PDF
Abstract
Development of transparent and flexible p-type semiconductors has been a significant challenge for scientific curiosity and industrial interest. Unlike n-type metal oxide semiconductors, such as zinc oxide (ZnO), In2O3, and SnO2, transparent p-type oxide semiconductors have suffered from low optical transparency and poor electrical performance. To overcome the intrinsic limitation of p-type oxide semiconductors, copper iodide (CuI) is gaining attention as a multifunctional p-type semiconductor with excellent optical transparency, decent mechanical flexibility, high hole mobility, high electrical conductivity, and even promising thermoelectric performance. Here, we present the recent progress of CuI-based transparent p-type electronics from materials to applications. In this review, we summarize the physical and chemical properties of CuI by reviewing computational studies, focusing on the band structure, intrinsic defects, and promising dopants. Additionally, various applications of CuI, including its use as active layers, hole transport layers (HTLs), transparent electrodes, and energy harvesters, are examined, highlighting important studies and their findings. Strategies to enhance device performance, such as controlling carrier concentrations and refining fabrication methods, are discussed, offering insights for developing next-generation electronic devices. Finally, we discuss current challenges and perspective opportunities of CuI-based transparent p-type electronics.
Keywords
Copper iodide
/
p-type semiconductor
/
optoelectronic materials
/
transparent conductive electrodes
/
transparent energy harvesting materials
Cite this article
Download citation ▾
Ga Hye Kim, Jiyong Lee, Kyunghan Ahn, Myung-Gil Kim.
Transparent p-type copper iodide for next-generation electronics: fundamental physics and recent research trends.
Soft Science, 2024, 4(4): 33 DOI:10.20517/ss.2024.28
| [1] |
Forrest SR.The path to ubiquitous and low-cost organic electronic appliances on plastic.Nature2004;428:911-8
|
| [2] |
Zhang D,Duan L.Emerging self-emissive technologies for flexible displays.Adv Mater2020;32:e1902391
|
| [3] |
Chang S,Li G.Transparent polymer photovoltaics for solar energy harvesting and beyond.Joule2018;2:1039-54
|
| [4] |
Lee HE,Kim TJ.Novel electronics for flexible and neuromorphic computing.Adv Funct Mater2018;28:1801690
|
| [5] |
Kim BH,Cho SH.High mobility in nanocrystal-based transparent conducting oxide thin films.ACS Nano2018;12:3200-8
|
| [6] |
van Hest MFAM, Dabney MS, Perkins JD, Ginley DS, Taylor MP. Titanium-doped indium oxide: a high-mobility transparent conductor.Appl Phys Lett2005;87:032111
|
| [7] |
Shi J,Yang L,Qi DC.Wide bandgap oxide semiconductors: from materials physics to optoelectronic devices.Adv Mater2021;33:e2006230
|
| [8] |
Kawazoe H,Ueda K.Transparent p-type conducting oxides: design and fabrication of p-n heterojunctions.MRS Bull2000;25:28-36
|
| [9] |
Yanagi H,Kudo A,Hosono H.Chemical design and thin film preparation of p-type conductive transparent oxides.J Electroceram2000;4:407-14
|
| [10] |
Kawazoe H,Hyodo H,Yanagi H.P-type electrical conduction in transparent thin films of CuAlO2.Nature1997;389:939-42
|
| [11] |
Wang Z,Caraveo-Frescas JA.Recent developments in p-type oxide semiconductor materials and devices.Adv Mater2016;28:3831-92
|
| [12] |
Liu A,Kim MG,Noh YY.Engineering copper iodide (CuI) for multifunctional p-type transparent semiconductors and conductors.Adv Sci2021;8:2100546 PMCID:PMC8292905
|
| [13] |
Zhang Z,Robertson J.Electronic structure of amorphous copper iodide: a p-type transparent semiconductor.Phys Rev Mater2020;4:054603
|
| [14] |
