mater2020;30:1904632

[9]

Street RA.Thin-film transistors.Adv Mater2009;21:2007-22

[10]

Cantarella G,Meister T.Review of recent trends in flexible metal oxide thin-film transistors for analog applications.Flex Print Electron2020;5:033001

[11]

Fortunato E,Martins R.Oxide semiconductor thin-film transistors: a review of recent advances.Adv Mater2012;24:2945-86

[12]

Petti L,Vogt C.Metal oxide semiconductor thin-film transistors for flexible electronics.Appl Phys Rev2016;3:021303

[13]

Kimura M.Emerging applications using metal-oxide semiconductor thin-film devices.Jpn J Appl Phys2019;58:090503

[14]

Nomura K,Takagi A,Hirano M.Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors.Nature2004;432:488-92

[15]

Panca A,Faber H,Anthopoulos TD.Flexible oxide thin film transistors, memristors, and their integration.Adv Funct Mater2023;33:2213762

[16]

Park JS,Kim H.Review of recent developments in amorphous oxide semiconductor thin-film transistor devices.Thin Solid Films2012;520:1679-93

[17]

Heremans P,de Jamblinne de Meux A.Mechanical and electronic properties of thin-film transistors on plastic, and their integration in flexible electronic applications.Adv Mater2016;28:4266-82

[18]

Sanctis S.Multinary metal oxide semiconductors - A study of different material systems and their application in thin-film transistors. 2020.

[19]

Bonnassieux Y,Cao Y.The 2021 flexible and printed electronics roadmap.Flex Print Electron2021;6:023001

[20]

Choi MK,Hyeon T.Flexible quantum dot light-emitting diodes for next-generation displays.npj Flex Electron2018;2:23

[21]

Zhang D,Duan L.Emerging self-emissive technologies for flexible displays.Adv Mater2020;32:e1902391

[22]

Jeon Y,Yoo H.Recent advances in metal-oxide thin-film transistors: flexible/stretchable devices, integrated circuits, biosensors, and neuromorphic applications.Coatings2022;12:204

[23]

Jo JW,Heo JS,Park SK.Flexible metal oxide semiconductor devices made by solution methods.Chemistry2020;26:9126-56

[24]

Kim J,Kim MG.Vertically stacked full color quantum dots phototransistor arrays for high-resolution and enhanced color-selective imaging.Adv Mater2022;34:e2106215

[25]

Jang YW,Shin J.Autonomous artificial olfactory sensor systems with homeostasis recovery via a seamless neuromorphic architecture.Adv Mater2024;36:e2400614

[26]

Zhang X,Lee JM,Cho SW.Ultraviolet-sensitive and power-efficient oxide phototransistor enabled by nanometer-scale thickness engineering of InZnO semiconductor and gate bias modulation.Appl Phys Lett2023;123:261104

[27]

Kang SH,Lee JM.Full integration of highly stretchable inorganic transistors and circuits within molecular-tailored elastic substrates on a large scale.Nat Commun2024;15:2814 PMCID:PMC10985077

[28]

Jang Y,Jo J,Kim J.Improved dynamic responses of room-temperature operable field-effect-transistor gas sensors enabled by programmable multi-spectral ultraviolet illumination.Sensor Actuat B Chem2021;342:130058

[29]

Kim J,Kang YK.A skin-like two-dimensionally pixelized full-color quantum dot photodetector.Sci Adv2019;5:eaax8801 PMCID:PMC6874493

[30]

Kim K,Kim J,Kim Y.An ultra-flexible solution-processed metal-oxide/carbon nanotube complementary circuit amplifier with highly reliable electrical and mechanical stability.Adv Elect Mater2020;6:1900845

[31]

Jo C,Kim J,Kang DW.Enhanced electro-optical performance of inorganic perovskite/a-InGaZnO phototransistors enabled by Sn-Pb binary incorporation with a selective photonic deactivation.ACS Appl Mater Interfaces2020;12:58038-48

[32]

Kim K,Kang S.Stress-released amorphous oxide/carbon nanotube CMOS amplifier circuits for skin-compatible electronics.ACS Appl Electron Mater2021;3:4950-8

[33]

Kim KT,Kim M.Highly scalable and robust mesa-island-structure metal-oxide thin-film transistors and integrated circuits enabled by stress-diffusive manipulation.Adv Mater2020;32:e2003276

[34]

Kim J,Lee JM.Metal-oxide heterojunction optoelectronic synapse and multilevel memory devices enabled by broad spectral photocarrier modulation.Small2023;19:e2301186

