Soft robots built for extreme environments

Mayura Kulkarni , Sandra Edward , Thomas Golecki , Bryan Kaehr , Holly Golecki

Soft Science ›› 2025, Vol. 5 ›› Issue (1) : 12

PDF
Soft Science ›› 2025, Vol. 5 ›› Issue (1) :12 DOI: 10.20517/ss.2023.51
Review Article

Soft robots built for extreme environments

Author information +
History +
PDF

Abstract

Soft material robots are uniquely suited to address engineering challenges in extreme environments in new ways that traditional rigid robot embodiments cannot. Soft robot material flexibility, resistance to brittle fracture, low thermal conductivity, biostability, and self-healing capabilities present new solutions advantageous to specific environmental conditions. In this review, we examine the requirements for building and operating soft robots in various extreme environments, including within the human body, underwater, outer space, search and rescue sites, and confined spaces. We analyze the implementations of soft robotic devices, including actuators and sensors, which meet these requirements. Besides the structure of these devices, we explore ways to expand the use of soft robots in extreme environments with design optimization, control systems, and their future applications in educational and commercial products. We further discuss the current limitations of soft robots recognizing challenges to compliance, strength, and control. With this in mind, we present arguments for the future of robotics in which hybrid (rigid and soft) structures meet complex environmental needs.

Keywords

Soft robotics / actuators / biorobotics / extreme environments

Cite this article

Download citation ▾
Mayura Kulkarni, Sandra Edward, Thomas Golecki, Bryan Kaehr, Holly Golecki. Soft robots built for extreme environments. Soft Science, 2025, 5(1): 12 DOI:10.20517/ss.2023.51

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shneier MO.Literature review of mobile robots for manufacturing. National Institute of Standards and Technology; 2015.

[2]

Siciliano B.Springer handbook of robotics. 2nd edition. Berlin Heidelberg: Springer; 2016.

[3]

Rindfleisch A,Onzo N.Robots in retail: rolling out the Whiz.AMS Rev2022;12:238-44

[4]

Sparrow R.Robots in agriculture: prospects, impacts, ethics, and policy.Precision Agric2021;22:818-33

[5]

Kyrarini M,Rajavenkatanarayanan A.A survey of robots in healthcare.Technologies2021;9:8

[6]

Decker M,Ott I.Service robotics and human labor: a first technology assessment of substitution and cooperation.Robot Auton Syst2017;87:348-54

[7]

Maurtua I,Fernández A.MAINBOT - mobile robots for inspection and maintenance in extensive industrial plants.Energy Procedia2014;49:1810-9

[8]

Rea P.Design and development of an inspection robotic system for indoor applications.Robot Comput Integr Manuf2018;49:143-51

[9]

Mapara SS.Medical capsule robots: a renaissance for diagnostics, drug delivery and surgical treatment.J Controlled Release2017;261:337-51

[10]

Omisore OM,Xiong J,Li Z.A review on flexible robotic systems for minimally invasive surgery.IEEE Trans Syst Man Cybern2022;52:631-44

[11]

Narayan J,Dwivedy SK.Development of robot-based upper limb devices for rehabilitation purposes: a systematic review.Augment Hum Res2021;6:4

[12]

Laschi C,Cianchetti M.Soft robotics: technologies and systems pushing the boundaries of robot abilities.Sci Robot2016;1:eaah3690

[13]

Bao G,Chen L.Soft robotics: academic insights and perspectives through bibliometric analysis.Soft Robot2018;5:229-41 PMCID:PMC5995266

[14]

De Volder M, Moers AJM, Reynaerts D. Fabrication and control of miniature McKibben actuators.Sens Actuators A Phys2011;166:111-6

[15]

Robertson MA,Florez JM.Soft pneumatic actuator fascicles for high force and reliability.Soft Robot2017;4:23-32 PMCID:PMC5346960

[16]

Whitesides GM.Soft robotics.Angew Chem Int Ed Engl2018;57:4258-73

[17]

Pinskier J.From bioinspiration to computer generation: developments in autonomous soft robot design.Adv Intell Syst2022;4:2100086

[18]

Wang H,Beccai L.Toward perceptive soft robots: progress and challenges.Adv Sci2018;5:1800541 PMCID:PMC6145216

[19]

Harris H,Malik R.Development and characterization of biostable hydrogel robotic actuators for implantable devices: tendon actuated gelatin. In: 2022 Design of Medical Devices Conference; Minneapolis, USA: American Society of Mechanical Engineers; 2022.

