Wearable electrochemical sensors for real-time monitoring in diabetes mellitus and associated complications

Han Hee Jung , Hyeokjun Lee , Junwoo Yea , Kyung-In Jang

Soft Science ›› 2024, Vol. 4 ›› Issue (2) : 15

PDF
Soft Science ›› 2024, Vol. 4 ›› Issue (2) :15 DOI: 10.20517/ss.2024.02
Review Article

Wearable electrochemical sensors for real-time monitoring in diabetes mellitus and associated complications

Author information +
History +
PDF

Abstract

This comprehensive review underscores the pivotal role wearable electrochemical sensors play in the proactive management and prevention of diabetes mellitus (DM) and its associated complications. Acknowledging the substantial impact of DM on individuals and the urgency for effective monitoring strategies, wearable sensors have emerged as a pragmatic solution. These sensors can detect analytical signals from biofluids, including sweat, tears, saliva, and interstitial fluid (ISF), employing minimally invasive techniques facilitated by technological advancements. The seamless integration of these sensors with computational platforms such as smartphones enhances their practicality for routine use. The review systematically explores diverse methodologies, encompassing both enzymatic and non-enzymatic principles, employed for the surveillance of analytes within biofluids. These foundational principles are meticulously applied to wearable devices, affording point-of-care solutions catering to the detection of individual analytes or simultaneous multiplexed analyte detection. The integration of wireless systems and the incorporation of machine learning algorithms introduce a layer of sophistication, elevating the capability of these sensors for the nuanced monitoring of DM and its complications. Through an in-depth analysis of these advancements, this review describes the significant potential of wearable electrochemical sensors as an essential tool for real-time monitoring and managing DM. The diverse approaches presented underscore the adaptability, versatility, and inherent efficacy of these sensors in addressing the multifaceted challenges intrinsic to DM and its associated complications within academic discourse.

Keywords

Wearable electronics / electrochemical sensor / biosensor / diabetes mellitus / machine learning

Cite this article

Download citation ▾
Han Hee Jung, Hyeokjun Lee, Junwoo Yea, Kyung-In Jang. Wearable electrochemical sensors for real-time monitoring in diabetes mellitus and associated complications. Soft Science, 2024, 4(2): 15 DOI:10.20517/ss.2024.02

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kaul K,Ahmad SI,Chibber R.Introduction to diabetes mellitus. Adv Exp Med Biol 2013;771:1-11.

[2]

International Diabetes Federation. IDF diabetes atlas 2021. Available from: https://diabetesatlas.org/atlas/tenth-edition/. [Last accessed on 15 Apr 2024]

[3]

NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants.Lancet2016;387:1513-30 PMCID:PMC5081106

[4]

Ortega Á,Rojas A,Soria B.Gene-diet interactions in type 2 diabetes: the chicken and egg debate.Int J Mol Sci2017;18:1188 PMCID:PMC5486011

[5]

Reddy SSK.Chapter 1 - Diabetes mellitus and its many complications. In: Tan M, editor. Diabetes mellitus. Academic Press; 2020. pp. 1-18.

[6]

Lukovits TG,Gorelick TM.Diabetes mellitus and cerebrovascular disease.Neuroepidemiology1999;18:1-14

[7]

Ergul A,Abdalla M.Cerebrovascular complications of diabetes: focus on stroke.Endocr Metab Immune Disord Drug Targets2012;12:148-58 PMCID:PMC3741336

[8]

Phipps MS,Furie K.The diagnosis and management of cerebrovascular disease in diabetes.Curr Diab Rep2012;12:314-23

[9]

Savage PJ.Cardiovascular complications of diabetes mellitus: what we know and what we need to know about their prevention.Ann Intern Med1996;124:123-6

[10]

Glovaci D,Wong ND.Epidemiology of diabetes mellitus and cardiovascular disease.Curr Cardiol Rep2019;21:21

[11]

Smith SC Jr.Multiple risk factors for cardiovascular disease and diabetes mellitus.Am J Med2007;120:S3-11

[12]

Rivetti G,Miraglia Del Giudice E.Acute and chronic kidney complications in children with type 1 diabetes mellitus.Pediatr Nephrol2023;38:1449-58 PMCID:PMC10060299

[13]

Hahr AJ.Management of diabetes mellitus in patients with chronic kidney disease.Clin Diabetes Endocrinol2015;1:2 PMCID:PMC5469199

[14]

Alsahli M.Hypoglycemia, chronic kidney disease, and diabetes mellitus.Mayo Clin Proc2014;89:1564-71

[15]

Cui Y.Pancreatogenic diabetes: special considerations for management.Pancreatology2011;11:279-94

[16]

Bradley DA.Diabetes mellitus related to diseases of the exocrine pancreas (pancreatogenic diabetes). In: Domínguez-muñoz JE, editor. Clinical pancreatology for practising gastroenterologists and surgeons. Wiley; 2021. pp. 668-78.

[17]

Sjoberg RJ.Pancreatic diabetes mellitus.Diabetes Care1989;12:715-24

[18]

Papatheodorou K,Bekiari E,Edmonds M.Complications of diabetes 2017.J Diabetes Res2018; 2018:3086167 PMCID:PMC5866895

[19]

Alberti KGMM.Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO Consultation.Diabet Med1998;15:539-53

[20]

Unnikrishnan R,Mohan V.Diabetes mellitus and its complications in India.Nat Rev Endocrinol2016;12:357-70

[21]

Harding JL,Magliano DJ,Gregg EW.Global trends in diabetes complications: a review of current evidence.Diabetologia2019;62:3-16

[22]

World Health Organization. Global report on diabetes. 2016. Available from: https://www.who.int/publications/i/item/9789241565257. [Last accessed on 15 Apr 2024]

[23]

Centers for Disease Control and Prevention. Diabetes tests. 2023. Available from: https://www.cdc.gov/diabetes/basics/getting-tested.html. [Last accessed on 19 Apr 2024]

[24]

Santos Oliveira L, Oliveira SF, de Barros Manchado-Gobatto F, da Cunha Costa M. Salivary and blood lactate kinetics in response to maximal workload on cycle ergometer.Rev Bras Cineantropom Desempenho Hum2015;17:565-74. (in Portuguese)

[25]

Aleksandar J,Markovic-Jovanovic S,Mitic J.Hyperlactatemia and the outcome of type 2 diabetic patients suffering acute myocardial infarction.J Diabetes Res2016;2016:6901345 PMCID:PMC5128715

[26]