[35]

Papadopoulos N,Ameys M.Touchscreen tags based on thin-film electronics for the Internet of Everything.Nat Electron2019;2:606-11 PMCID:PMC6927798

[36]

Biggs J,Kufel J.A natively flexible 32-bit Arm microprocessor.Nature2021;595:532-6

[37]

Ozer E,Myers J.A hardwired machine learning processing engine fabricated with submicron metal-oxide thin-film transistors on a flexible substrate.Nat Electron2020;3:419-25

[38]

Jo C,Kwak JY.Retina-inspired color-cognitive learning via chromatically controllable mixed quantum dot synaptic transistor arrays.Adv Mater2022;34:e2108979

[39]

Kwon SM,Song S.Large-area pixelized optoelectronic neuromorphic devices with multispectral light-modulated bidirectional synaptic circuits.Adv Mater2021;33:e2105017

[40]

Kwon SM,Cho SS.Bidirectionally modulated synaptic plasticity with optically tunable ionic electrolyte transistors.ACS Appl Electron Mater2022;4:2629-35

[41]

Cho SW,Kim YH.Progress of materials and devices for neuromorphic vision sensors.Nanomicro Lett2022;14:203 PMCID:PMC9569410

[42]

Cho SS,Jeong S.Highly adaptive and energy efficient neuromorphic computation enabled by deep-spike heterostructure photonic neuro-transistors.Nano Energy2022;104:107991

[43]

Kang C.Recent progress of organic light-emitting diode microdisplays for augmented reality/virtual reality applications.J Inform Display2022;23:19-32

[44]

Li W,Yang G,Li L.Review of nanoscale oxide thin-film transistors for emerging display and memory applications.IEEE Open J Immers Disp2024;1:51-61

[45]

Si M,Chen Z,Wang H.Scaled indium oxide transistors fabricated using atomic layer deposition.Nat Electron2022;5:164-70

[46]

Zhu J,Vitale SA.Low-thermal-budget synthesis of monolayer molybdenum disulfide for silicon back-end-of-line integration on a 200 mm platform.Nat Nanotechnol2023;18:456-63

[47]

Zhang J,Zhu J.Ultra-flexible monolithic 3D complementary metal-oxide-semiconductor electronics.Adv Funct Mater2023;33:2305379

[48]

Hua Q.Low-dimensional nanostructures for monolithic 3D-integrated flexible and stretchable electronics.Chem Soc Rev2024;53:1316-53

[49]

Wang X,Yang H,Chen H.Stretchable synaptic transistors based on the field effect for flexible neuromorphic electronics.Soft Sci2023;3:15

[50]

Na BS,Moon YG.InGaZnO-based stretchable ferroelectric memory transistor using patterned polyimide/polydimethylsiloxane hybrid substrate.J Nanosci Nanotechnol2016;16:10280-3

[51]

Cantarella G,Ferrero A.Design of engineered elastomeric substrate for stretchable active devices and sensors.Adv Funct Mater2018;28:1705132

[52]

Park K,Kim B.Stretchable, transparent zinc oxide thin film transistors.Adv Funct Mater2010;20:3577-82

[53]

Kim YH,Um JG,Jang J.Highly robust neutral plane oxide TFTs withstanding 0.25 mm bending radius for stretchable electronics.Sci Rep2016;6:25734 PMCID:PMC4863145

[54]

Kim JO,Kim D.Network structure modification-enabled hybrid polymer dielectric film with zirconia for the stretchable transistor applications.Adv Funct Mater2020;30:1906647

[55]

Parthiban S.Role of dopants as a carrier suppressor and strong oxygen binder in amorphous indium-oxide-based field effect transistor.J Mater Res2014;29:1585-96

[56]

Heo JS,Kim I,Kim YH.Suppression of interfacial disorders in solution-processed metal oxide thin-film transistors by Mg doping.ACS Appl Mater Interfaces2019;11:48054-61

[57]

Jeon SP,Kim I,Park SK.Enhanced interfacial integrity of amorphous oxide thin-film transistors by elemental diffusion of ternary oxide semiconductors.ACS Appl Mater Interfaces2020;12:57996-8004

[58]

Li H,Zhang Q.Influence of tungsten doping on the performance of indium–zinc–oxide thin-film transistors.IEEE Electron Device Lett2013;34:1268-70

[59]