[20]

Kim J,Yoon C.Advances in Biodegradable Soft Robots.Polymers2022;14:4574 PMCID:PMC9658808

[21]

Aracri S,Suaria G.Soft robots for ocean exploration and offshore operations: a perspective.Soft Robot2021;8:625-39 PMCID:PMC8713554

[22]

Zhang Y,Quan J,Zhang G.Progress, challenges, and prospects of soft robotics for space applications.Adv Intell Syst2023;5:2200071

[23]

Li P,Zhang G,Li L.A bioinspired soft robot combining the growth adaptability of vine plants with a coordinated control system.Research2021;2021:9843859 PMCID:PMC8557356

[24]

Singh B,Kumaradhas P. Evolution of industrial robots and their applications. Int J Emerg Technol Adv Eng 2013;3:763-8. Available from: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a30d514efd157dba6f385135eda5d8dadc3988bf. [Last accessed on 13 Jan 2025]

[25]

Bilodeau RA.Self-healing and damage resilience for soft robotics: a review.Front Robot AI2017;4:48

[26]

Schmitt F,Barbé L.Soft robots manufacturing: a review.Front Robot AI2018;5:84 PMCID:PMC7805834

[27]

Santina CD, Duriez C, Rus D. Model-based control of soft robots: a survey of the state of the art and open challenges.IEEE Contr Syst Mag2023;43:30-65

[28]

Rus D.Design, fabrication and control of soft robots.Nature2015;521:467-75

[29]

Helmenstine A. Ductility - ductile definition and examples. 2021. Available from: https://sciencenotes.org/ductility-ductile-definition-and-examples/. [Last accessed on 13 Jan 2025]

[30]

AZO Materials. Silicone rubber. Available from: https://www.azom.com/properties.aspx?ArticleID=920. [Last accessed on 13 Jan 2025]

[31]

Mansy HA,Sandler RH.Elastic properties of synthetic materials for soft tissue modeling.Phys Med Biol2008;53:2115-30

[32]

World Material. Density of metals, all common metal density chart & table PDF. Available from: https://www.theworldmaterial.com/density-of-metals/. [Last accessed on 13 Jan 2025]

[33]

MatWeb, Material Property Data. Overview of materials for silicon rubber. Available from: https://www.matweb.com/search/DataSheet.aspx?MatGUID=cbe7a469897a47eda563816c86a73520. [Last accessed on 13 Jan 2025]

[34]

MatWeb, Material Property Data. Aluminum, Al. Available from: https://www.matweb.com/search/DataSheet.aspx?MatGUID=0cd1edf33ac145ee93a0aa6fc666c0e0. [Last accessed on 13 Jan 2025]

[35]

MatWeb, Material Property Data. Iron, Fe. Available from: https://www.matweb.com/search/DataSheet.aspx?MatGUID=654ca9c358264b5392d43315d8535b7d&ckck=1. [Last accessed on 13 Jan 2025]

[36]

MatWeb, Material Property Data. Overview of materials for high carbon steel. Available from: https://www.matweb.com/search/DataSheet.aspx?MatGUID=ee25302df4b34404b21ad67f8a83e858&ckck=1. [Last accessed on 13 Jan 2025]

[37]

MatWeb, Material Property Data. Overview of materials for low carbon steel. Available from: https://www.matweb.com/search/DataSheet.aspx?MatGUID=034970339dd14349a8297d2c83134649&ckck=1. [Last accessed on 13 Jan 2025]

[38]

MatWeb, Material Property Data. Overview of materials for stainless steel. Available from: https://www.matweb.com/search/DataSheet.aspx?MatGUID=71396e57ff5940b791ece120e4d563e0&ckck=1. [Last accessed on 13 Jan 2025]

[39]

King LM,Schepens CL.Gelatin implants in scleral buckling procedures.Arch Ophthalmol1975;93:807-11

[40]

Erturk PA,Irmak G.Bioinspired collagen/gelatin nanopillared films as a potential implant coating material.ACS Appl Bio Mater2022;5:4913-21 PMCID:PMC9580019

[41]

Gunatillake PA.Polyurethanes in biomedical engineering. In: Encyclopedia of materials: science and technology. Elsevier; 2001. pp. 7746-52.