D.S JP, Pasula S, Sunanda V, Apparow DN, kodali V. Study of uric acid and lipid profile in recent onset essential hypertension.IJCBR2018;5:301-5Available from: https://www.ijcbr.in/journal-article-file/6818. [Last accessed on 28 Apr 2024]

[27]

Wang Q,Kong J.Recent progress on uric acid detection: a review.Crit Rev Anal Chem2020;50:359-75

[28]

Patterson MJ,Nimmo MA.Variations in regional sweat composition in normal human males.Exp Physiol2000;85:869-75

[29]

Bulmer MG.The concentration of sodium in thermal sweat.J Physiol1956;132:115-22 PMCID:PMC1363543

[30]

Sonner Z,Heikenfeld J.The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications.Biomicrofluidics2015;9:031301 PMCID:PMC4433483

[31]

Sato K,Saga K.Biology of sweat glands and their disorders. I. Normal sweat gland function.J Am Acad Dermatol1989;20:537-63

[32]

Sato K.Sweat induction from an isolated eccrine sweat gland.Am J Physiol1973;225:1147-52

[33]

Xiao Y,Wang M.Noninvasive glucose monitoring using portable GOx-Based biosensing system.Anal Chim Acta2024;1287:342068

[34]

Gao W,Nyein HYY.Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis.Nature2016;529:509-14 PMCID:PMC4996079

[35]

Emaminejad S,Wu E.Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform.Proc Natl Acad Sci U S A2017;114:4625-30 PMCID:PMC5422810

[36]

Derbyshire PJ,Davis F.Lactate in human sweat: a critical review of research to the present day.J Physiol Sci2012;62:429-40 PMCID:PMC10717375

[37]

Luo TT,Li CX,Xiao ZX.Monitor for lactate in perspiration.J Physiol Sci2021;71:26 PMCID:PMC10717619

[38]

Gupta S,Sunitha JD,Sinha N.Correlation of salivary glucose level with blood glucose level in diabetes mellitus.J Oral Maxillofac Pathol2017;21:334-9 PMCID:PMC5763852

[39]

Balan P,Sucheta KN.Can saliva offer an advantage in monitoring of diabetes mellitus? - A case control study.J Clin Exp Dent2014;6:e335-8 PMCID:PMC4282897

[40]

Tékus E,Szabó E.Comparison of blood and saliva lactate level after maximum intensity exercise.Acta Biol Hung2012;63:89-98

[41]

Zhao J.Salivary uric acid as a noninvasive biomarker for monitoring the efficacy of urate-lowering therapy in a patient with chronic gouty arthropathy.Clin Chim Acta2015;450:115-20

[42]

Singh G,Malik H.Relative changes in salivary sodium and potassium in relation to exposure to high g stress.Med J Armed Forces India1994;50:261-5 PMCID:PMC5533209

[43]

Kallapur B,Bastian ,Sarkar A.Quantitative estimation of sodium, potassium and total protein in saliva of diabetic smokers and nonsmokers: a novel study.J Nat Sci Biol Med2013;4:341-5 PMCID:PMC3783777

[44]

Sen DK.Tear glucose levels in normal people and in diabetic patients.Br J Ophthalmol1980;64:693-5 PMCID:PMC1043796

[45]

Thomas N,Parviz B.A contact lens with an integrated lactate sensor.Sens Actuators B Chem2012;162:128-34

[46]

Horwath-Winter J,Meinitzer A,Faschinger C.Determination of uric acid concentrations in human tear fluid, aqueous humour and serum.Acta Ophthalmol2009;87:188-92

[47]

Kim EH,Lee DY.Facile determination of sodium ion and osmolarity in artificial tears by sequential DNAzymes.Sensors2017;17:2840 PMCID:PMC5751078

[48]

Freckmann G,Baumstark A.Continuous glucose profiles in healthy subjects under everyday life conditions and after different meals.J Diabetes Sci Technol2007;1:695-703 PMCID:PMC2769652

[49]

Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group; Fox LA, Beck RW, Xing D. Variation of interstitial glucose measurements assessed by continuous glucose monitors in healthy, nondiabetic individuals. Diabetes Care 2010;33:1297-9. PMCID:PMC2875442

[50]

Koschinsky T.Sensors for glucose monitoring: technical and clinical aspects.Diabetes Metab Res Rev2001;17:113-23

[51]

Heikenfeld J,Feldman B.Accessing analytes in biofluids for peripheral biochemical monitoring.Nat Biotechnol2019;37:407-19

[52]

Samant PP,Raviele N.Sampling interstitial fluid from human skin using a microneedle patch.Sci Transl Med2020;12:eaaw0285 PMCID:PMC7871333

[53]

Sieg A,Delgado-Charro MB.Noninvasive glucose monitoring by reverse iontophoresis in-vivo: application of the internal standard concept.Clin Chem2004;50:1383-90

[54]

Zacchia M,Stratigis S.Potassium: from physiology to clinical implications.Kidney Dis2016;2:72-9 PMCID:PMC4947686

[55]

Palmer BF.Physiology and pathophysiology of potassium homeostasis.Adv Physiol Educ2016;40:480-90

[56]

Xiong Q,Xu Y.Effects of uric acid on diabetes mellitus and its chronic complications.Int J Endocrinol2019;2019:9691345 PMCID:PMC6815590

[57]

Woyesa SB,Anshebo DL.Assessment of selected serum electrolyte and associated risk factors in diabetic patients.Diabetes Metab Syndr Obes2019;12:2811-7 PMCID:PMC6978677

[58]

Klonoff DC,Drincic A.Continuous glucose monitoring: a review of the technology and clinical use.Diabetes Res Clin Pract2017;133:178-92

[59]

Mahato K.Electrochemical sensors: from the bench to the skin.Sens Actuators B Chem2021;344:130178

[60]

Hernández-Rodríguez JF,Escarpa A.Electrochemical sensing directions for next-generation healthcare: trends, challenges, and frontiers.Anal Chem2021;93:167-83

[61]

Lee I,Klonoff D.Continuous glucose monitoring systems - current status and future perspectives of the flagship technologies in biosensor research.Biosens Bioelectron2021;181:113054

[62]

Zheng L,Wang W,Thng STG.A silk-microneedle patch to detect glucose in the interstitial fluid of skin or plant tissue.Sens Actuators B Chem2022;372:132626

[63]

Moonla C,Casanova A.Continuous ketone monitoring via wearable microneedle patch platform.ACS Sens2024;9:1004-13

[64]

Krentz AJ.Glucose: archetypal biomarker in diabetes diagnosis, clinical management and research.Biomark Med2016;10:1153-66

[65]