Lee J,Kim T.Hydrogen-doping-enabled boosting of the carrier mobility and stability in amorphous IGZTO transistors.ACS Appl Mater Interfaces2022;14:57016-27

[60]

Banger KK,Mori K,Leedham T.High performance, low temperature solution-processed barium and strontium doped oxide thin film transistors.Chem Mater2014;26:1195-203 PMCID:PMC3914394

[61]

Lee S,Mativenga M.Highly robust bendable oxide thin-film transistors on polyimide substrates via mesh and strip patterning of device layers.Adv Funct Mater2017;27:1700437

[62]

Lee GJ,Lee S.Stress release effect of micro-hole arrays for flexible electrodes and thin film transistors.ACS Appl Mater Interfaces2020;12:19226-34

[63]

Yuan X,Gan X.Junctionless electric-double-layer thin-film transistors with logic functions.Phys Status Solidi RRL2023;17:2200480

[64]

Jiang J,Dou W.Junctionless flexible oxide-based thin-film transistors on paper substrates.IEEE Electron Device Lett2012;33:65-7

[65]

Zhou J,Guo L,Wan Q.Flexible transparent junctionless TFTs With oxygen-tuned indium-zinc-oxide channels.IEEE Electron Device Lett2013;34:888-90

[66]

Yuan X,Lei L.Junctionless electric-double-layer TFTs on paper substrate.ECS J Solid State Sci Technol2021;10:045004

[67]

Lee S,Jang J.Top interface engineering of flexible oxide thin-film transistors by splitting active layer.Adv Funct Mater2017;27:1604921

[68]

Nakata M,Eguchi T,Yamaguchi H.Effects of thermal annealing on ZnO thin-film transistor characteristics and the application of excimer laser annealing in plastic-based ZnO thin-film transistors.Jpn J Appl Phys2009;48:081608

[69]

Zhang J,Guo L.Flexible oxide-based thin-film transistors on plastic substrates for logic applications.J Mater Sci Technol2015;31:171-4

[70]

Cantarella G,Petti L.Flexible In–Ga–Zn–O-based circuits with two and three metal layers: simulation and fabrication study.IEEE Electron Device Lett2016;37:1582-5

[71]

Song K,Jun T,Kang HY.Fully flexible solution-deposited zno thin-film transistors.Adv Mater2010;22:4308-12

[72]

Rim YS,Liu Y,Kim HJ.Direct light pattern integration of low-temperature solution-processed all-oxide flexible electronics.ACS Nano2014;8:9680-6

[73]

Bong H,Lee DY,Cho JH.High-mobility low-temperature ZnO transistors with low-voltage operation.Appl Phys Lett2010;96:192115

[74]

Lim W,Kim S.High performance indium gallium zinc oxide thin film transistors fabricated on polyethylene terephthalate substrates.Appl Phys Lett2008;93:082102

[75]

Han D,Cong Y,Zhang X.High-performance flexible tin-zinc-oxide thin-film transistors fabricated on plastic substrates.IEEE Trans Electron Devices2016;63:3360-3

[76]

Ha YG,Hersam MC.Hybrid gate dielectric materials for unconventional electronic circuitry.Acc Chem Res2014;47:1019-28

[77]

Smith JT,Goryll M,Allee DR.Flexible ISFET biosensor using IGZO metal oxide TFTs and an ITO sensing layer.IEEE Sensors J2014;14:937-8

[78]

Kim S,Yun D,Kim G.High performance and stable flexible memory thin-film transistors using In–Ga–Zn–O channel and ZnO charge-trap layers on poly(ethylene naphthalate) substrate.IEEE Trans Electron Devices2016;63:1557-64

[79]

Kim J,Lim SJ.Atomic layer deposition ZnO:N flexible thin film transistors and the effects of bending on device properties.Appl Phys Lett2011;98:142113

[80]

Jin SH,Cho IT.Water-soluble thin film transistors and circuits based on amorphous indium-gallium-zinc oxide.ACS Appl Mater Interfaces2015;7:8268-74

[81]

Cantarella G,Petti L.Flexible In–Ga–Zn–O thin-film transistors on elastomeric substrate bent to 2.3% strain.IEEE Electron Device Lett2015;36:781-3

[82]

Hsu H,Chiou P.Improvement of dielectric flexibility and electrical properties of mechanically flexible thin film devices using titanium oxide materials fabricated at a very low temperature of 100°C.J Alloys Compd2015;643:S133-6

[83]

