Shape-deformable Micro-LEDs for advanced displays and healthcare

Shenghan Zou , Yuzhi Li , Zheng Gong

Soft Science ›› 2024, Vol. 4 ›› Issue (2) : 19

PDF
Soft Science ›› 2024, Vol. 4 ›› Issue (2) :19 DOI: 10.20517/ss.2024.13
Perspective

Shape-deformable Micro-LEDs for advanced displays and healthcare

Author information +
History +
PDF

Abstract

Recently, flexible/stretchable micro-scale light-emitting diodes (LEDs), with dimensions significantly smaller than conventional diodes used for illuminations, have emerged for promising applications in areas such as deformable displays, wearable devices for healthcare, etc. For such applications, these devices must have some unusual features that common inorganic LEDs do not intrinsically own, including conformability, biocompatibility, mechanical flexibility, etc. This Perspective focuses on summarizing the most recent progress in developing such flexible emitters based on inorganic semiconductors, followed by reviewing their potential applications. Finally, major challenges and future research directions of deformable micro-scale LEDs are presented.

Keywords

Micro-LED / conformability / flexibility / healthcare / foldable display

Cite this article

Download citation ▾
Shenghan Zou, Yuzhi Li, Zheng Gong. Shape-deformable Micro-LEDs for advanced displays and healthcare. Soft Science, 2024, 4(2): 19 DOI:10.20517/ss.2024.13

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jiang HX,Li J,Lin JY.III-nitride blue microdisplays.Appl Phys Lett2001;78:1303-5

[2]

Gong Z,Gu E.Matrix-addressable micropixellated InGaN light-emitting diodes with uniform emission and increased light output.IEEE Trans Electron Dev2007;54:2650-8

[3]

Liu Z,Hyun BR.Micro-light-emitting diodes with quantum dots in display technology.Light Sci Appl2020;9:83 PMCID:PMC7214519

[4]

Chen D,Zeng G,Lu HL.Integration technology of micro-LED for next-generation display.Research2023;6:0047 PMCID:PMC10202190

[5]

Lee HE,Park JH.Micro light-emitting diodes for display and flexible biomedical applications.Adv Funct Mater2019;29:1808075

[6]

Pan Z,Wang X.Wafer-scale micro-LEDs transferred onto an adhesive film for planar and flexible displays.Adv Mater Technol2020;5:2000549

[7]

Li C,Guo C.Transfer printed, vertical GaN-on-silicon micro-LED arrays with individually addressable cathodes.IEEE Trans Electron Dev2022;69:5630-6

[8]

Gong Z,Chen Y.Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes.J Appl Phys2010;107:013103

[9]

Liu H,Wang Z.Robust and multifunctional kirigami electronics with a tough and permeable aramid nanofiber framework.Adv Mater2022;34:e2207350

[10]

Jang B,Kim J.Auxetic meta-display: stretchable display without image distortion.Adv Funct Mater2022;32:2113299

[11]

Hu L,Hwangbo S.Flexible micro-LED display and its application in Gbps multi-channel visible light communication.npj Flex Electron2022;6:100

[12]

Lee S,Liu C,Lin Y.9.4-inch 228-ppi flexible micro-LED display.J Soc Info Display2021;29:360-9

[13]

Choi M,Lee W.Stretchable active matrix inorganic light-emitting diode display enabled by overlay-aligned roll-transfer printing.Adv Funct Mater2017;27:1606005

[14]

Lee SY,Huh C.Water-resistant flexible GaN LED on a liquid crystal polymer substrate for implantable biomedical applications.Nano Energy2012;1:145-51

[15]

Kim RH,Xiao J.Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics.Nat Mater2010;9:929-37

[16]

Park SI,Kim RH.Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays.Science2009;325:977-81

[17]

Guo C,Li C.Large-scale programmable assembly of functional micro-components for advanced electronics via light-regulated adhesion and polymer growth.npj Flex Electron2022;6:44

[18]

Zhang H.Recent advances in flexible inorganic light emitting diodes: from materials design to integrated optoelectronic platforms.Adv Opt Mater2019;7:1800936

[19]

Kim G,Yoo S,Ko HC.Hexahedral LED arrays with row and column control lines formed by selective liquid-phase plasticization and nondisruptive tucking-based origami.Adv Mater Technol2020;5:2000010

