PDF
Abstract
Recently, mechanically deformable displays, such as flexible, foldable, rollable, and stretchable displays, have received considerable attention due to their broad range of applications across various electronic systems. Among the various types of deformable displays, stretchable displays represent the most advanced form factor. The stretchable displays require a sophisticated integration of components, including stretchable conducting, insulating, and semiconducting materials, intricate geometrical patterns, and multiple electronic elements. This comprehensive review explores the recent progress in stretchable displays, emphasizing the critical developments in materials, device architectures, and practical applications. Key innovations in stretchable electrodes and interconnections, light-emitting materials, transistors, circuitry, and deformable substrates are explored, highlighting their contributions to enhancing durability and stretchability. Also, the review highlights the latest research on achieving stretchability using intrinsically elastic materials or through structural engineering with rigid materials. Additionally, we introduce innovative applications of stretchable displays in various emerging electronic systems.
Keywords
Stretchable displays
/
structure engineering
/
intrinsic stretchability
/
conductors
/
semiconductors
/
light-emitting layers
/
substrates
Cite this article
Download citation ▾
Kyobin Keum, Suyoung Yang, Kang Sik Kim, Sung Kyu Park, Yong-Hoon Kim.
Recent progress of stretchable displays: a comprehensive review of materials, device architectures, and applications.
Soft Science, 2024, 4(4): 34 DOI:10.20517/ss.2024.26
| [1] |
Choi M,Sharma BK,Kim SY.Flexible active-matrix organic light-emitting diode display enabled by MoS2 thin-film transistor.Sci Adv2018;4:eaas8721 PMCID:PMC5917918
|
| [2] |
Hwangbo S,Hoang AT,Ahn JH.Wafer-scale monolithic integration of full-colour micro-LED display using MoS2 transistor.Nat Nanotechnol2022;17:500-6
|
| [3] |
Kim DC,Kim J.Three-dimensional foldable quantum dot light-emitting diodes.Nat Electron2021;4:671-80
|
| [4] |
Rogers JA,Huang Y.Materials and mechanics for stretchable electronics.Science2010;327:1603-7
|
| [5] |
Kim DY,Sung G.Stretchable and reflective displays: materials, technologies and strategies.Nano Converg2019;6:21 PMCID:PMC6584625
|
| [6] |
Oh S,Byun SH.3D shape-morphing display enabled by electrothermally responsive, stiffness-tunable liquid metal platform with stretchable electroluminescent device.Adv Funct Mater2023;33:2214766
|
| [7] |
Kim J,Araki H.Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin.Sci Adv2016;2:e1600418 PMCID:PMC4972468
|
| [8] |
Shi X,Zhai P.Large-area display textiles integrated with functional systems.Nature2021;591:240-5
|
| [9] |
Hong JH,Kim GM.9.1-inch stretchable AMOLED display based on LTPS technology.J Soc Info Display2017;25:194-9
|
| [10] |
Kim S,Hong JH.82-5: Late-news paper: three dimensionally stretchable AMOLED display for freeform displays.Symp Dig Tech Pap2019;50:1194-7
|
| [11] |
Hong JH,Lee J,Kim S.74-1: Invited paper: highly stretchable and shrinkable AMOLED for free deformation.Symp Dig Tech Pap2023;54:1041-4
|
| [12] |
Koo JH,Shim HJ,Kim D.Flexible and stretchable smart display: materials, fabrication, device design, and system integration.Adv Funct Mater2018;28:1801834
|
| [13] |
Kim DC,Lee W,Kim DH.Material-based approaches for the fabrication of stretchable electronics.Adv Mater2020;32:e1902743
|
| [14] |
Zhao Z,Liu Y,Liu Y.Intrinsically flexible displays: key materials and devices.Natl Sci Rev2022;9:nwac090 PMCID:PMC9197576
|
| [15] |
Lee Y,Yoon H.Advancements in electronic materials and devices for stretchable displays.Adv Mater Technol2023;8:2201067