Willis J,Zhou Q.Limits to hole mobility and doping in copper iodide.Chem Mater2023;35:8995-9006 PMCID:PMC10653089
|
| [15] |
Grosskreutz JC.Mechanical properties of metal oxide films.J Electrochem Soc1969;116:1232-7
|
| [16] |
Kim MG,Facchetti A.Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing.Nat Mater2011;10:382-8
|
| [17] |
Yu X,Zhou N.Ultra-flexible, “invisible” thin-film transistors enabled by amorphous metal oxide/polymer channel layer blends.Adv Mater2015;27:2390-9
|
| [18] |
Lee S,Oh I.Multilayered graphene-carbon nanotube-iron oxide three-dimensional heterostructure for flexible electromagnetic interference shielding film.Carbon2017;111:248-57
|
| [19] |
Yun J,Bae TS.Preparation of flexible organic solar cells with highly conductive and transparent metal-oxide multilayer electrodes based on silver oxide.ACS Appl Mater Interfaces2013;5:9933-41
|
| [20] |
Le MN,Kim K.Versatile solution-processed organic–inorganic hybrid superlattices for ultraflexible and transparent high-performance optoelectronic devices.Adv Funct Mater2021;31:2103285
|
| [21] |
Vidor FF,Wirth GI.ZnO nanoparticle thin-film transistors on flexible substrate using spray-coating technique.Microelectron Eng2016;159:155-8
|
| [22] |
Xiao F,Zan X,Xu R.Growth of metal–metal oxide nanostructures on freestanding graphene paper for flexible biosensors.Adv Funct Mater2012;22:2487-94
|
| [23] |
Ou LX,Zhu LY,Lu HL.Recent progress on flexible room-temperature gas sensors based on metal oxide semiconductor.Nanomicro Lett2022;14:206 PMCID:PMC9587164
|
| [24] |
Liu X,Liao L.High-mobility transparent amorphous metal oxide/nanostructure composite thin film transistors with enhanced-current paths for potential high-speed flexible electronics.J Mater Chem C2014;2:1201-8
|
| [25] |
Jeong JW,Choi D,Jung J.Hybrid polymer/metal oxide thin films for high performance, flexible transistors.Micromachines2020;11:264 PMCID:PMC7143309
|
| [26] |
Kang H,Jeong S,Lee K.Polymer-metal hybrid transparent electrodes for flexible electronics.Nat Commun2015;6:6503 PMCID:PMC4382999
|
| [27] |
Yang C,Kneiß M.Transparent flexible thermoelectric material based on non-toxic earth-abundant p-type copper iodide thin film.Nat Commun2017;8:16076 PMCID:PMC5504294
|
| [28] |
Ahn K,Kim S.Highly conductive p-type transparent conducting electrode with sulfur-doped copper iodide.Chem Mater2022;34:10517-27
|
| [29] |
Mishra D,Kumar A,Jo HB.Light-mediated multi-level flexible copper iodide resistive random access memory for forming-free, ultra-low power data storage application.Adv Funct Mater2023;33:2211022
|
| [30] |
GrauŽinytė M,Marques MAL,Flores-Livas JA.Computational acceleration of prospective dopant discovery in cuprous iodide.Phys Chem Chem Phys2019;21:18839-49
|
| [31] |
Jung HS,Kim YT,Choa S.Experimental and numerical investigation of flexibility of ITO electrode for application in flexible electronic devices.Microsyst Technol2017;23:1961-70
|
| [32] |
Chen D,Lin Z.Growth strategy and physical properties of the high mobility p-type CuI crystal.Cryst Growth Des2010;10:2057-60
|
| [33] |
Sun W,Li Y.Solution-processed copper iodide as an inexpensive and effective anode buffer layer for polymer solar cells.J Phys Chem C2014;118:16806-12
|
| [34] |
Son M,Song O.Dopant control of solution-processed CuI:S for highly conductive p-type transparent electrode.Adv Sci2024;11:e2308188 PMCID:PMC11005697
|
| [35] |
Chen W,Dai S.Low-cost solution-processed copper iodide as an alternative to PEDOT:PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells.J Mater Chem A2015;3:19353-9
|
| [36] |
Kaushik DK,Ramu S.Thermal evaporated copper iodide (CuI) thin films: a note on the disorder evaluated through the temperature dependent electrical properties.Sol Energy Mater Sol Cells2017;165:52-8