Oh H,Park S.Electrical characteristics of bendable a-IGZO thin-film transistors with split channels and top-gate structure.Microelectron Eng2016;159:179-83

[84]

Kim J,Hwang D.W, Cheun H, Kippelen B. Vertically stacked hybrid organic–inorganic complementary inverters with low operating voltage on flexible substrates.Org Electron2011;12:45-50

[85]

Jin J,Yang S.Rollable transparent glass-fabric reinforced composite substrate for flexible devices.Adv Mater2010;22:4510-5

[86]

Lim W,Kim S.High mobility InGaZnO4 thin-film transistors on paper.Appl Phys Lett2009;94:072103

[87]

Martins R,Fortunato E.Electronics with and on paper.Phys Status Solidi RRL2011;5:332-5

[88]

Choi N,Ma X.Amorphous oxide thin film transistors with methyl siloxane based gate dielectric on paper substrate.Electrochem Solid State Lett2011;14:H247

[89]

Wu GD,Wan X.Junctionless coplanar-gate oxide-based thin-film transistors gated by Al2O3 proton conducting films on paper substrates.Chinese Phys Lett2014;31:108505

[90]

Mahmoudabadi F,Hatalis MK,Levendusky TL.Amorphous IGZO TFTs and circuits on conformable aluminum substrates.Solid State Electron2014;101:57-62

[91]

Park I,Cho I.Fabrication of amorphous InGaZnO thin-film transistor-driven flexible thermal and pressure sensors.Semicond Sci Technol2012;27:105019

[92]

Tang X,Li K.In situ growth of (−201) fiber-textured β-Ga2O3 semiconductor tape for flexible thin-film transistor.Adv Electron Mater2024;2400046

[93]

Hosono H.Transparent oxide semiconductors: fundamentals and recent progress. In: Facchetti A, Marks TJ, editors. Transparent electronics: from synthesis to applications. Wiley; 2010. pp. 31-59.

[94]

He Y,Gao Y,Wan Q.Oxide-based thin film transistors for flexible electronics.J Semicond2018;39:011005

[95]

Kim HJ,Kim HJ.High-performance vacuum-processed metal oxide thin-film transistors: a review of recent developments.J Soc Info Display2020;28:591-622

[96]

Zhang X,Huang W.Synergistic boron doping of semiconductor and dielectric layers for high-performance metal oxide transistors: interplay of experiment and theory.J Am Chem Soc2018;140:12501-10

[97]

Nomura K,Hirano M.Origins of threshold voltage shifts in room-temperature deposited and annealed a-In–Ga–Zn–O thin-film transistors.Appl Phys Lett2009;95:013502

[98]

Bukke RN,Bae J.Nano-scale Ga2O3 interface engineering for high-performance of ZnO-based thin-film transistors.ACS Appl Mater Interfaces2022;14:41508-19

[99]

Tang T,Haase K.Analysis of the annealing budget of metal oxide thin-film transistors prepared by an aqueous blade-coating process.Adv Funct Mater2023;33:2207966

[100]

Lee M,Kim YJ.Corrugated heterojunction metal-oxide thin-film transistors with high electron mobility via vertical interface manipulation.Adv Mater2018;30:e1804120

[101]

Bhatti G,Palaparthy V,Agrawal M.Flexible electronics: a critical review. In: Agrawal Y, Mummaneni K, Sathyakam PU, editors. Interconnect technologies for integrated circuits and flexible electronics. Singapore: Springer Nature; 2024. pp. 221-48.

[102]

Han K,Kim Y,Choi B.Mechanical durability of flexible/stretchable a-IGZO TFTs on PI island for wearable electronic application.ACS Appl Electron Mater2021;3:5037-47

[103]

Ribes G,Denais M.Review on high-k dielectrics reliability issues.IEEE Trans Device Mater Relib2005;5:5-19

[104]

Choi J,Chang J.Development of hafnium based high-k materials - a review.Mat Sci Eng R2011;72:97-136

[105]

Wang B,Chi L,Marks TJ.High-k gate dielectrics for emerging flexible and stretchable electronics.Chem Rev2018;118:5690-754

[106]

Huang X.Core-shell structured high-k polymer nanocomposites for energy storage and dielectric applications.Adv Mater2015;27:546-54

[107]

Nadaud N,Nanot M,Roisnel T.Structural studies of tin-doped indium oxide (ITO) and In4Sn3O12.J Solid State Chem1998;135:140-8

[108]

Sun X,Xiao Z.High performance indium-tin-zinc-oxide thin-film transistor with hexamethyldisilazane passivation.ACS Appl Electron Mater2024;6:2442-8