|
| [16] |
Kim DW,Lee G.Fabrication of practical deformable displays: advances and challenges.Light Sci Appl2023;12:61 PMCID:PMC9984414
|
| [17] |
Zhou H,Sung MJ,Lee TW.Intrinsically stretchable low-dimensional conductors for wearable organic light-emitting diodes.Device2023;1:100060
|
| [18] |
Lee B,Jeong S.Stretchable hybrid electronics: combining rigid electronic devices with stretchable interconnects into high-performance on-skin electronics.J Inf Disp2022;23:163-84
|
| [19] |
Hanif A,Kim D,Hajiyev S.Recent progress in strain-engineered stretchable constructs.Int J Precis Eng Manuf Green Tech2024;11:1403-33
|
| [20] |
Trung TQ.Recent progress on stretchable electronic devices with intrinsically stretchable components.Adv Mater2017;29:1603167
|
| [21] |
Yen YW,Chen JY,Lee CY.Investigation of thermal stability of Mo thin-films as the buffer layer and various Cu metallization as interconnection materials for thin film transistor-liquid crystal display applications.Thin Solid Films2007;515:7209-16
|
| [22] |
You B,Ju BK.Highly stretchable and waterproof electroluminescence device based on superstable stretchable transparent electrode.ACS Appl Mater Interfaces2017;9:5486-94
|
| [23] |
Zhao C,Gu S.Fully screen-printed, multicolor, and stretchable electroluminescent displays for epidermal electronics.ACS Appl Mater Interfaces2020;12:47902-10
|
| [24] |
Cai L,Zhang Y.Direct printing for additive patterning of silver nanowires for stretchable sensor and display applications.Adv Mater Technol2018;3:1700232
|
| [25] |
Jeong W,Choi H.Washable, stretchable, and reusable core-shell metal nanowire network-based electronics on a breathable polymer nanomesh substrate.Mater Today2022;61:30-9
|
| [26] |
Lin Y,Ding C.High-resolution and large-size stretchable electrodes based on patterned silver nanowires composites.Nano Res2022;15:4590-8
|
| [27] |
Tran P,Lee JH.Highly stretchable electroluminescent device based on copper nanowires electrode.Sci Rep2022;12:8967 PMCID:PMC9142487
|
| [28] |
Lee W,Kang I.Universal assembly of liquid metal particles in polymers enables elastic printed circuit board.Science2022;378:637-41
|
| [29] |
Li X,Cui L.Stretchable and lithography-compatible interconnects enabled by self-assembled nanofilms with interlocking interfaces.ACS Appl Mater Interfaces2023;15:56233-41
|
| [30] |
Park J,Cho D.Internally structured conductive composite for reliable stretchable electronics.Adv Elect Mater2023;9:2201021
|
| [31] |
Song S,Kim KY.Photothermal lithography for realizing a stretchable multilayer electronic circuit using a laser.ACS Nano2023;17:21443-54
|
| [32] |
Veerapandian S,Seol JB.Hydrogen-doped viscoplastic liquid metal microparticles for stretchable printed metal lines.Nat Mater2021;20:533-40
|
| [33] |
Wang T,Liu H,Xu H.Printable and highly stretchable viscoelastic conductors with kinematically reconstructed conductive pathways.Adv Mater2022;34:e2202418
|
| [34] |
Kim MS,Choi J.Stretchable printed circuit board based on leak-free liquid metal interconnection and local strain control.ACS Appl Mater Interfaces2022;14:1826-37
|
| [35] |
Liu S,Kramer-Bottiglio R.Highly stretchable multilayer electronic circuits using biphasic gallium-indium.Nat Mater2021;20:851-8
|
| [36] |
Lopes PA,Silva AF.Bi-phasic Ag-in-Ga-embedded elastomer inks for digitally printed, ultra-stretchable, multi-layer electronics.ACS Appl Mater Interfaces2021;13:14552-61
|
| [37] |
Park C,Lee H.Biaxially stretchable active-matrix micro-LED display with liquid metal interconnects.Adv Mater Technol2023;9:2301413
|
| [38] |
Park CW,Seong H.Photolithography-based patterning of liquid metal interconnects for monolithically integrated stretchable circuits.ACS Appl Mater Interfaces2016;8:15459-65
|
| [39] |