|
| [37] |
Storm P,Benndorf G.High mobility, highly transparent, smooth, p-type CuI thin films grown by pulsed laser deposition.APL Mater2020;8:091115
|
| [38] |
Yang C,Lorenz M.Room-temperature synthesized copper iodide thin film as degenerate p-type transparent conductor with a boosted figure of merit.Proc Natl Acad Sci U S A2016;113:12929-33 PMCID:PMC5135336
|
| [39] |
Yamada N,Ninomiya Y.Truly transparent p-type γ-CuI thin films with high hole mobility.Chem Mater2016;28:4971-81
|
| [40] |
Lee HA,Kim TI,Park IJ.Synthesis of vacancy-controlled copper iodide semiconductor for high-performance p-type thin-film transistors.ACS Appl Mater Interfaces2022;14:56416-26
|
| [41] |
Bädeker K.Über die elektrische Leitfähigkeit und die thermoelektrische Kraft einiger Schwermetallverbindungen.Annalen der Physik1907;327:749-66
|
| [42] |
Liu A,Park WT.Room-temperature solution-synthesized p-type copper(I) iodide semiconductors for transparent thin-film transistors and complementary electronics.Adv Mater2018;30:e1802379
|
| [43] |
Das S,Alford T.P3HT:PC61BM based solar cells employing solution processed copper iodide as the hole transport layer.Sol Energy Mater Sol Cells2015;133:255-9
|
| [44] |
Choi CH,Fang Z.Low-temperature, inkjet printed p-type copper(I) iodide thin film transistors.J Mater Chem C2016;4:10309-14
|
| [45] |
Lee K,Kim D.Copper iodide and oxide semiconductor thin films patterned by spray-spin coating for fabricating complementary inverters: Improving stability with passivation layers.Appl Surf Sci2023;608:155081
|
| [46] |
Mirza AS,Soltanpoor W,Brocks G.The role of sulfur in sulfur-doped copper(I) iodide p-type transparent conductors.Matter2023;6:4306-20
|
| [47] |
Markwitz M,Back SY,Ruck BJ.Effect of grain boundary scattering on carrier mobility and thermoelectric properties of tellurium incorporated copper iodide thin films.Surf Interfaces2023;41:103190
|
| [48] |
Yu J,Suleiman AA,Miao N.Recent advances on pulsed laser deposition of large-scale thin films.Small Methods2024;8:e2301282
|
| [49] |
Geng F,Splith D.Amorphous transparent Cu(S,I) thin films with very high hole conductivity.J Phys Chem Lett2023;14:6163-9
|
| [50] |
Keen DA.The high-temperature structural behaviour of copper(I) iodide.J Phys Condens Matter1995;7:5793-804
|
| [51] |
Kaindl G,Frank KH.High-pressure phases of CuI studied by 129I-Mössbauer spectroscopy.Hyperfine Interact1992;72:251-7
|
| [52] |
Yu H,Yang Y,Wei S.Band gap anomaly in cuprous halides.Comp Mater Sci2022;203:111157
|
| [53] |
Tanaka I,Nakayama M.Photoluminescence from heavy-hole and light-hole excitons split by thermal strain in CuI thin films.J Lumin2000;87-9:257-9
|
| [54] |
Wang J,Li SS.Native p-type transparent conductive CuI via intrinsic defects.J Appl Phys2011;110:054907
|
| [55] |
Jaschik S,Seifert M,Botti S.Stable ordered phases of cuprous iodide with complexes of copper vacancies.Chem Mater2019;31:7877-82
|
| [56] |
Darnige P,Presmanes L.Insights into stability, transport, and thermoelectric properties of transparent p-type copper iodide thin films.J Mater Chem C2023;11:630-44
|
| [57] |
Yamada N,Murata H,Yoshida S.Wide-range-tunable p-type conductivity of transparent CuI1-xBrx alloy.Adv Funct Mater2020;30:2003096
|
| [58] |
Schein F,Grundmann M.Transparent p-CuI/n-ZnO heterojunction diodes.Appl Phys Lett2013;102:092109
|
| [59] |
Yang C,Schein FL,Grundmann M.Room-temperature domain-epitaxy of copper iodide thin films for transparent CuI/ZnO heterojunctions with high rectification ratios larger than 109.Sci Rep2016;6:21937 PMCID:PMC4768143
|
| [60] |
Zuo C,Li Z.A transparent, self-powered photodetector based on p-CuI/n-TiO2 heterojunction film with high on-off ratio.Nanotechnology2021;33:105202