Yan K,Wu D,Lu G.Design of a breath analysis system for diabetes screening and blood glucose level prediction.IEEE Trans Biomed Eng2014;61:2787-95

[66]

Anders HJ,Isermann B.CKD in diabetes: diabetic kidney disease versus nondiabetic kidney disease.Nat Rev Nephrol2018;14:361-77

[67]

Hatada M,Khanwalker M,Okuda-shimazaki J.Current and future prospective of biosensing molecules for point-of-care sensors for diabetes biomarker.Sens Actuators B Chem2022;351:130914

[68]

Crawford SO,Brancati FL.Association of blood lactate with type 2 diabetes: the Atherosclerosis Risk in Communities Carotid MRI Study.Int J Epidemiol2010;39:1647-55 PMCID:PMC2992628

[69]

Azushima K,Yamaji T.Abnormal lactate metabolism is linked to albuminuria and kidney injury in diabetic nephropathy.Kidney Int2023;104:1135-49

[70]

Pecoits-Filho R,Betônico CC.Interactions between kidney disease and diabetes: dangerous liaisons.Diabetol Metab Syndr2016;8:50 PMCID:PMC4964290

[71]

Baruh S,Markowitz S.Diabetic ketoacidosis and coma.Med Clin North Am1981;65:117-32

[72]

Young BA.Ketosis and coma in diabetes mellitus.Postgrad Med J1951;27:338-44 PMCID:PMC2530274

[73]

Beigelman PM.Severe diabetic ketoacidosis (diabetic “coma”). 482 episodes in 257 patients; experience of three years.Diabetes1971;20:490-500

[74]

Lytvyn Y,Cherney DZ.Uric acid as a biomarker and a therapeutic target in diabetes.Can J Diabetes2015;39:239-46

[75]

Heerspink HJ,Fitchett DH,Cherney DZ.Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications.Circulation2016;134:752-72

[76]

Din UAAS, Salem MM, Abdulazim DO. Uric acid in the pathogenesis of metabolic, renal, and cardiovascular diseases: a review.J Adv Res2017;8:537-48 PMCID:PMC5512153

[77]

Mou L,Jiang X.Epidermal sensor for potentiometric analysis of metabolite and electrolyte.Anal Chem2021;93:11525-31

[78]

Liamis G,Barkas F.Diabetes mellitus and electrolyte disorders.World J Clin Cases2014;2:488-96 PMCID:PMC4198400

[79]

Mirzajani H,Istif E,Beker L.Powering smart contact lenses for continuous health monitoring: Recent advancements and future challenges.Biosens Bioelectron2022;197:113761

[80]

Liu H,Gu Z,Xiao X.Electrochemical sensing in contact lenses.Electroanalysis2022;34:227-36

[81]

Kim J,Park JU.Recent advances in smart contact lenses.Adv Mater Technol2020;5:1900728

[82]

Zhu Y,Li J.Lab-on-a-contact lens: recent advances and future opportunities in diagnostics and therapeutics.Adv Mater2022;34:e2108389 PMCID:PMC9233032

[83]

Jin X,Xu T.Artificial intelligence biosensors for continuous glucose monitoring.Interdiscip Mater2023;2:290-307

[84]

Das SK,Krishnaswamy PR,Bhat N.Review - electrochemistry and other emerging technologies for continuous glucose monitoring devices.ECS Sens Plus2022;1:031601

[85]

Wang J.Electrochemical glucose biosensors.Chem Rev2008;108:814-25

[86]

Guinovart T,Crespo GA,Andrade FJ.Potentiometric sensors using cotton yarns, carbon nanotubes and polymeric membranes.Analyst2013;138:5208-15

[87]

Parrilla M,Guinovart T.Wearable potentiometric sensors based on commercial carbon fibres for monitoring sodium in sweat.Electroanalysis2016;28:1267-75

[88]

Jung HH,Lee H.Taste bud-inspired single-drop multitaste sensing for comprehensive flavor analysis with deep learning algorithms.ACS Appl Mater Interfaces2023;15:46041-53

[89]

Jung HH,Park J.Highly deformable double-sided neural probe with all-in-one electrode system for real-time in-vivo detection of dopamine for Parkinson’s disease.Adv Funct Mater2024;34:2311436

[90]

Liu G.Amperometric glucose biosensor based on self-assembling glucose oxidase on carbon nanotubes.Electrochem Commun2006;8:251-6

[91]

Romero MR,Garay F.Amperometric biosensor for direct blood lactate detection.Anal Chem2010;82:5568-72

[92]

Vidya H,Sharma SC,Hariprasad SA.Effect of graphite oxide and exfoliated graphite oxide as a modifier for the voltametric determination of dopamine in presence of uric acid and folic acid.Sci Rep2021;11:24040 PMCID:PMC8674362

[93]

Alimohammadi S,Imani M,Sasanpour P.A proposed implantable voltammetric carbon fiber-based microsensor for corticosteroid monitoring by cochlear implants.Mikrochim Acta2021;188:357

[94]

Lei Y,Lucking MC.Single-atom doping of MoS2 with manganese enables ultrasensitive detection of dopamine: experimental and computational approach.Sci Adv2020;6:eabc4250 PMCID:PMC7413726

[95]

Khan RN,Kausar SF.Pattern of electrolyte imbalance in Type 2 diabetes patients: experience from a tertiary care hospital.Pak J Med Sci2019;35:797-801 PMCID:PMC6572991

[96]

Campuzano S,Torrente-rodríguez RM.Affinity-based wearable electrochemical biosensors: natural versus biomimetic receptors.Anal Sens2023;3:e202200087

[97]

García-Salas JM,Manzano-Fernández S.Interleukin-6 as a predictor of cardiovascular events in troponin-negative non-ST elevation acute coronary syndrome patients.Int J Clin Pract2014;68:294-303

[98]

Ferreira PC,Silva Chagas CL.Wearable electrochemical sensors for forensic and clinical applications.TrAC Trends Anal Chem2019;119:115622

[99]

Yang Y,Briega-martos V.Operando methods: a new era of electrochemistry.Curr Opin Electrochem2023;42:101403

[100]

Bobacka J,Lewenstam A.Potentiometric ion sensors.Chem Rev2008;108:329-51

[101]

Lee H,Baik S,Kim DH.Enzyme-based glucose sensor: from invasive to wearable device.Adv Healthc Mater2018;7:e1701150

[102]

Bollella P,Cass AEG.Microneedle-based biosensor for minimally-invasive lactate detection.Biosens Bioelectron2019;123:152-9

[103]