Kraft U,Son D,Murmann B.Ink development and printing of conducting polymers for intrinsically stretchable interconnects and circuits.Adv Elect Mater2020;6:1900681
|
| [40] |
Wang Z,Shen X.An ultralight graphene honeycomb sandwich for stretchable light-emitting displays.Adv Funct Mater2018;28:1707043
|
| [41] |
Bang J,Zhang J.Stretchable and directly patternable double-layer structure electrodes with complete coverage.ACS Nano2022;16:12134-44
|
| [42] |
Lee G,Lee J.Large-area photo-patterning of initially conductive EGaIn particle-assembled film for soft electronics.Mater Today2023;67:84-94
|
| [43] |
Shin H,Lee SW.Stretchable electroluminescent display enabled by graphene-based hybrid electrode.ACS Appl Mater Interfaces2019;11:14222-8
|
| [44] |
Zhou H,Harit AK.Graphene-based intrinsically stretchable 2d-contact electrodes for highly efficient organic light-emitting diodes.Adv Mater2022;34:e2203040
|
| [45] |
Kim DW,Kim HS.Printed stretchable single-nanofiber interconnections for individually-addressable highly-integrated transparent stretchable field effect transistor array.Nano Lett2021;21:5819-27
|
| [46] |
Zhang C,Cai J.Stretchable transparent electrodes with solution-processed regular metal mesh for an electroluminescent light-emitting film.ACS Appl Mater Interfaces2018;10:21009-17
|
| [47] |
Wang Y,Pfattner R.A highly stretchable, transparent, and conductive polymer.Sci Adv2017;3:e1602076 PMCID:PMC5345924
|
| [48] |
Yao S.Nanomaterial-enabled stretchable conductors: strategies, materials and devices.Adv Mater2015;27:1480-511
|
| [49] |
Vosgueritchian M,Bao Z.Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes.Adv Funct Mater2012;22:421-8
|
| [50] |
Kang S,Lee SH.High resolution micro-patterning of stretchable polymer electrodes through directed wetting localization.Sci Rep2019;9:13066 PMCID:PMC6737050
|
| [51] |
Gong X,Li G.Efficient fabrication of carbon nanotube-based stretchable electrodes for flexible electronic devices.Macromol Rapid Commun2023;44:e2200795
|
| [52] |
Li X,Zong L.Liquid metal droplets wrapped with polysaccharide microgel as biocompatible aqueous ink for flexible conductive devices.Adv Funct Mater2018;28:1804197
|
| [53] |
Zhu M,Luo Y.A mechanically interlocking strategy based on conductive microbridges for stretchable electronics.Adv Mater2022;34:e2101339
|
| [54] |
Kwon C,Ha J.Self-bondable and stretchable conductive composite fibers with spatially controlled percolated ag nanoparticle networks: novel integration strategy for wearable electronics.Adv Funct Mater2020;30:2005447
|
| [55] |
Lee Y,Hu L,Ahn JH.Morphable 3D structure for stretchable display.Mater Today2022;53:51-7
|
| [56] |
Kim N,Seo J,Lee J.Stretchable inorganic LED displays with double-layer modular design for high fill factor.ACS Appl Mater Interfaces2022;14:4344-51
|
| [57] |
Lee D,Kim T.Stretchable OLEDs based on a hidden active area for high fill factor and resolution compensation.Nat Commun2024;15:4349 PMCID:PMC11150391
|
| [58] |
Myny K.The development of flexible integrated circuits based on thin-film transistors.Nat Electron2018;1:30-9
|
| [59] |
Wu F,Zhang J,Ji D.Recent advances in high-mobility and high-stretchability organic field-effect transistors: from materials, devices to applications.Small Methods2021;5:e2100676
|
| [60] |
Wang S,Wang W.Skin electronics from scalable fabrication of an intrinsically stretchable transistor array.Nature2018;555:83-8
|
| [61] |
Liu J,Zhang Z.Fully stretchable active-matrix organic light-emitting electrochemical cell array.Nat Commun2020;11:3362 PMCID:PMC7335157
|
| [62] |
Liu D,Chen G.A design strategy for intrinsically stretchable high-performance polymer semiconductors: incorporating conjugated rigid fused-rings with bulky side groups.J Am Chem Soc2021;143:11679-89