|
| [61] |
Cha JH.Air-stable transparent silver iodide-copper iodide heterojunction diode.ACS Appl Mater Interfaces2017;9:43807-13
|
| [62] |
Kim T,Lee J.Interfacial ZnS passivation for improvement of transparent ZnO/CuI diode characteristics.Appl Surf Sci2021;536:147645
|
| [63] |
Lee JH,Kim TH,Hong S.Transparent p-CuI/n-BaSnO3-δ heterojunctions with a high rectification ratio.J Phys Condens Matter2017;29:384004
|
| [64] |
Yamada N,Ino R.Low-temperature fabrication and performance of polycrystalline CuI films as transparent p-type semiconductors.Phys Status Solidi A2019;216:1700782
|
| [65] |
Lee JH,Kang J.Characteristics and electronic band alignment of a transparent p-CuI/n-SiZnSnO heterojunction diode with a high rectification ratio.Nanomaterials2021;11:1237 PMCID:PMC8151173
|
| [66] |
Grundmann M,Lorenz M,Lenzner J.Cuprous iodide - a p-type transparent semiconductor: history and novel applications.Phys Status Solidi A2013;210:1671-703
|
| [67] |
Xiong C.Low temperature preparation p-CuI/n-ZnO wide gap heterojunction diode.Optik2015;126:1951-4
|
| [68] |
Ayhan ME,Todankar B.Ultraviolet radiation-induced photovoltaic action in γ-CuI/β-Ga2O3 heterojunction.Mater Lett2020;262:127074
|
| [69] |
Weiß A,Kettunen S.Conversion of ALD CuO thin films into transparent conductive p-type CuI thin films.Adv Mater Inter2023;10:2201860
|
| [70] |
Yang Z,Wang W,Sun H.Fabrication of transparent p-CuI/n-ZnO heterojunction with excellent ideality factor.J Phys D Appl Phys2024;57:145301
|
| [71] |
Fortunato E.Where science fiction meets reality? With oxide semiconductors!.Phys Status Solidi R2011;5:336-9
|
| [72] |
Fortunato E,Barquinha P.Transparent p-type SnOx thin film transistors produced by reactive rf magnetron sputtering followed by low temperature annealing.Appl Phys Lett2010;97:052105
|
| [73] |
Ogo Y,Nomura K.p-channel thin-film transistor using p-type oxide semiconductor, SnO.Appl Phys Lett2008;93:032113
|
| [74] |
Ogo Y,Nomura K.Tin monoxide as an s-orbital-based p-type oxide semiconductor: electronic structures and TFT application.Phys Status Solidi2009;206:2187-91
|
| [75] |
Zhang KH,Blamire MG.P-type transparent conducting oxides.J Phys Condens Matter2016;28:383002
|
| [76] |
Klauk H,Nichols JA.Pentacene organic thin-film transistors for circuit and display applications.IEEE T Electron Dev1999;46:1258-63
|
| [77] |
Park JH,Kim YJ,Choi JS.Characteristics of pentacene-based thin-film transistors.Mater Sci Eng C2004;24:27-9
|
| [78] |
Zhou L,Bai B.Pentacene TFT driven AM OLED displays.IEEE Electron Device Lett2005;26:640-2
|
| [79] |
Reig M,Velasco D.Molecular order of air-stable p-type organic thin-film transistors by tuning the extension of the π-conjugated core: the cases of indolo[3,2-b]carbazole and triindole semiconductors.J Mater Chem C2015;3:506-13
|
| [80] |
Liu A,Park WT.High-performance p-channel transistors with transparent Zn doped-CuI.Nat Commun2020;11:4309 PMCID:PMC7453006
|
| [81] |
Li S,Son C.Inkjet-printed p-type CuBrxI1-x: wearable thin-film transistors.Mater Adv2022;3:7538-45
|
| [82] |
Rajani K,Rahman M,Mcnally P.Deposition of earth-abundant p-type CuBr films with high hole conductivity and realization of p-CuBr/n-Si heterojunction solar cell.Mater Lett2013;111:63-6
|
| [83] |
Wei W,Wang Z.High-performance p-channel CuIBr thin-film transistor synthesized from solution in the atmosphere.Appl Phys Lett2023;122:193301
|
| [84] |
Wu H,Wang X.High-mobility flexible/transparent p-type copper iodide thin-film transistors and complementary inverters.Appl Surf Sci2023;612:155795
|
| [85] |
Lee H,Kwon H.Effects of solution processable CuI thin films with Al2O3-based sandwiched architecture for high-performance p-type transistor applications.J Mater Chem C2024;12:6457-68