Sun M,Chen H,Zhang W.Enzymatic and non-enzymatic uric acid electrochemical biosensors: a review.Chempluschem2023;88:e202300262

[104]

Rocchitta G,Alvau MD.Development and characterization of an implantable biosensor for telemetric monitoring of ethanol in the brain of freely moving rats.Anal Chem2012;84:7072-9

[105]

Rasitanon N,Kaewpradub K.Wearable electrodes for lactate: applications in enzyme-based sensors and energy biodevices.Anal Sens2023;3:e202200066

[106]

Harper A.Electrochemical glucose sensors - developments using electrostatic assembly and carbon nanotubes for biosensor construction.Sensors2010;10:8248-74 PMCID:PMC3231221

[107]

Ghindilis AL,Atanasov P.Flow-through amperometric immunosensor: fast ‘sandwich’ scheme immunoassay.Biosens Bioelectron1997;12:415-23

[108]

Antiochia R,Palleschi G.Purification and sensor applications of an oxygen insensitive, thermophilic diaphorase.Anal Chim Acta1997;345:17-28

[109]

Chaubey A.Mediated biosensors.Biosens Bioelectron2002;17:441-56

[110]

Bridge JA,Salary CB.Clinical response and risk for reported suicidal ideation and suicide attempts in pediatric antidepressant treatment: a meta-analysis of randomized controlled trials.JAMA2007;297:1683-96

[111]

Ghindilis AL,Wilkins E.Enzyme-catalyzed direct electron transfer: fundamentals and analytical applications.Electroanalysis1997;9:661-74

[112]

Gorton L.Carbon paste electrodes modified with enzymes, tissues, and cells.Electroanalysis1995;7:23-45

[113]

Gorton L,Larsson T,Ruzgas T.Direct electron transfer between heme-containing enzymes and electrodes as basis for third generation biosensors.Anal Chim Acta1999;400:91-108

[114]

Zhang W.Third-generation biosensors based on the direct electron transfer of proteins.Anal Sci2004;20:603-9

[115]

Xiao X,Wu R.Tackling the challenges of enzymatic (bio)fuel cells.Chem Rev2019;119:9509-58

[116]

Wilson JR,Gilardi G.Engineering redox functions in a nucleic acid binding protein.Chem Commun2003;356-7

[117]

Zayats M,Willner I.Electrical contacting of glucose oxidase by surface-reconstitution of the apo-protein on a relay-boronic acid-FAD cofactor monolayer.J Am Chem Soc2002;124:2120-1

[118]

Jesionowski T,Krajewska B.Enzyme immobilization by adsorption: a review.Adsorption2014;20:801-21

[119]

Imam HT,Marr AC.Enzyme entrapment, biocatalyst immobilization without covalent attachment.Green Chem2021;23:4980-5005

[120]

Zucca P.Inorganic materials as supports for covalent enzyme immobilization: methods and mechanisms.Molecules2014;19:14139-94 PMCID:PMC6272024

[121]

Harris JM,Lopez GP.Common causes of glucose oxidase instability in in-vivo biosensing: a brief review.J Diabetes Sci Technol2013;7:1030-8 PMCID:PMC3879770

[122]

Guzsvány V,Radulović E.Screen-printed enzymatic glucose biosensor based on a composite made from multiwalled carbon nanotubes and palladium containing particles.Microchim Acta2017;184:1987-96

[123]

Sanaeifar N,Abdolrahim M,Vashaee D.A novel electrochemical biosensor based on Fe3O4 nanoparticles-polyvinyl alcohol composite for sensitive detection of glucose.Anal Biochem2017;519:19-26

[124]

Baby TT.SiO2 coated Fe3O4 magnetic nanoparticle dispersed multiwalled carbon nanotubes based amperometric glucose biosensor.Talanta2010;80:2016-22

[125]

Shukla M,Dixit T,Palani IA.Influence of aspect ratio and surface defect density on hydrothermally grown ZnO nanorods towards amperometric glucose biosensing applications.Appl Surf Sci2017;422:798-808

[126]

Mohamad NR,Buang NA,Wahab RA.An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes.Biotechnol Biotechnol Equip2015;29:205-20 PMCID:PMC4434042

[127]

Ichimura K.Preparation and characteristics of photocross-linkable poly(vinyl alcohol).J Polym Sci Polym Chem Ed1982;20:1419-32

[128]

Ichimura K.A convenient photochemical method to immobilize enzymes.J Polym Sci Polym Chem Ed1984;22:2817-28

[129]

Kandimalla VB,Ju H.Immobilization of biomolecules in sol-gels: biological and analytical applications.Crit Rev Anal Chem2006;36:73-106

[130]

Gupta R.Entrapment of biomolecules in sol-gel matrix for applications in biosensors: problems and future prospects.Biosens Bioelectron2007;22:2387-99

[131]

Park JK.Microencapsulation of microbial cells.Biotechnol Adv2000;18:303-19

[132]

King GA,Faulkner P.Alginate-polylysine microcapsules of controlled membrane molecular weight cutoff for mammalian cell culture engineering.Biotechnol Prog1987;3:231-40

[133]

Nguyen HH.An overview of techniques in enzyme immobilization.Appl Sci Converg Technol2017;26:157-63

[134]

Gustafsson H,Holmberg K.A comparison of lipase and trypsin encapsulated in mesoporous materials with varying pore sizes and pH conditions.Colloids Surf B Biointerfaces2011;87:464-71

[135]

Matsuura S,Itoh T.Immobilization of enzyme-encapsulated nanoporous material in a microreactor and reaction analysis.Chem Eng J2011;167:744-9

[136]

Chakraborty S,Nath A.Immobilized biocatalytic process development and potential application in membrane separation: a review.Crit Rev Biotechnol2016;36:43-58

[137]

Sulaiman S,Naim MN,Sulaiman A.A review: potential usage of cellulose nanofibers (CNF) for enzyme immobilization via covalent interactions.Appl Biochem Biotechnol2015;175:1817-42

[138]

Marrazza G.Piezoelectric biosensors for organophosphate and carbamate pesticides: a review.Biosensors2014;4:301-17 PMCID:PMC4264360

[139]

Regiart M,Fernandes E.Highly sensitive and selective nanostructured microbiosensors for glucose and lactate simultaneous measurements in blood serum and in-vivo in brain tissue.Biosens Bioelectron2022;199:113874

[140]

Narwal V,Rani S.An ultrasensitive amperometric determination of lactate by lactate dehydrogenase nanoparticles immobilized onto Au electrode.Int J Biol Macromol2018;115:767-75

[141]