[20]

Zhou L,Cao G.Wireless self-powered optogenetic system for long-term cardiac neuromodulation to improve post-MI cardiac remodeling and malignant arrhythmia.Adv Sci2023;10:e2205551 PMCID:PMC10037959

[21]

Guan S,Yang Y.Self-assembled ultraflexible probes for long-term neural recordings and neuromodulation.Nat Protoc2023;18:1712-44

[22]

Yang Y,Wegener AJ.Preparation and use of wireless reprogrammable multilateral optogenetic devices for behavioral neuroscience.Nat Protoc2022;17:1073-96 PMCID:PMC9311268

[23]

Wu Y,Vázquez-Guardado A.Wireless multi-lateral optofluidic microsystems for real-time programmable optogenetics and photopharmacology.Nat Commun2022;13:5571 PMCID:PMC9500026

[24]

Kathe C,Schönle P.Wireless closed-loop optogenetics across the entire dorsoventral spinal cord in mice.Nat Biotechnol2022;40:198-208 PMCID:PMC7612390

[25]

Lee J, Lee S, Kim D, Jae Lee K. Implantable Micro-Light-Emitting Diode (µLED)-based optogenetic interfaces toward human applications.Adv Drug Deliv Rev2022;187:114399

[26]

Rajalingham R,Azadi R,DiCarlo JJ.Chronically implantable LED arrays for behavioral optogenetics in primates.Nat Methods2021;18:1112-6

[27]

Lee HE,Lee SH.Monolithic flexible vertical GaN light-emitting diodes for a transparent wireless brain optical stimulator.Adv Mater2018;30:e1800649

[28]

Li L,Ren Y.Colocalized, bidirectional optogenetic modulations in freely behaving mice with a wireless dual-color optoelectronic probe.Nat Commun2022;13:839 PMCID:PMC8837785

[29]

Lee GH,Mok JW.Smart wireless near-infrared light emitting contact lens for the treatment of diabetic retinopathy.Adv Sci2022;9:e2103254 PMCID:PMC8948592

[30]

Lingley AR,Liao Y.A single-pixel wireless contact lens display.J Micromech Microeng2011;21:125014

[31]

Park Y,An HS.Wireless phototherapeutic contact lenses and glasses with red light-emitting diodes.Nano Res2020;13:1347-53

[32]

Park J,Kim SY.Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays.Sci Adv2018;4:eaap9841 PMCID:PMC5787380

[33]

Takamatsu T,Yoshimasu T,Miyake T.Highly efficient, flexible wireless-powered circuit printed on a moist, soft contact lens.Adv Mater Technol2019;4:1800671

[34]

Lee GH,Kim H.Multifunctional materials for implantable and wearable photonic healthcare devices.Nat Rev Mater2020;5:149-65 PMCID:PMC7388681

[35]

Gong Z.Layer-scale and chip-scale transfer techniques for functional devices and systems: a review.Nanomaterials2021;11:842 PMCID:PMC8065746

[36]

Sun W,Lin Z.20 µm micro-LEDs mass transfer via laser-induced in situ nanoparticles resonance enhancement.Small2024;:e2309877

[37]

Wang L,Zhou F.Wafer-scale transferrable GaN enabled by hexagonal boron nitride for flexible light-emitting diode.Small2024;20:e2306132

[38]

Shin J,Sundaram S.Vertical full-colour micro-LEDs via 2D materials-based layer transfer.Nature2023;614:81-7

[39]

Zhang S,Ren F.Graphene-nanorod enhanced quasi-Van Der Waals epitaxy for high indium composition nitride films.Small2021;17:e2100098

[40]

Yu J,Hao Z.Van der Waals epitaxy of III-nitride semiconductors based on 2D materials for flexible applications.Adv Mater2020;32:e1903407

[41]

Lee CH,Hong YJ.Flexible inorganic nanostructure light-emitting diodes fabricated on graphene films.Adv Mater2011;23:4614-9

[42]

Kim Y,Lee K.Remote epitaxy through graphene enables two-dimensional material-based layer transfer.Nature2017;544:340-3

[43]

Cheng CW,Li N,Shi L.Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics.Nat Commun2013;4:1577

[44]

Schermer JJ,Bauhuis GJ.Epitaxial Lift-Off for large area thin film III/V devices.Phys Status Solidi A2005;202:501-8