|
| [86] |
Dai M.Polarization mechanism and quasi-electric-double-layer modeling for indium-tin-oxide electric-double-layer thin-film-transistors.Appl Phys Lett2012;100:113506
|
| [87] |
Cho J,He Y,Lodge T.High-capacitance ion gel gate dielectrics with faster polarization response times for organic thin film transistors.Adv Mater2008;20:686-90
|
| [88] |
Liang X,Pei Y,Liu C.Multimode transistors and neural networks based on ion-dynamic capacitance.Nat Electron2022;5:859-69
|
| [89] |
Annadi A,Lim DBK.Hole transport modulations in low dimensional γ-CuI films: implication for high figure of merit and thin film transistors.ACS Appl Electron Mater2019;1:1029-37
|
| [90] |
Liu A,Shim KI.Key roles of trace oxygen treatment for high-performance Zn-doped CuI p-channel transistors.Adv Elect Mater2021;7:2000933
|
| [91] |
Wang M,Xin Q.Performance enhancement of solution-processed p-type CuI TFTs by self-assembled monolayer treatment.Appl Surf Sci2023;638:158075
|
| [92] |
Huang Y,Gao G.Transparent p-type CuI film based self-powered ultraviolet photodetectors with ultrahigh speed, responsivity and detectivity.J Mater Chem C2022;10:13040-6
|
| [93] |
Tsay CY,Tsai HM,Yoshitake T.The role of Zn substitution in improving the electrical properties of CuI thin films and optoelectronic performance of CuI MSM photodetectors.Materials2022;15:8145 PMCID:PMC9694342
|
| [94] |
Yamada N,Cao X.Visible-blind wide-dynamic-range fast-response self-powered ultraviolet photodetector based on CuI/In-Ga-Zn-O heterojunction.Appl Mater Today2019;15:153-62
|
| [95] |
Li S,Yang W.Solution-processed transparent Sn4+-doped CuI hybrid photodetectors with enhanced performances.Adv Mater Interfaces2019;6:1900669
|
| [96] |
Cao F,Wu Y.High-performance, self-powered UV photodetector based on Au nanoparticles decorated ZnO/CuI heterostructure.J Alloys Compd2021;859:158383
|
| [97] |
Cao F,Liu M.Wide bandgap semiconductors for ultraviolet photodetectors: approaches, applications, and prospects.Research2024;7:0385 PMCID:PMC11128649
|
| [98] |
Burm J,Woodard DW.High-frequency, high-efficiency MSM photodetectors.IEEE J Quantum Electron1995;31:1504-9
|
| [99] |
Shyam A,Raju R.Self-powered UV photodetectors based on heterojunctions composed of ZnO nanorods coated with thin films of ZnS and CuI.ACS Appl Nano Mater2023;6:8529-39
|
| [100] |
Madusanka H,Fernando C.High photoresponse performance of self-powered n-Cu2O/p-CuI heterojunction based UV-visible photodetector.Sensor Actuat A Phys2019;296:61-9
|
| [101] |
Zhou Z,Wang C.Self-powered p-CuI/n-GaN heterojunction UV photodetector based on thermal evaporated high quality CuI thin film.Opt Express2022;30:29749-59
|
| [102] |
Mahyavanshi RD,Ranade A,Kalita G.Observing charge transfer interaction in CuI and MoS2 heterojunction for photoresponsive device application.ACS Appl Electron Mater2019;1:302-10
|
| [103] |
Zhang Y,Yang W,Fang X.Millimeter-sized single-crystal CsPbrB3/CuI heterojunction for high-performance self-powered photodetector.J Phys Chem Lett2019;10:2400-7
|
| [104] |
Li Z,Wang J.Hydrothermal growth and their optoelectronic device application of CuI nanostructure.Mater Res Express2019;6:045048
|
| [105] |
Niu S,Hang Y.Enhanced p-CuI/n-ZnO photodetector based on thermal evaporated CuI and pulsed laser deposited ZnO nanowires.Opt Lett2020;45:559-62
|
| [106] |
Krishnaiah M,Mishra D,Jin SH.Solution-processed CuI films towards flexible visible-photodetectors: role of annealing temperature on Cu/I ratio and photodetective properties.J Alloy Compd2021;887:161326
|
| [107] |