Dasgupta A,Petrova S.Comprehensive collagen crosslinking comparison of microfluidic wet-extruded microfibers for bioactive surgical suture development.Acta Biomater2021;128:186-200

[142]

Mir AR,Uddin M.Recent advances in histone glycation: emerging role in diabetes and cancer.Glycobiology2021;31:1072-9

[143]

Sonker AK,Rathore K.Crosslinking of agar by diisocyanates.Carbohydr Polym2018;202:454-60

[144]

Feng R,Wang X,Tang F.A long-term stable and flexible glucose sensor coated with poly(ethylene glycol)-modified polyurethane.J Electroanal Chem2021;895:115518

[145]

Chang BS.Enzyme thermostabilization by bovine serum albumin and other proteins: evidence for hydrophobic interactions.Biotechol Appl Biochem1995;22:203-14

[146]

Broun GB.Chemically aggregated enzymes.Methods Enzymol1976;44:263-80

[147]

Das S,Gill K.Isolation and characterization of novel protein with anti-fungal and anti-inflammatory properties from Aloe vera leaf gel.Int J Biol Macromol2011;48:38-43

[148]

Fopase R,Kale P.Strategies, challenges and opportunities of enzyme immobilization on porous silicon for biosensing applications.J Environ Chem Eng2020;8:104266

[149]

Perez JJ,Maroniche GA,Pereyra MA.A novel, green, low-cost chitosan-starch hydrogel as potential delivery system for plant growth-promoting bacteria.Carbohydr Polym2018;202:409-17

[150]

Shao Y,Miao J.Synthesis of an immobilized Brønsted acidic ionic liquid catalyst on chloromethyl polystyrene grafted silica gel for esterification.Reac Kinet Mech Cat2013;109:149-58

[151]

Guajardo N.Immobilization of lipases using poly(vinyl) alcohol.Polymers2023;15:2021 PMCID:PMC10181104

[152]

Tang ZM.Enzyme inhibitor screening by capillary electrophoresis with an on-column immobilized enzyme microreactor created by an ionic binding technique.Anal Chem2006;78:2514-20

[153]

Hwang ET.Enzyme stabilization by nano/microsized hybrid materials.Eng Life Sci2013;13:49-61

[154]

Kaur J,Chaudhari R,Joshi A.9 - Enzyme-based biosensors. In: Pal K, Kraatz HB, Khasnobish A, Bag S, Banerjee I, Kuruganti U, editors. Bioelectronics and medical devices. Woodhead Publishing; 2019. pp. 211-40.

[155]

Sirisha VL,Jain A.Chapter nine - Enzyme immobilization: an overview on methods, support material, and applications of immobilized enzymes.Adv Food Nutr Res2016;79:179-211

[156]

Moreno-Bondi MC,Shriver-Lake LC.Multiplexed measurement of serum antibodies using an array biosensor.Biosens Bioelectron2006;21:1880-6

[157]

Akter R,Lee YM,Rahman MA.Femtomolar detection of cardiac troponin I using a novel label-free and reagent-free dendrimer enhanced impedimetric immunosensor.Biosens Bioelectron2017;91:637-43

[158]

Andoy NM,Vetter D,Tarasov A.Graphene-based electronic immunosensor with femtomolar detection limit in whole serum.Adv Mater Technol2018;3:1800186

[159]

Basu J,RoyChaudhuri C.A graphene field effect capacitive Immunosensor for sub-femtomolar food toxin detection.Biosens Bioelectron2015;68:544-9

[160]

Wehmeyer KR,Kissinger PT.Electrochemical affinity assays/sensors: brief history and current status.Annu Rev Anal Chem2021;14:109-31

[161]

Tu J,Wang M.The era of digital health: a review of portable and wearable affinity biosensors.Adv Funct Mater2020;30:1906713

[162]

Sempionatto JR,Mahato K,Gao W.Wearable chemical sensors for biomarker discovery in the omics era.Nat Rev Chem2022;6:899-915 PMCID:PMC9666953

[163]

Flynn CD,Mahmud A.Biomolecular sensors for advanced physiological monitoring.Nat Rev Bioeng2023;1:560-75 PMCID:PMC10173248

[164]

Guo W,Ma T.Advances in aptamer screening and aptasensors’ detection of heavy metal ions.J Nanobiotechnology2021;19:166 PMCID:PMC8171055

[165]

Yang D,Zhou Y.Aptamer-based biosensors for detection of lead(ii) ion: a review.Anal Methods2017;9:1976-90

[166]

Wang W,Qian M.Aptamer biosensor for protein detection using gold nanoparticles.Anal Biochem2008;373:213-9

[167]

Cheng AK,Yu HZ.Design and testing of aptamer-based electrochemical biosensors for proteins and small molecules.Bioelectrochemistry2009;77:1-12

[168]

Frutiger A,Hwu S,Vörös J.Nonspecific binding-fundamental concepts and consequences for biosensing applications.Chem Rev2021;121:8095-160

[169]

Blind M.Aptamer selection technology and recent advances.Mol Ther Nucleic Acids2015;4:e223 PMCID:PMC4345306

[170]

Kohlberger M.SELEX: Critical factors and optimization strategies for successful aptamer selection.Biotechnol Appl Biochem2022;69:1771-92 PMCID:PMC9788027

[171]

Lyu C,Wang Z.Capture-SELEX for aptamer selection: a short review.Talanta2021;229:122274

[172]

Yano-Ozawa Y,Muto Y.Molecular detection using aptamer-modified gold nanoparticles with an immobilized DNA brush for the prevention of non-specific aggregation.RSC Adv2021;11:11984-91 PMCID:PMC8696536

[173]

Liu Y,Alkhamis O.Immobilization strategies for enhancing sensitivity of electrochemical aptamer-based sensors.ACS Appl Mater Interfaces2021;13:9491-9 PMCID:PMC7933091

[174]

Oberhaus FV,Beckmann D.Immobilization techniques for aptamers on gold electrodes for the electrochemical detection of proteins: a review.Biosensors2020;10:45 PMCID:PMC7277302

[175]

Herrera-Chacón A,Del Valle M.Molecularly imprinted polymers - towards electrochemical sensors and electronic tongues.Anal Bioanal Chem2021;413:6117-40 PMCID:PMC8084593

[176]

Gui R,Guo H.Recent advances and future prospects in molecularly imprinted polymers-based electrochemical biosensors.Biosens Bioelectron2018;100:56-70

[177]

Lowdon JW,Singla P.MIPs for commercial application in low-cost sensors and assays - an overview of the current status quo.Sens Actuators B Chem2020;325:128973 PMCID:PMC7525251