[109]

Kim MG,Ha YG.High-performance solution-processed amorphous zinc-indium-tin oxide thin-film transistors.J Am Chem Soc2010;132:10352-64

[110]

Ok KC,Kim HS.Highly stable ZnON thin-film transistors with high field-effect mobility exceeding 50 cm2/Vs.IEEE Electron Device Lett2015;36:38-40

[111]

Tiwari N,John RA,Nguyen AC.Indium tungsten oxide thin films for flexible high-performance transistors and neuromorphic electronics.ACS Appl Mater Interfaces2018;10:30506-13

[112]

Chang S,Lin GR.Amorphous hafnium-indium-zinc oxide semiconductor thin film transistors.J Nanomaterials2012;2012:127646

[113]

Park E,Kim Y,Park J.Transparent flexible high mobility TFTs based on ZnON semiconductor with dual gate structure.IEEE Electron Device Lett2020;41:401-4

[114]

Bukke R, Naik Mude N, Mobaidul Islam M, Jang J. Improvement of metal-oxide films by post atmospheric Ar/O2 plasma treatment for thin film transistors with high mobility and excellent stability.Appl Surf Sci2021;568:150947

[115]

Shi Y,Sim K,Kim J.High-performance a-ITZO TFTs with high bias stability enabled by self-aligned passivation using a-GaOx.Appl Phys Lett2022;121:212101

[116]

Noh J,Nahm H.Cation composition effects on electronic structures of In-Sn-Zn-O amorphous semiconductors.J Appl Phys2013;113:183706

[117]

Ryu MK,Park SK,Jeong JK.High performance thin film transistor with cosputtered amorphous Zn–In–Sn–O channel: combinatorial approach.Appl Phys Lett2009;95:072104

[118]

Li T,Ren J.High-mobility InSnZnO thin film transistors via introducing water vapor sputtering gas.ACS Appl Mater Interfaces2024;16:31237-46

[119]

Ok KC,Jeong HJ,Rim YS.Photothermally activated nanocrystalline oxynitride with superior performance in flexible field-effect transistors.ACS Appl Mater Interfaces2018;10:2709-15

[120]

Takagi A,Ohta H.Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4.Thin Solid Films2005;486:38-41

[121]

Lee S,Ye Y,Robertson J.Localized tail states and electron mobility in amorphous ZnON thin film transistors.Sci Rep2015;5:13467 PMCID:PMC4548246

[122]

Kim HS,Park JS.Anion control as a strategy to achieve high-mobility and high-stability oxide thin-film transistors.Sci Rep2013;3:1459 PMCID:PMC3597998

[123]

Park C,Park JB.High-performance ITO/a-IGZO heterostructure TFTs enabled by thickness-dependent carrier concentration and band alignment manipulation.Ceram Int2023;49:5905-14

[124]

Jung SW,Park CW,Oh JY.Fabrication of stretchable organic-inorganic hybrid thin-film transistors on polyimide stiff-island structures.J Nanosci Nanotechnol2015;15:7526-30

[125]

Lin YH,Labram JG.High electron mobility thin-film transistors based on solution-processed semiconducting metal oxide heterojunctions and quasi-superlattices. Adv Sci 2015;2:1500058.

[126]

Choi IM,On N.Achieving high mobility and excellent stability in amorphous In–Ga–Zn–Sn–O thin-film transistors.IEEE Trans Electron Devices2020;67:1014-20

[127]

Chang Y,Bae J.Low-temperature solution-processed HfZrO gate insulator for high-performance of flexible LaZnO thin-film transistor.Nanomaterials2023;13:2410 PMCID:PMC10489735

[128]

Liu X,Cai B.Rational design of amorphous indium zinc oxide/carbon nanotube hybrid film for unique performance transistors.Nano Lett2012;12:3596-601

[129]

Divya M,Gogoi SK.Super flexible and high mobility inorganic/organic composite semiconductors for printed electronics on polymer substrates.Adv Mater Technol2023;8:2300256

[130]

Kim KS,Chung J,Lee IS.Polyimide-doped indium-gallium-zinc oxide-based transparent and flexible phototransistor for visible light detection.ACS Appl Mater Interfaces2022;14:21150-8

[131]

Na JW,Hong S.Plasma polymerization enabled polymer/metal-oxide hybrid semiconductors for wearable electronics.ACS Appl Mater Interfaces2018;10:37207-15