Krishnaiah M,Kushwaha AK,Jin SH.Thickness dependent photodetection properties of solution-processed CuI films: towards cost-effective flexible visible photodetectors.Mater Lett2021;305:130815
|
| [108] |
Cao N,Li X.Self-powered deep ultraviolet photodetector based on p-CuI/n-ZnGa2O4 heterojunction with high sensitivity and fast speed.Opt Express2024;32:11573-82
|
| [109] |
Storm P,Selle S,Grundmann M.p-Type doping and alloying of CuI thin films with selenium.Phys Status Solidi R2021;15:2100214
|
| [110] |
Matsuzaki K,Kumagai Y.Hole-doping to a Cu(I)-based semiconductor with an isovalent cation: utilizing a complex defect as a shallow acceptor.J Am Chem Soc2022;144:16572-8
|
| [111] |
Raj V,Lockrey M.Introduction of TiO2 in CuI for its improved performance as a p-type transparent conductor.ACS Appl Mater Interfaces2019;11:24254-63
|
| [112] |
Xue R,Yang L,Zhang Y.High-performance p-type transparent conducting CuI-Cu2O thin films with enhanced hole mobility, surface, and stability.J Mater Chem C2023;11:13681-90
|
| [113] |
Inagaki S,Aizawa N.Molecular beam epitaxy of high-quality CuI thin films on a low temperature grown buffer layer.Appl Phys Lett2020;116:192105
|
| [114] |
Crovetto A,Rusu M.Water adsorption enhances electrical conductivity in transparent p-type CuI.ACS Appl Mater Interfaces2020;12:48741-7
|
| [115] |
Lv Y,Ye L,Su G.Large γ-CuI semiconductor single crystal growth by a temperature reduction method from an NH4I aqueous solution.CrystEngComm2015;17:862-7
|
| [116] |
Peng W,Yu S,Xu K.High-performance flexible transparent p-CuI film by optimized solid iodization.Vacuum2021;183:109862
|
| [117] |
Lee HJ,Lee S,Hong K.Solution-processed copper iodide film as a p-type electrical conductor and their applications.ACS Appl Electron Mater2022;4:1232-7
|
| [118] |
Cota-leal M,Sotelo-lerma M,García-valenzuela J.Highly-transparent and conductive CuI films obtained by a redirected low-cost and electroless two-step route: chemical solution deposition of CuS2 and subsequent iodination.Mat Sci Semicon Proc2019;95:59-67
|
| [119] |
Stralka T,Schöppach F.Grain and grain boundary conduction channels in copper iodide thin films.Phys Status Solidi A2023;220:2200883
|
| [120] |
Li ZH,Lv XH.Optoelectronic properties and ultrafast carrier dynamics of copper iodide thin films.Nat Commun2022;13:6346 PMCID:PMC9606309
|
| [121] |
Zou S,Xie F,Li Y.Recent advances in organic light-emitting diodes: toward smart lighting and displays.Mater Chem Front2020;4:788-820
|
| [122] |
Xu R,Tang J.Recent advances in flexible organic light-emitting diodes.J Mater Chem C2016;4:9116-42
|
| [123] |
Shahnawaz S,Nagar MR.Hole-transporting materials for organic light-emitting diodes: an overview.J Mater Chem C2019;7:7144-58
|
| [124] |
Stakhira P,Volynyuk D.Characteristics of organic light emitting diodes with copper iodide as injection layer.Thin Solid Films2010;518:7016-8
|
| [125] |
Shan M,Guan Y.Enhanced hole injection in organic light-emitting diodes utilizing a copper iodide-doped hole injection layer.RSC Adv2017;7:13584-9
|
| [126] |
Lee J,Kim J.High performance top-emitting organic light-emitting diodes with copper iodide-doped hole injection layer.Organic Electronics2008;9:805-8
|
| [127] |
Hotra Z,Cherpak V.Effect of thickness of CuI hole injection layer on properties of organic light emitting diodes.Photonics Lett Pol2012;4:35-7Available from: https://photonics.pl/PLP/index.php/letters/article/view/4-13. [Last accessed on 13 Sep 2024]
|
| [128] |
Choudhury A,The L.Nanocrystalline copper iodide enabling high-efficiency organic LEDs.Org Electron2022;111:106668
|
| [129] |
Luo W,Du X.Copper thiocyanate/copper iodide based hole transport composites with balanced properties for efficient polymer light-emitting diodes.J Mater Chem C2018;6:4895-902