[178]

Denmark DJ,Mohapatra SS.Point-of-care diagnostics: molecularly imprinted polymers and nanomaterials for enhanced biosensor selectivity and transduction.EuroBiotech J2020;4:184-206

[179]

Pourmadadi M,Saeidi Tabar F.Properties and applications of graphene and its derivatives in biosensors for cancer detection: a comprehensive review.Biosensors2022;12:269 PMCID:PMC9138779

[180]

Morales MA.Guide to Selecting a Biorecognition element for biosensors.Bioconjug Chem2018;29:3231-9 PMCID:PMC6416154

[181]

Choi KR,Bühlmann P.Ion-selective electrodes with sensing membranes covalently attached to both the inert polymer substrate and conductive carbon contact.Angew Chem Int Ed Engl2023;62:e202304674

[182]

De Marco R,Pejcic B.Ion-selective electrode potentiometry in environmental analysis.Electroanalysis2007;19:1987-2001

[183]

Ding J.Recent advances in potentiometric biosensors.TrAC Trends Anal Chem2020;124:115803

[184]

Bariya M,Javey A.Wearable sweat sensors.Nat Electron2018;1:160-71

[185]

Cuartero M,Crespo GA.Wearable potentiometric sensors for medical applications.Sensors2019;19:363 PMCID:PMC6359219

[186]

Lyu Y,Bao Y.Solid-contact ion-selective electrodes: response mechanisms, transducer materials and wearable sensors.Membranes2020;10:128 PMCID:PMC7345918

[187]

Bakker E,Pretsch E.The phase-boundary potential model.Talanta2004;63:3-20

[188]

Bakker E,Schaller U.Applicability of the phase boundary potential model to the mechanistic understanding of solvent polymeric membrane-based ion-selective electrodes.Electroanalysis1995;7:817-22

[189]

Bakker E.Modern directions for potentiometric sensors.J Braz Chem Soc2008;19:621-9 PMCID:PMC2771871

[190]

Shao Y,Ping J.Recent advances in solid-contact ion-selective electrodes: functional materials, transduction mechanisms, and development trends.Chem Soc Rev2020;49:4405-65

[191]

Janata J.Nernstian and non-nernstian potentiometry.Solid State Ionics1997;94:209-15

[192]

Migdalski J.Electrically enhanced sensitivity (EES) of ion-selective membrane electrodes and membrane-based ion sensors.Membranes2022;12:763 PMCID:PMC9415162

[193]

Amemiya S,Odashima K.A generalized model for apparently “non-Nernstian” equilibrium responses of ionophore-based ion-selective electrodes. 1. Independent complexation of the ionophore with primary and secondary ions.Anal Chem2003;75:3329-39

[194]

Jackson DT.Preparation and properties of some ion selective membranes: a review.JMol Struct2019;1182:241-59

[195]

Hu J,Bühlmann P.Rational design of all-solid-state ion-selective electrodes and reference electrodes.TrAC Trends Anal Chem2016;76:102-14

[196]

Valeri C,Leslie D.Glucose control in diabetes.Diabetes Metab Res Rev2004;20:S1-8

[197]

Musen G,Ryan CM.Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research GroupGlycemic control and hypoglycemia: is the loser the winner? Response to Perlmuter et al.Diabetes Care2009;32:e46 PMCID:PMC3971421

[198]

Militaru A,Lungeanu D.Smart wristbands as inexpensive and reliable non-dedicated solution for self-managing type 2 diabetes. In: 2015 E-Health and Bioengineering Conference (EHB); 2015 Nov 19-21; Iasi, Romania. IEEE; 2015. pp. 1-4.

[199]

Aslam MW,Nandi AK.Feature generation using genetic programming with comparative partner selection for diabetes classification.Expert Syst Appl2013;40:5402-12

[200]

Ozana N,Anand A.Noncontact speckle-based optical sensor for detection of glucose concentration using magneto-optic effect.J Biomed Opt2016;21:65001

[201]

Acharya U, Faust O, Adib Kadri N, Suri JS, Yu W. Automated identification of normal and diabetes heart rate signals using nonlinear measures.Comput Biol Med2013;43:1523-9

[202]

Zafar H,Jeoti V.Comprehensive review on wearable sweat-glucose sensors for continuous glucose monitoring.Sensors2022;22:638 PMCID:PMC8781973

[203]

Moyer J,Finkelshtein I,Potts R.Correlation between sweat glucose and blood glucose in subjects with diabetes.Diabetes Technol Ther2012;14:398-402

[204]

Pullano SA,Bianco MG,Brunetti A.Glucose biosensors in clinical practice: principles, limits and perspectives of currently used devices.Theranostics2022;12:493-511 PMCID:PMC8692922

[205]

Aihara M,Kadowaki T.Study of the correlation between tear glucose concentrations and blood glucose concentrations.Diabetes2018;67:944-P

[206]

Agrawal RP,Rathore MS.Noninvasive method for glucose level estimation by saliva.J Diabetes Metab2013;4:266Available from: https://www.researchgate.net/profile/Vivek-Agarwal-13/publication/337591632_Noninvasive_Method_for_Glucose_Level_Estimation_by_Saliva/links/5ddf733aa6fdcc2837f05fb9/Noninvasive-Method-for-Glucose-Level-Estimation-by-Saliva.pdf.[Last accessed on 28 Apr 2024]

[207]

Zhang J,Lim J,Lee H.Wearable glucose monitoring and implantable drug delivery systems for diabetes management.Adv Healthc Mater2021;10:e2100194

[208]

Grieshaber D,Vörös J.Electrochemical biosensors - sensor principles and architectures.Sensors2008;8:1400-58 PMCID:PMC3663003

[209]

Mohan A,Mishra RK.Recent advances and perspectives in sweat based wearable electrochemical sensors.TrAC Trends Anal Chem2020;131:116024

[210]

Pirovano P,Shinde A.A wearable sensor for the detection of sodium and potassium in human sweat during exercise.Talanta2020;219:121145

[211]

Zhao C,Wu Q.A thread-based wearable sweat nanobiosensor.Biosens Bioelectron2021;188:113270

[212]

Wang S,Gu Y.Wearable sweatband sensor platform based on gold nanodendrite array as efficient solid contact of ion-selective electrode.Anal Chem2017;89:10224-31

[213]

Jeerapan I,Pavinatto A,Wang J.Stretchable biofuel cells as wearable textile-based self-powered sensors.J Mater Chem A Mater2016;4:18342-53 PMCID:PMC5400293