|
| [63] |
Matsuhisa N,O’Neill SJK.High-frequency and intrinsically stretchable polymer diodes.Nature2021;600:246-52
|
| [64] |
Mun J,Wang W.A design strategy for high mobility stretchable polymer semiconductors.Nat Commun2021;12:3572 PMCID:PMC8196107
|
| [65] |
Ren H,Tong Y.Selection of insulating elastomers for high-performance intrinsically stretchable transistors.ACS Appl Electron Mater2021;3:1458-67
|
| [66] |
Zheng Y,Zhang S.A molecular design approach towards elastic and multifunctional polymer electronics.Nat Commun2021;12:5701 PMCID:PMC8481247
|
| [67] |
Liu D,Ji X.Tuning the mechanical and electric properties of conjugated polymer semiconductors: side-chain design based on asymmetric benzodithiophene building blocks.Adv Funct Mater2022;32:2203527
|
| [68] |
Pei D,Zhao B.Polyurethane-based stretchable semiconductor nanofilms with high intrinsic recovery similar to conventional elastomers.ACS Appl Mater Interfaces2022;14:33806-16
|
| [69] |
Liu K,Liu B.Low-voltage intrinsically stretchable organic transistor amplifiers for ultrasensitive electrophysiological signal detection.Adv Mater2023;35:e2207006
|
| [70] |
Zheng Y,Liu Q.Environmentally stable and stretchable polymer electronics enabled by surface-tethered nanostructured molecular-level protection.Nat Nanotechnol2023;18:1175-84
|
| [71] |
Kim JS,Nam TU.Intrinsically stretchable subthreshold organic transistors for highly sensitive low-power skin-like active-matrix temperature sensors.Adv Funct Mater2024;34:2305252
|
| [72] |
Park CW,Hwang C,Im SG.Stretchable active matrix of oxide thin-film transistors with monolithic liquid metal interconnects.Appl Phys Express2018;11:126501
|
| [73] |
Kim JO,Kim D.Network structure modification-enabled hybrid polymer dielectric film with zirconia for the stretchable transistor applications.Adv Funct Mater2020;30:1906647
|
| [74] |
Han K,Kim Y,Choi B.Mechanical durability of flexible/stretchable a-IGZO TFTs on PI island for wearable electronic application.ACS Appl Electron Mater2021;3:5037-47
|
| [75] |
Li E,Wang X.Direct fabrication of stretchable electronics on a programmable stiffness substrate with 100% strain isolation.IEEE Electron Device Lett2021;42:1484-7
|
| [76] |
Kim Y,Kim CY.A modulus-engineered multi-layer polymer film with mechanical robustness for the application to highly deformable substrate platform in stretchable electronics.Chem Eng J2022;431:134074
|
| [77] |
Lee W.Fatigue effect of stretchable a-InGaZnO TFT on PI/PDMS substrate under repetitive Uni/biaxial elongation stress.ACS Appl Electron Mater2022;4:6004-12
|
| [78] |
Miyakawa M,Nakata M.Highly stretchable island-structure metal oxide thin-film transistor arrays using acrylic adhesive for deformable display applications.J Soc Inf Disp2022;30:699-705
|
| [79] |
Oh H,Park CW,Yang JH.High density integration of stretchable inorganic thin film transistors with excellent performance and reliability.Nat Commun2022;13:4963 PMCID:PMC9402572
|
| [80] |
Song X,Wu L.Highly stretchable high-performance silicon nanowire field effect transistors integrated on elastomer substrates.Adv Sci2022;9:e2105623 PMCID:PMC8948590
|
| [81] |
Kang SH,Lee JM.Full integration of highly stretchable inorganic transistors and circuits within molecular-tailored elastic substrates on a large scale.Nat Commun2024;15:2814 PMCID:PMC10985077
|
| [82] |
Huang W,Huang Q,Zhang M.Ultra-high drivability, high-mobility, low-voltage and high-integration intrinsically stretchable transistors.Nanoscale2020;12:23546-55
|
| [83] |
Fan L,Huang Q.Stretchable carbon nanotube thin-film transistor arrays realized by a universal transferable-band-aid method.IEEE Trans Electron Devices2021;68:5879-85
|
| [84] |