[45]

Lin C,Wang G.Chemical lift-off process for blue light-emitting diodes.Appl Phys Express2010;3:092101

[46]

Lin M,Huang W.Chemical-mechanical lift-off process for InGaN epitaxial layers.Appl Phys Express2011;4:062101

[47]

Chen Q,Shi B.Principles for 2D-material-assisted nitrides epitaxial growth.Adv Mater2023;35:e2211075

[48]

Liang D,Wang J.Quasi van der Waals epitaxy nitride materials and devices on two dimension materials.Nano Energy2020;69:104463

[49]

Chung K,Baek H,Yi G.High-quality GaN films grown on chemical vapor-deposited graphene films.NPG Asia Mater2012;4:e24

[50]

Choi JH,Lee YS.Fully flexible GaN light-emitting diodes through nanovoid-mediated transfer.Adv Opt Mater2014;2:267-74

[51]

Huang S,Leung B.Mechanical properties of nanoporous GaN and its application for separation and transfer of GaN thin films.ACS Appl Mater Interfaces2013;5:11074-9

[52]

Choi W,Kim CS.A repeatable epitaxial lift-off process from a single GaAs substrate for low-cost and high-efficiency III-V solar cells.Adv Energy Mater2014;4:1400589

[53]

Kirk AP,Wood JD.Recent progress in epitaxial lift-off solar cells. In: 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC); 2018 Jun 10-15; Waikoloa, HI, USA. IEEE; 2018. pp. 32-5.

[54]

Park SH,Lee HE.Universal selective transfer printing via micro-vacuum force.Nat Commun2023;14:7744 PMCID:PMC10679119

[55]

Chang W,Kim M.Concurrent self-assembly of RGB microLEDs for next-generation displays.Nature2023;617:287-91

[56]

Meitl MA,Kumar V.Transfer printing by kinetic control of adhesion to an elastomeric stamp.Nature Mater2006;5:33-8

[57]

Carlson A,Huang Y,Rogers JA.Transfer printing techniques for materials assembly and micro/nanodevice fabrication.Adv Mater2012;24:5284-318

[58]

Gong Y.Laser-based micro/nano-processing techniques for microscale LEDs and full-color displays.Adv Mater Technol2023;8:2200949

[59]

Lee D,Park C.Fluidic self-assembly for MicroLED displays by controlled viscosity.Nature2023;619:755-60

[60]

Rao Z,Li Z.Curvy, shape-adaptive imagers based on printed optoelectronic pixels with a kirigami design.Nat Electron2021;4:513-21

[61]

Jiao R,Wang Y.Vertical serpentine interconnect-enabled stretchable and curved electronics.Microsyst Nanoeng2023;9:149 PMCID:PMC10679150

[62]

Biswas S,Hao Y.Integrated multilayer stretchable printed circuit boards paving the way for deformable active matrix.Nat Commun2019;10:4909 PMCID:PMC6817866

[63]

Yu S,Cheung YK.A biaxially stretchable and washable LED Display enabled by a wavy-structured metal grid.J Microelectromech Syst2022;31:771-6

[64]

Kang J,Tang W.71-2: enabling processes and designs for tight-pitch micro-LED based stretchable display.Symp Dig Tech Pap2021;52:1056-9

[65]

Liu Z,Qu X.A self-powered optogenetic system for implantable blood glucose control.Research2022;2022:9864734 PMCID:PMC9275083

[66]

Zhang H,Meacham K.Wireless, battery-free optoelectronic systems as subdermal implants for local tissue oximetry.Sci Adv2019;5:eaaw0873 PMCID:PMC6408152

[67]

Phan DT,Tran LH.A flexible, and wireless LED therapy patch for skin wound photomedicine with IoT-connected healthcare application.Flex Print Electron2021;6:045002

[68]

Zhao Z,Liu Y,Liu Y.Intrinsically flexible displays: key materials and devices.Natl Sci Rev2022;9:nwac090 PMCID:PMC9197576

[69]

Chen F,Zheng Z.Permeable conductors for wearable and on-skin electronics.Small Struct2022;3:2100135

[70]

Zou S,Gong Z.Wafer-scale patterning of high-resolution quantum dot films with a thickness over 10 μm for improved color conversion.Nanoscale2023;15:18317-27

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/