[214]

Nyein HYY,Kivimäki L.Regional and correlative sweat analysis using high-throughput microfluidic sensing patches toward decoding sweat.Sci Adv2019;5:eaaw9906 PMCID:PMC6697435

[215]

Chen C,Shen JH,Zhu YH.2D photonic crystal hydrogel sensor for tear glucose monitoring.ACS Omega2018;3:3211-7 PMCID:PMC6641290

[216]

Alexeev VL,Finegold DN.Photonic crystal glucose-sensing material for noninvasive monitoring of glucose in tear fluid.Clin Chem2004;50:2353-60

[217]

Jeon HJ,Park S.Optical assessment of tear glucose by smart biosensor based on nanoparticle embedded contact lens.Nano Lett2021;21:8933-40

[218]

Fang H,Wang B.Progress in boronic acid-based fluorescent glucose sensors.J Fluoresc2004;14:481-9

[219]

Chen L,Chen Y,Melling J.Nanostructured biosensor for detecting glucose in tear by applying fluorescence resonance energy transfer quenching mechanism.Biosens Bioelectron2017;91:393-9

[220]

Yan Q,Su G,Major TC.Measurement of tear glucose levels with amperometric glucose biosensor/capillary tube configuration.Anal Chem2011;83:8341-6

[221]

Chu MX,Takahashi D.Soft contact lens biosensor for in situ monitoring of tear glucose as non-invasive blood sugar assessment.Talanta2011;83:960-5

[222]

Yao H,Cowan M,Parviz BA.A contact lens with embedded sensor for monitoring tear glucose level.Biosens Bioelectron2011;26:3290-6 PMCID:PMC3043144

[223]

Kim J,Lee MS.Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics.Nat Commun2017;8:14997 PMCID:PMC5414034

[224]

Park J,Kim SY.Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays.Sci Adv2018;4:eaap9841 PMCID:PMC5787380

[225]

Keum DH,Koo J.Wireless smart contact lens for diabetic diagnosis and therapy.Sci Adv2020;6:eaba3252 PMCID:PMC7182412

[226]

Sempionatto JR,García-Carmona L.Eyeglasses-based tear biosensing system: Non-invasive detection of alcohol, vitamins and glucose.Biosens Bioelectron2019;137:161-70 PMCID:PMC8372769

[227]

Matzeu G,Diamond D.Advances in wearable chemical sensor design for monitoring biological fluids.Sens Actuators B Chem2015;211:403-18

[228]

Goldoni R,Boccalari E.Malignancies and biosensors: a focus on oral cancer detection through salivary biomarkers.Biosensors2021;11:396 PMCID:PMC8533918

[229]

Bel’skaya LV,Makarova NA.Use of fourier transform ir spectroscopy for the study of saliva composition.J Appl Spectrosc2018;85:445-51

[230]

Malon RS,Balakrishnan M.Saliva-based biosensors: noninvasive monitoring tool for clinical diagnostics.Biomed Res Int2014;2014:962903 PMCID:PMC4172994

[231]

Dhanya M.Salivary glucose as a diagnostic tool in Type II diabetes mellitus: a case-control study.Niger J Clin Pract2016;19:486-90

[232]

Bihar E,Pappa AM,Baran D.A fully inkjet-printed disposable glucose sensor on paper.npj Flex Electron2018;2:30

[233]

Ciui B,Feurdean CN.Cavitas electrochemical sensor toward detection of N-epsilon (carboxymethyl)lysine in oral cavity.Sens Actuators B Chem2019;281:399-407

[234]

Arakawa T,Nitta H.A wearable cellulose acetate-coated mouthguard biosensor for in-vivo salivary glucose measurement.Anal Chem2020;92:12201-7

[235]

Lim HR,Park S.Smart bioelectronic pacifier for real-time continuous monitoring of salivary electrolytes.Biosens Bioelectron2022;210:114329

[236]

García-Carmona L,Sempionatto JR.Pacifier biosensor: toward noninvasive saliva biomarker monitoring.Anal Chem2019;91:13883-91

[237]

Fogh-andersen N,Altura BT.Composition of interstitial fluid.Clin Chem1995;41:1522-5

[238]

Sun H,Shi G,Zhang M.Wearable clinic: from microneedle-based sensors to next-generation healthcare platforms.Small2023;19:e2207539

[239]

Dervisevic M,Prieto-simon B.Skin in the diagnostics game: Wearable biosensor nano- and microsystems for medical diagnostics.Nano Today2020;30:100828

[240]

Friedel M,Kasting G.Opportunities and challenges in the diagnostic utility of dermal interstitial fluid.Nat Biomed Eng2023;7:1541-55

[241]

Sharma S,Rogers M,Cass AE.Evaluation of a minimally invasive glucose biosensor for continuous tissue monitoring.Anal Bioanal Chem2016;408:8427-35 PMCID:PMC5116314

[242]

Yang J,Chen S.Development of smartphone-controlled and microneedle-based wearable continuous glucose monitoring system for home-care diabetes management.ACS Sens2023;8:1241-51

[243]

Rao G,Guy RH.Reverse iontophoresis: development of a noninvasive approach for glucose monitoring.Pharm Res1993;10:1751-5

[244]

Yao Y,Guo Y.Integration of interstitial fluid extraction and glucose detection in one device for wearable non-invasive blood glucose sensors.Biosens Bioelectron2021;179:113078

[245]

De la Paz E, Barfidokht A, Rios S, Brown C, Chao E, Wang J. Extended noninvasive glucose monitoring in the interstitial fluid using an epidermal biosensing patch.Anal Chem2021;93:12767-75

[246]

Imani S,Mohan AMV.A wearable chemical-electrophysiological hybrid biosensing system for real-time health and fitness monitoring.Nat Commun2016;7:11650 PMCID:PMC4879240

[247]

Hong YJ,Kim J.Multifunctional wearable system that integrates sweat-based sensing and vital-sign monitoring to estimate pre-/post-exercise glucose levels.Adv Funct Mater2018;28:1805754

[248]

Gil B,Yang GZ.A smart wireless ear-worn device for cardiovascular and sweat parameter monitoring during physical exercise: design and performance results.Sensors2019;19:1616 PMCID:PMC6480663

[249]

Yu Y,Xu C.Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces.Sci Robot2020;5:eaaz7946 PMCID:PMC7326328

[250]

Sempionatto JR,Yin L.An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers.Nat Biomed Eng2021;5:737-48

[251]

Sempionatto JR,Pavinatto A.Eyeglasses based wireless electrolyte and metabolite sensor platform.Lab Chip2017;17:1834-42 PMCID:PMC5507201