Nishio Y,Kishimoto S,Ohno Y.Low-voltage operable and strain-insensitive stretchable all-carbon nanotube integrated circuits with local strain suppression layer.Adv Elect Mater2021;7:2000674
|
| [85] |
Zhang W,Pei X.Stretchable MoS2 artificial photoreceptors for E-Skin.Adv Funct Mater2022;32:2107524
|
| [86] |
Koo JH,Lee S.A vacuum-deposited polymer dielectric for wafer-scale stretchable electronics.Nat Electron2023;6:137-45
|
| [87] |
Li Y,Liu W.Achieving tissue-level softness on stretchable electronics through a generalizable soft interlayer design.Nat Commun2023;14:4488 PMCID:PMC10372055
|
| [88] |
Mai Y.On the essential work of ductile fracture in polymers.Int J Fract1986;32:105-25
|
| [89] |
Xia Z.Crack patterns in thin films.J Mech Phys Solids2000;48:1107-31
|
| [90] |
Alkhadra MA,Hilby KM,Sugiyama F.Quantifying the fracture behavior of brittle and ductile thin films of semiconducting polymers.Chem Mater2017;29:10139-49
|
| [91] |
Kim SW,Lee S.Stretchable mesh-patterned organic semiconducting thin films on creased elastomeric substrates.Adv Funct Mater2021;31:2010870
|
| [92] |
Fortunato E,Martins R.Oxide semiconductor thin-film transistors: a review of recent advances.Adv Mater2012;24:2945-86
|
| [93] |
Park B,Kang Y.Cation doping strategy for improved carrier mobility and stability in metal-oxide Heterojunction thin-film transistors.Mater Today Electron2024;8:100090
|
| [94] |
Chae SH,Bae JJ.Transferred wrinkled Al2O3 for highly stretchable and transparent graphene-carbon nanotube transistors.Nat Mater2013;12:403-9
|
| [95] |
Cai L.Carbon nanotube flexible and stretchable electronics.Nanoscale Res Lett2015;10:1013 PMCID:PMC4531887
|
| [96] |
Dai Y,Wang M,Wang S.Stretchable transistors and functional circuits for human-integrated electronics.Nat Electron2021;4:17-29
|
| [97] |
Jeong MW,Shin JS.Intrinsically stretchable three primary light-emitting films enabled by elastomer blend for polymer light-emitting diodes.Sci Adv2023;9:eadh1504 PMCID:PMC10284558
|
| [98] |
Kim JH.Intrinsically stretchable organic light-emitting diodes.Sci Adv2021;7:eabd9715 PMCID:PMC7904263
|
| [99] |
Jeon K.Light-emitting polymer blended with elastomers for stretchable polymer light-emitting diodes.Macromolecules2022;55:8311-20
|
| [100] |
Li XC,Song W.Intrinsically stretchable electroluminescent elastomers with self-confinement effect for highly efficient non-blended stretchable OLEDs.Angew Chem Int Ed Engl2023;62:e202213749
|
| [101] |
Liu W,Alessandri R.High-efficiency stretchable light-emitting polymers from thermally activated delayed fluorescence.Nat Mater2023;22:737-45
|
| [102] |
Oh JH.Intrinsically stretchable phosphorescent light-emitting materials for stretchable displays.ACS Appl Mater Interfaces2023;15:33784-96
|
| [103] |
Xie P,Luo Y.Highly bright and stable electroluminescent devices with extraordinary stretchability and ultraconformability.J Mater Chem C2019;7:484-9
|
| [104] |
Zhou Y,Wang J.Stretchable high-permittivity nanocomposites for epidermal alternating-current electroluminescent displays.ACS Mater Lett2019;1:511-8
|
| [105] |
Tan YJ,Chen G.A transparent, self-healing and high-κ dielectric for low-field-emission stretchable optoelectronics.Nat Mater2020;19:182-8
|
| [106] |
Xuan HD,Park HY.Super stretchable and durable electroluminescent devices based on double-network ionogels.Adv Mater2021;33:e2008849
|
| [107] |
Zhu H,Liu B,Qu S.3D printing of conductive hydrogel-elastomer hybrids for stretchable electronics.ACS Appl Mater Interfaces2021;13:59243-51
|
| [108] |
Zhao C,Ali MU.Bright stretchable white alternating-current electroluminescent devices enabled by photoluminescent phosphor.Adv Mater Technol2022;7:2101440
|
| [109] |
Zhu Y,Wu M,Jia C.Wearable, freezing-tolerant, and self-powered electroluminescence system for long-term cold-resistant displays.Nano Energy2022;98:107309