|
| [130] |
Mohan V,Choudhary SD.Enhanced performance organic light emitting diode with CuI:CuPC composite hole transport layer.IEEE Trans Nanotechnol2020;19:699-703
|
| [131] |
Haider SZ,Wang M.A comprehensive device modelling of perovskite solar cell with inorganic copper iodide as hole transport material.Semicond Sci Technol2018;33:035001
|
| [132] |
Sun W,Rao H.Room-temperature and solution-processed copper iodide as the hole transport layer for inverted planar perovskite solar cells.Nanoscale2016;8:15954-60
|
| [133] |
Hu W,Wang X.Copper iodide-PEDOT:PSS double hole transport layers for improved efficiency and stability in perovskite solar cells.J Photoch Photobio A2018;357:36-40
|
| [134] |
Haider SZ,Manzoor S,Wang M.A theoretical study for high-performance inverted p-i-n architecture perovskite solar cells with cuprous iodide as hole transport material.Curr Appl Phys2020;20:1080-9
|
| [135] |
Khadka DB,Yanagida M.Ammoniated aqueous precursor ink processed copper iodide as hole transport layer for inverted planar perovskite solar cells.Sol Energy Mat Sol Cells2020;210:110486
|
| [136] |
Mahdy B,Kaneko T.Fabrication of inverted planar perovskite solar cells using the iodine/ethanol solution method for copper iodide as a hole transport layer.Jpn J Appl Phys2023;62:SK1016
|
| [137] |
Aliyaselvam OV,Mustafa AN,Azam MA.Incorporation of green solvent for low thermal budget flower-like copper(I) iodide (γ-CuI) for high-efficiency solar cell.J Mater Sci Mater Electron2023;34:10578
|
| [138] |
Peng Y,Perumal AK.Efficient organic solar cells using copper(I) iodide (CuI) hole transport layers.Appl Phys Lett2015;106:243302
|
| [139] |
Khatun MM,Ahmed SRA.Numerical investigation on performance improvement of WS2 thin-film solar cell with copper iodide as hole transport layer.Sol Energy2021;224:956-65
|
| [140] |
Srivastava M,Yahya MZA,Gültekin SS.Conduction mechanism and photo-electrochemical performance of copper iodide hole transport material-based perovskite solar cell.J Electron Mater2023;52:4351-8
|
| [141] |
Wang Y,Shi XL.Flexible thermoelectric materials and generators: challenges and innovations.Adv Mater2019;31:e1807916
|
| [142] |
Coroa J,Marques A.Highly transparent copper iodide thin film thermoelectric generator on a flexible substrate.RSC Adv2019;9:35384-91 PMCID:PMC9074713
|
| [143] |
Feng R,Zhang N.Flexible, high-power density, wearable thermoelectric nanogenerator and self-powered temperature sensor.ACS Appl Mater Interfaces2019;11:38616-24
|
| [144] |
Mulla R.Defect-controlled copper iodide: a promising and ecofriendly thermoelectric material.Energy Technol2018;6:1178-85
|
| [145] |
Klochko N,Klepikova K.Semi-transparent copper iodide thin films on flexible substrates as p-type thermolegs for a wearable thermoelectric generator.Thin Solid Films2019;683:34-41
|
| [146] |
Murmu PP,Liu Z.Influence of carrier density and energy barrier scattering on a high seebeck coefficient and power factor in transparent thermoelectric copper iodide.ACS Appl Energy Mater2020;3:10037-44
|
| [147] |
Murmu PP,Liu Z.The role of sulfur valency on thermoelectric properties of sulfur ion implanted copper iodide.J Alloy Compd2022;921:166103
|
| [148] |
Bae EJ,Han M.Precision doping of iodine for highly conductive copper(I) iodide suitable for the spray-printable thermoelectric power generators.ACS Mater Lett2023;5:2009-18
|
| [149] |
Thimont Y,Barnabé A.Development, experimental and simulated performance of copper iodide (γ-CuI) uni-track thin film thermoelectric modules.Appl Surf Sci2024;649:159071
|
| [150] |
Vora-ud A,Kasemsin W,Seetawan T.Transparent thermoelectric properties of copper iodide thin films.Physica B2022;625:413527
|