[252]

Park J,Kim J.Microscale biosensor array based on flexible polymeric platform toward lab-on-a-needle: real-time multiparameter biomedical assays on curved needle surfaces.ACS Sens2020;5:1363-73

[253]

Yokus MA,Pozdin VA,Daniele MA.Wearable multiplexed biosensor system toward continuous monitoring of metabolites.Biosens Bioelectron2020;153:112038

[254]

Misra S.Utility of ketone measurement in the prevention, diagnosis and management of diabetic ketoacidosis.Diabet Med2015;32:14-23

[255]

Forrow NJ,Walters SJ.Development of a commercial amperometric biosensor electrode for the ketone D-3-hydroxybutyrate.Biosens Bioelectron2005;20:1617-25

[256]

Wang CC,Ainla A.A paper-based “pop-up” electrochemical device for analysis of beta-hydroxybutyrate.Anal Chem2016;88:6326-33 PMCID:PMC5633928

[257]

Teymourian H,Tehrani F.Microneedle-based detection of ketone bodies along with glucose and lactate: toward real-time continuous interstitial fluid monitoring of diabetic ketosis and ketoacidosis.Anal Chem2020;92:2291-300

[258]

Moon JM,Moonla C.Self-testing of ketone bodies, along with glucose, using touch-based sweat analysis.ACS Sens2022;7:3973-81

[259]

Vargas E,Tehrani F.Enzymatic/immunoassay dual-biomarker sensing chip: towards decentralized insulin/glucose detection.Angew Chem Int Ed Engl2019;58:6376-9

[260]

Liu S,Deng L.Smartphone assisted portable biochip for non-invasive simultaneous monitoring of glucose and insulin towards precise diagnosis of prediabetes/diabetes.Biosens Bioelectron2022;209:114251

[261]

Buxton OM,O’Connor SP.Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption.Sci Transl Med2012;4:129ra43 PMCID:PMC3678519

[262]

Munje RD,Prasad S.Lancet-free and label-free diagnostics of glucose in sweat using Zinc Oxide based flexible bioelectronics.Sen Actuators B Chem2017;238:482-90

[263]

Tian G,Li M,Xu T.Oriented antibody-assembled metal-organic frameworks for persistent wearable sweat cortisol detection.Anal Chem2023;95:13250-7

[264]

Wu G.Amino acids: metabolism, functions, and nutrition.Amino Acids2009;37:1-17

[265]

Kim J,Imani S.Simultaneous monitoring of sweat and interstitial fluid using a single wearable biosensor platform.Adv Sci2018;5:1800880 PMCID:PMC6193173

[266]

Tehrani F,Wuerstle B.An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid.Nat Biomed Eng2022;6:1214-24

[267]

Wang M,Min J et al.A wearable electrochemical biosensor for the monitoring of metabolites and nutrients.Nat Biomed Eng2022;6:1225-35 PMCID:PMC10432133

[268]

Rodríguez-Rodríguez I,Chatzigiannakis I.On the possibility of predicting glycaemia ‘on the fly’ with constrained iot devices in type 1 diabetes mellitus patients.Sensors2019;19:4538 PMCID:PMC6832939

[269]

Sudharsan B,Shomali M.Hypoglycemia prediction using machine learning models for patients with type 2 diabetes.J Diabetes Sci Technol2015;9:86-90 PMCID:PMC4495530

[270]

Reifman J,Gribok A.Predictive monitoring for improved management of glucose levels.J Diabetes Sci Technol2007;1:478-86 PMCID:PMC2769639

[271]

Li K,Zhu T,Georgiou P.GluNet: a deep learning framework for accurate glucose forecasting.IEEE J Biomed Health Inform2020;24:414-23

[272]

Gu W,Zhou Z.SugarMate: non-intrusive blood glucose monitoring with smartphones.Proc ACM Interact Mob Wearable Ubiquitous Technol2017;1:1-27

[273]

Beauchamp J,Marling C,Liu C.LSTMs and deep residual networks for carbohydrate and bolus recommendations in type 1 diabetes management.Sensors2021;21:3303 PMCID:PMC8126192

[274]

Li K,Liu C,Georgiou P.Convolutional recurrent neural networks for glucose prediction.IEEE J Biomed Health Inform2020;24:603-13

[275]

Zhu T,Kuang L,Georgiou P.An insulin bolus advisor for type 1 diabetes using deep reinforcement learning.Sensors2020;20:5058 PMCID:PMC7570884

[276]

Aliberti A,Terna S.A multi-patient data-driven approach to blood glucose prediction.IEEE Access2019;7:69311-25

[277]

Deng Y,Aponte L.Deep transfer learning and data augmentation improve glucose levels prediction in type 2 diabetes patients.NPJ Digit Med2021;4:109 PMCID:PMC8280162

[278]

Bois M, El Yacoubi MA, Ammi M. Adversarial multi-source transfer learning in healthcare: application to glucose prediction for diabetic people.Comput Methods Programs Biomed2021;199:105874

[279]

Sankhala D,Pali M.A machine learning-based on-demand sweat glucose reporting platform.Sci Rep2022;12:2442 PMCID:PMC8844049

[280]

Bertachi A,Biagi L.Prediction of nocturnal hypoglycemia in adults with type 1 diabetes under multiple daily injections using continuous glucose monitoring and physical activity monitor.Sensors2020;20:1705 PMCID:PMC7147466

[281]

Plis K,Marling C,Schwartz F. A machine learning approach to predicting blood glucose levels for diabetes management. In: Workshops at the Twenty-Eighth AAAI conference on artificial intelligence. 2014. Available from: http://smarthealth.cs.ohio.edu/pubs/AAAI-WS-2014.pdf. [Last accessed on 15 Apr 2024]

[282]

Yang J,Shi Y.An ARIMA model with adaptive orders for predicting blood glucose concentrations and hypoglycemia.IEEE J Biomed Health Inform2019;23:1251-60

[283]

Parrilla M,Domínguez-Robles J,Donnelly RF.Wearable microneedle-based array patches for continuous electrochemical monitoring and drug delivery: toward a closed-loop system for methotrexate treatment.ACS Sens2023;8:4161-70

[284]

Teymourian H,Sempionatto JR.Wearable electrochemical sensors for the monitoring and screening of drugs.ACS Sens2020;5:2679-700

[285]

Ma R,An X,Sun S.Recent advancements in noninvasive glucose monitoring and closed-loop management systems for diabetes.J Mater Chem B2022;10:5537-55

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/