[132]

Lee S,Han K,Park J.An organic–inorganic hybrid semiconductor for flexible thin film transistors using molecular layer deposition.J Mater Chem C2021;9:4322-9

[133]

Zhu L,Li X,Zhang J.Development of high-k hafnium–aluminum oxide dielectric films using sol–gel process.J Mater Res2014;29:1620-5

[134]

Sheng J,Oh S.Flexible and high-performance amorphous indium zinc oxide thin-film transistor using low-temperature atomic layer deposition.ACS Appl Mater Interfaces2016;8:33821-8

[135]

Chen X,Wan J.Transparent and flexible thin-film transistors with high performance prepared at ultralow temperatures by atomic layer deposition.Adv Electron Mater2019;5:1800583

[136]

Sheng J,Lee HM.Amorphous IGZO TFT with high mobility of ~70 cm2/(V s) via vertical dimension control using PEALD.ACS Appl Mater Interfaces2019;11:40300-9

[137]

Jo JW,Park J.Ultralow-temperature solution-processed aluminum oxide dielectrics via local structure control of nanoclusters.ACS Appl Mater Interfaces2017;9:35114-24

[138]

Hsu H,Cheng C.Room-temperature flexible thin film transistor with high mobility.Curr Appl Phys2013;13:1459-62

[139]

Hsu H,Cheng C.A flexible IGZO thin-film transistor with stacked TiO2-based dielectrics fabricated at room temperature.IEEE Electron Device Lett2013;34:768-70

[140]

Jo JW,Kim J,Kim YH.High-mobility and hysteresis-free flexible oxide thin-film transistors and circuits by using bilayer sol-gel gate dielectrics.ACS Appl Mater Interfaces2018;10:2679-87

[141]

Yang W,Jung Y,Moon J.Solution-deposited Zr-doped AlOx gate dielectrics enabling high-performance flexible transparent thin film transistors.J Mater Chem C2013;1:4275-82

[142]

Xiao P,Lan L.High-mobility flexible thin-film transistors with a low-temperature zirconium-doped indium oxide channel layer.Phys Status Solidi RRL2016;10:493-7

[143]

Jo JW,Kim KT.Highly stable and imperceptible electronics utilizing photoactivated heterogeneous sol-gel metal-oxide dielectrics and semiconductors.Adv Mater2015;27:1182-8

[144]

Kim H,Kang Y.Sub-volt metal-oxide thin-film transistors enabled by solution-processed high-k Gd-doped HfO2 dielectric films.Mat Sci Semicon Proc2023;166:107746

[145]

Kim J,Jo J,Kim Y.Solution-processed lanthanum-doped Al2O3 gate dielectrics for high-mobility metal-oxide thin-film transistors.Thin Solid Films2018;660:814-8

[146]

Kim J,Kang Y.Photoactivated high-k lanthanum oxide-aluminum oxide (La2O3–Al2O3) alloy-type gate dielectrics for low-voltage-operating flexible transistors.J Alloys Compd2020;842:155671

[147]

Zhu Y,Xin Z,Wan Q.Solution-processed, electrolyte-gated In2O3 flexible synaptic transistors for brain-inspired neuromorphic applications.ACS Appl Mater Interfaces2020;12:1061-8

[148]

Samanta C,Ghosh B.Fabrication of amorphous indium–gallium– zinc–oxide thin-film transistor on flexible substrate using a polymer electrolyte as gate dielectric.IEEE Trans Electron Devices2018;65:2827-32

[149]

Hur JS,Kim HA.Stretchable polymer gate dielectric by ultraviolet-assisted hafnium oxide doping at low temperature for high-performance indium gallium tin oxide transistors.ACS Appl Mater Interfaces2019;11:21675-85

[150]

Yu MC,Liu PT.High performance transparent a-IGZO thin film transistors with ALD-HfO2 gate insulator on colorless polyimide substrate.IEEE Trans Nanotechnol2020;19:481-5

[151]

Kim CY,Kim TG.Effect of photochemical hydrogen doping on the electrical properties of ZnO thin-film transistors.J Alloys Compd2018;732:300-5

[152]

Fernandes C,Santos Â.A sustainable approach to flexible electronics with zinc-tin oxide thin-film transistors.Adv Electron Mater2018;4:1800032

[153]

Abliz A,Xu L.Boost up the electrical performance of InGaZnO thin film transistors by inserting an ultrathin InGaZnO:H layer.Appl Phys Lett2016;108:213501