|
| [110] |
Go Y,Zhu Y.Optically transparent and mechanically robust ionic hydrogel electrodes for bright electroluminescent devices achieving high stretchability over 1400%.Adv Funct Mater2023;33:2215193
|
| [111] |
von Szczepanski J,Hu W.High-permittivity polysiloxanes for bright, stretchable electroluminescent devices.Adv Opt Mater2024;12:2400132
|
| [112] |
Bade SGR,Hoang PT.Stretchable light-emitting diodes with organometal-halide-perovskite-polymer composite emitters.Adv Mater2017;29:1607053
|
| [113] |
Lin CC,Kuo CC.Water-resistant efficient stretchable perovskite-embedded fiber membranes for light-emitting diodes.ACS Appl Mater Interfaces2018;10:2210-5
|
| [114] |
Ercan E,Chen JY.Stretchable and ambient stable perovskite/polymer luminous hybrid nanofibers of multicolor fiber mats and their white LED applications.ACS Appl Mater Interfaces2019;11:23605-15
|
| [115] |
Lee SY,Ahn J.Highly stretchable white-light electroluminescent devices with gel-type silica-coated all-inorganic perovskite.Appl Surf Sci2021;563:150229
|
| [116] |
Jeong SM,Kim H,Kwak JS.Stretchable, alternating-current-driven white electroluminescent device based on bilayer-structured quantum-dot-embedded polydimethylsiloxane elastomer.RSC Adv2017;7:8816-22
|
| [117] |
Le TH,Kim S.Highly elastic and >200% reversibly stretchable down-conversion white light-emitting diodes based on quantum dot gel emitters.Adv Opt Mater2020;8:1901972
|
| [118] |
Lee Y,Jin SW.Stretchable array of CdSe/ZnS quantum-dot light emitting diodes for visual display of bio-signals.Chem Eng J2022;427:130858
|
| [119] |
Kim DC,Yoo J.Intrinsically stretchable quantum dot light-emitting diodes.Nat Electron2024;7:365-74
|
| [120] |
Tien H,Chiu Y,Chueh C.Intrinsically stretchable polymer semiconductors: molecular design, processing and device applications.J Mater Chem C2021;9:2660-84
|
| [121] |
Ding Z,Zhao K.Optimizing morphology to trade off charge transport and mechanical properties of stretchable conjugated polymer films.Macromolecules2021;54:3907-26
|
| [122] |
Lucchetta DE,Francescangeli O,Singh G.Flexible, stretchable, tunable, and switchable DFB Laser.Photonics2023;10:12
|
| [123] |
Hao S,Yang X.Highly tough, stretchable, and recyclable ionogels with crosslink-enhanced emission characteristics for anti-counterfeiting and motion detection.ACS Appl Mater Interfaces2023;15:16132-43
|
| [124] |
Choi MK,Hyeon T.Flexible quantum dot light-emitting diodes for next-generation displays.npj Flex Electron2018;2:23
|
| [125] |
Kim TH,Kim S.Fully stretchable optoelectronic sensors based on colloidal quantum dots for sensing photoplethysmographic signals.ACS Nano2017;11:5992-6003
|
| [126] |
Li YF,Huang P.Stretchable organometal-halide-perovskite quantum-dot light-emitting diodes.Adv Mater2019;31:e1807516
|
| [127] |
Kim T,Jo W,Yoo S.Realizing stretchable OLEDs: a hybrid platform based on rigid island arrays on a stress-relieving bilayer structure.Adv Mater Technol2020;5:2000494
|
| [128] |
Lim MS,Choi S.Two-dimensionally stretchable organic light-emitting diode with elastic pillar arrays for stress relief.Nano Lett2020;20:1526-35
|
| [129] |
Hsiang E,Yang Q,Wu S.Prospects and challenges of mini-LED, OLED, and micro-LED displays.J Soc Inf Disp2021;29:446-65
|
| [130] |
Meng W,Yu Z.Three-dimensional monolithic micro-LED display driven by atomically thin transistor matrix.Nat Nanotechnol2021;16:1231-6
|
| [131] |
Ma F,Yuan W.Fully printed, large-size alternating current electroluminescent device on fabric for wearable textile display.ACS Appl Electron Mater2021;3:1747-57
|
| [132] |
Mi H,Tang X.Electroluminescent fabric woven by ultrastretchable fibers for arbitrarily controllable pattern display.ACS Appl Mater Interfaces2021;13:11260-7