[154]

Kang Y,Song JH.Hydrogen bistability as the origin of photo-bias-thermal instabilities in amorphous oxide semiconductors.Adv Electron Mater2015;1:1400006

[155]

Wang H,Xu Y.Impact of hydrogen dopant incorporation on InGaZnO, ZnO and In2O3 thin film transistors.Phys Chem Chem Phys2020;22:1591-7

[156]

Kang BH,Chung J,Kim HJ.Simple hydrogen plasma doping process of amorphous indium gallium zinc oxide-based phototransistors for visible light detection.ACS Appl Mater Interfaces2018;10:7223-30

[157]

Abliz A,Wan D.Effects of nitrogen and hydrogen codoping on the electrical performance and reliability of InGaZnO thin-film transistors.ACS Appl Mater Interfaces2017;9:10798-804

[158]

Liu P,Fuh C,Sze SM.Effects of nitrogen on amorphous nitrogenated InGaZnO (a-IGZO:N) thin film transistors.J Display Technol2016;12:1070-7

[159]

Xie H,Xu L,Liu G.Nitrogen-doped amorphous oxide semiconductor thin film transistors with double-stacked channel layers.Appl Surf Sci2016;387:237-43

[160]

Ding X,Qin C,Ding T.Nitrogen-doped ZnO film fabricated via rapid low-temperature atomic layer deposition for high-performance ZnON transistors.IEEE Trans Electron Devices2018;65:3283-90

[161]

Kim DG,Kim YS.Selectively nitrogen doped ALD-IGZO TFTs with extremely high mobility and reliability.ACS Appl Mater Interfaces2023;15:31652-63

[162]

Seo JS,Hwang YH.Solution-processed flexible fluorine-doped indium zinc oxide thin-film transistors fabricated on plastic film at low temperature.Sci Rep2013;3:2085 PMCID:PMC3694285

[163]

Saha JK,Bukke RN,Islam MM.Performance improvement for spray-coated ZnO TFT by F doping with spray-coated Zr–Al–O gate insulator.IEEE Trans Electron Devices2021;68:1063-9

[164]

Yin X,Li G.Analysis of low frequency noise in in situ fluorine-doped ZnSnO thin-film transistors.AIP Advances2021;11:045326

[165]

Ruan D,Chiu Y.Performance improvements of tungsten and zinc doped indium oxide thin film transistor by fluorine based double plasma treatment with a high-K gate dielectric.Thin Solid Films2018;665:117-22

[166]

Yin X,Zhong W.In-situ fluorine-doped ZnSnO thin film and thin-film transistor.Solid State Electron2023;208:108726

[167]

Qian LX.Fluorinated InGaZnO thin-film transistor with HfLaO gate dielectric.IEEE Electron Device Lett2014;35:363-5

[168]

Miyakawa M,Tsuji H,Fujisaki Y.Impact of fluorine doping on solution-processed In–Ga–Zn–O thin-film transistors using an efficient aqueous route.AIP Advances2020;10:065004

[169]

Hanyu Y,Nomura K.Hydrogen passivation of electron trap in amorphous In-Ga-Zn-O thin-film transistors.Appl Phys Lett2013;103:202114

[170]

Gaspar D,Gehrke K,Fortunato E.High mobility hydrogenated zinc oxide thin films.Sol Energy Mat Solar C2017;163:255-62

[171]

Tsao S,Huang S.Hydrogen-induced improvements in electrical characteristics of a-IGZO thin-film transistors.Solid State Electron2010;54:1497-9

[172]

Kim HJ,Jung HY.Role of incorporated hydrogen on performance and photo-bias instability of indium gallium zinc oxide thin film transistors.J Phys D Appl Phys2013;46:055104

[173]

Li J,Tang Y.Remarkable bias-stress stability of ultrathin atomic-layer-deposited indium oxide thin-film transistors enabled by plasma fluorination.Adv Funct Mater2024;34:2401170

[174]

Kim D,Kim H.Impact of N2O plasma reactant on PEALD-SiO2 insulator for remarkably reliable ALD-oxide semiconductor TFTs.IEEE Trans Electron Devices2022;69:3199-205

[175]

Raja J,Balaji N,Thuy Trinh T.Negative gate-bias temperature stability of N-doped InGaZnO active-layer thin-film transistors.Appl Phys Lett2013;102:083505

[176]

Han Y,Tsai Y,Zhang Q.Influences of nitrogen doping on the electrical characteristics of indium-zinc-oxide thin film transistors.IEEE Trans Device Mater Relib2016;16:642-6

[177]

Yu X,Smith J.Synergistic approach to high-performance oxide thin film transistors using a bilayer channel architecture.ACS Appl Mater Interfaces2013;5:7983-8

[178]

Song JH,Mo YG,Jeong JK.Achieving high field-effect mobility exceeding 50 cm2/Vs in In-Zn-Sn-O thin-film transistors.IEEE Electron Device Lett2014;35:853-5

[179]

Baptista A,Porteiro J,Pinto G.Sputtering physical vapour deposition (PVD) coatings: a critical review on process improvement and market trend demands.Coatings2018;8:402

[180]

Liu J,Chang RPH,Marks TJ.High-performance flexible transparent thin-film transistors using a hybrid gate dielectric and an amorphous zinc indium tin oxide channel.Adv Mater2010;22:2333-7

[181]

Bao Q,Wang D,Lei T.Pulsed laser deposition and its current research status in preparing hydroxyapatite thin films.Appl Surf Sci2005;252:1538-44

[182]

Ogugua SN,Swart HC.Latest development on pulsed laser deposited thin films for advanced luminescence applications.Coatings2020;10:1078

[183]

Johnson RW,Bent SF.A brief review of atomic layer deposition: from fundamentals to applications.Mater Today2014;17:236-46

[184]

Bubel S,Kunze F.Ionic liquid gating reveals trap-filled limit mobility in low temperature amorphous zinc oxide.Appl Phys Lett2013;103:152102

[185]

Wilson SK,Duffy BR.The rate of spreading in spin coating.J Fluid Mech2000;413:65-88

[186]

Habibi M,Bennouna I.Defect-free large-area (25 cm2) light absorbing perovskite thin films made by spray coating.Coatings2017;7:42

[187]

Goh GL,Chong TH.3D printing of multilayered and multimaterial electronics: a review.Adv Electron Mater2021;7:2100445

[188]

Huang K,Shang R.Printed high-adhesion flexible electrodes based on an interlocking structure for self-powered intelligent movement monitoring.ACS Appl Mater Interfaces2023;15:58583-92

[189]

Tan HW,Kuo CN,Chua CK.3D printed electronics: processes, materials and future trends.Prog Mater Sci2022;127:100945

[190]

Park YG,Chung WG,Lee DH.High-resolution 3D printing for electronics.Adv Sci2022;9:e2104623 PMCID:PMC8922115

[191]

Kim DH,Choi WM.Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations.Proc Natl Acad Sci U S A2008;105:18675-80

[192]

Rockett A.Semiconductor alloys. In: The materials science of semiconductors. Springer; 2007. pp. 245-268.

[193]

Park CB,Yoo SS.Electrical characteristics of a-IGZO transistors along the in-plane axis during outward bending.Microelectron Reliab2016;59:37-43

[194]

Dou W.Junctionless dual in-plane-gate thin-film transistors with AND logic function on paper substrates.ACS Omega2019;4:21417-20 PMCID:PMC6921608

[195]

Guo J,Yang B.Biodegradable junctionless transistors with extremely simple structure.IEEE Electron Device Lett2015;36:908-10

[196]

Baruah RK.High-temperature effects on device performance of a junctionless transistor. In: 2012 International Conference on Emerging Electronics; 2012 Dec 15-17; Mumbai, India. IEEE; 2012. p. 1-4.

[197]

Jiang J,Dou W,Wan Q.Junctionless in-plane-gate transparent thin-film transistors.Appl Phys Lett2011;99:193502

[198]

Jeon SP,Nam D,Kim YH.Junctionless structure indium-tin oxide thin-film transistors enabling enhanced mechanical and contact stability.ACS Appl Mater Interfaces2024;16:38198-207

[199]

Miyakawa M,Nakata M.Highly stretchable island-structure metal oxide thin-film transistor arrays using acrylic adhesive for deformable display applications.J Soc Info Display2022;30:699-705

[200]

Nakata M,Nakajima Y.Development of flexible displays using back-channel-etched In-Sn-Zn-O thin-film transistors and air-stable inverted organic light-emitting diodes: flexible displays using BCE-ITZO-TFTs and iOLEDs.Jnl Soc Info Display2016;24:3-11

[201]

Xu H,Li M.A flexible AMOLED display on the PEN substrate driven by oxide thin-film transistors using anodized aluminium oxide as dielectric.J Mater Chem C2014;2:1255-9

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/