|
| [133] |
Lee H.Fibertronic quantum-dot light-emitting diode for e-textile.ACS Appl Nano Mater2020;3:11060-9
|
| [134] |
Song YJ,Cho HE.Fibertronic organic light-emitting diodes toward fully addressable, environmentally robust, wearable displays.ACS Nano2020;14:1133-40
|
| [135] |
Choi S,Jeon Y.Multi-directionally wrinkle-able textile OLEDs for clothing-type displays.npj Flex Electron2020;4:96
|
| [136] |
Song H,Hong J.Water stable and matrix addressable OLED fiber textiles for wearable displays with large emission area.npj Flex Electron2022;6:199
|
| [137] |
Jang B,Kim J.Auxetic meta-display: stretchable display without image distortion.Adv Funct Mater2022;32:2113299
|
| [138] |
Jiang S,Xiong W.A snakeskin-inspired, soft-hinge kirigami metamaterial for self-adaptive conformal electronic armor.Adv Mater2022;34:e2204091
|
| [139] |
Hwang W,Park S.A breathable and stretchable metastructure for a versatile hybrid electronic skin patch with long-term skin comfort.Adv Mater Technol2023;8:2200477
|
| [140] |
Deng Y,Jiao R.Rotating square tessellations enabled stretchable and adaptive curved display.npj Flex Electron2024;8:291
|
| [141] |
Heo JS,Kim YH.Recent progress of textile-based wearable electronics: a comprehensive review of materials, devices, and applications.Small2018;14:1703034
|
| [142] |
Yun MJ,Lee DY.Highly stretchable large area woven, knitted and robust braided textile based interconnection for stretchable electronics.Sci Rep2021;11:4038 PMCID:PMC7890051
|
| [143] |
Choi JC,Sun JH.Bidirectional zero poisson’s ratio elastomers with self-deformable soft mechanical metamaterials for stretchable displays.Adv Funct Mater2024;2406725
|
| [144] |
Yoo J,Lee GH,Choi MK.Stretchable high-resolution user-interactive synesthesia displays for visual-acoustic encryption.Adv Funct Mater2023;33:2302473
|
| [145] |
Yang B,Ali MU.Asymmetrically enhanced coplanar-electrode electroluminescence for information encryption and ultrahighly stretchable displays.Adv Mater2022;34:e2201342
|
| [146] |
Kwon JH,Moon HC.Porous ion gel: a versatile ionotronic sensory platform for high-performance, wearable ionoskins with electrical and optical dual output.ACS Nano2021;15:15132-41
|
| [147] |
Nobeshima T,Nakamura K.Alternating-current-driven, color-tunable electrochemiluminescent cells.Adv Opt Mater2013;1:144-9
|
| [148] |
Shin S,Cho S.Effect of ion migration in electro-generated chemiluminescence depending on the luminophore types and operating conditions.Chem Sci2018;9:2480-8 PMCID:PMC5909676
|
| [149] |
Moon HC,Frisbie CD.Solution-processable electrochemiluminescent ion gels for flexible, low-voltage, emissive displays on plastic.J Am Chem Soc2014;136:3705-12
|
| [150] |
Kim SH,Yoon J.A bioinspired stretchable sensory-neuromorphic system.Adv Mater2021;33:e2104690
|
| [151] |
Zhang P,Chen G.Integrated 3D printing of flexible electroluminescent devices and soft robots.Nat Commun2022;13:4775 PMCID:PMC9399151
|
| [152] |
Zhao J,Wan H,Yu Z.High-speed fabrication of all-inkjet-printed organometallic halide perovskite light-emitting diodes on elastic substrates.Adv Mater2021;33:e2102095
|
| [153] |
Wang D,May C,Vaynzof Y.Roll-to-roll fabrication of highly transparent Ca:Ag top-electrode towards flexible large-area OLED lighting application.Flex Print Electron2021;6:035001
|
| [154] |
Wang C,Nie S.Programmable and scalable transfer printing with high reliability and efficiency for flexible inorganic electronics.Sci Adv2020;6:eabb2393 PMCID:PMC7299632
|
| [155] |
Luo H,Linghu C,Wang C.Laser-driven programmable non-contact transfer printing of objects onto arbitrary receivers via an active elastomeric microstructured stamp.Natl Sci Rev2020;7:296-304 PMCID:PMC8288994
|