[42]

Přikrylová J,Podzimek Š.Side effects of dental metal implants: impact on human health (metal as a risk factor of implantologic treatment).Biomed Res Int2019;2019:2519205 PMCID:PMC6652050

[43]

Wang Y,Minor MA.Improving mechanical properties of molded silicone rubber for soft robotics through fabric compositing.Soft Robot2018;5:272-90

[44]

Zhang Y.A review of recent advancements in soft and flexible robots for medical applications.Int J Med Robot2020;16:e2096.

[45]

Terryn S,Roels E.A review on self-healing polymers for soft robotics.Mater Today2021;47:187-205

[46]

Cheng Z,Zhang Y.A highly robust amphibious soft robot with imperceptibility based on a water-stable and self-healing ionic conductor.Adv Mater2023;35:2301005

[47]

Kashef Tabrizian S,Cornellà AC.Assisted damage closure and healing in soft robots by shape memory alloy wires.Sci Rep2023;13:8820 PMCID:PMC10232441

[48]

Zhang Z,Wu H.Pneumatically actuated soft gripper with bistable structures.Soft Robot2022;9:57-71 PMCID:PMC8885432

[49]

Dey KK,Bandyopadhyay D,Chattopadhyay A.The pH taxis of an intelligent catalytic microbot.Small2013;9:1916-20

[50]

Miskin MZ,Dorsey K.Electronically integrated, mass-manufactured, microscopic robots.Nature2020;584:557-61

[51]

Li J,Luo T.Development of a magnetic microrobot for carrying and delivering targeted cells.Sci Robot2018;3:eaat8829

[52]

Breger JC,Xiao R.Self-folding thermo-magnetically responsive soft microgrippers.ACS Appl Mater Interfaces2015;7:3398-405 PMCID:PMC4326779

[53]

Del Campo Fonseca A,Droux J.Ultrasound trapping and navigation of microrobots in the mouse brain vasculature.Nat Commun2023;14:5889 PMCID:PMC10514062

[54]

Power M,Anastasova S.A monolithic force-sensitive 3D microgripper fabricated on the tip of an optical fiber using 2-photon polymerization.Small2018;14:e1703964

[55]

Kim Y.Magnetic soft materials and robots.Chem Rev2022;122:5317-64 PMCID:PMC9211764

[56]

Li Y,Zhang X.Magnetic hydrogels and their potential biomedical applications.Adv Funct Mater2013;23:660-72

[57]

Zhang J.Untethered miniature soft robots: modeling and design of a millimeter-scale swimming magnetic sheet.Soft Robot2018:761-76

[58]

Blumenschein LH,Fan JA,Hawkes EW.A tip-extending soft robot enables reconfigurable and deployable antennas.IEEE Robot Autom Lett2018;3:949-56

[59]

Zhong T.A jumping soft robot driven by magnetic field. In: Liu X, Nie Z, Yu J, Xie F, Song R, editors. Intelligent Robotics and Applications. Cham: Springer International Publishing; 2021. pp. 267-74.

[60]

Apsite I,Ionov L.Materials for smart soft actuator systems.Chem Rev2022;122:1349-415

[61]

Wang C,Huang Z.Materials and structures toward soft electronics.Adv Mater2018;30:e1801368

[62]

Brochu P.Advances in dielectric elastomers for actuators and artificial muscles.Macromol Rapid Commun2010;31:10-36

[63]

Shintake J,Floreano D.Biomimetic underwater robots based on dielectric elastomer actuators. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); Daejeon, South Korea. IEEE; 2016. pp. 4957-62.

[64]

Qiu Y,Plamthottam R.Dielectric elastomer artificial muscle: materials innovations and device explorations.Acc Chem Res2019;52:316-25

[65]

Park SW,Park SH,Kim H.Recent progress in development and applications of ionic polymer-metal composite.Micromachines2022;13:1290 PMCID:PMC9415080

[66]

Branz F.Experimental evaluation of a dielectric elastomer robotic arm for space applications.Acta Astronaut2017;133:324-33

[67]

Vahabi M,Kabganian M.Design and modeling of a novel in-pipe microrobot using IPMC actuators. [Internet]. In: ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis; Istanbul, Turkey. ASMEDC; 2010. pp. 281-8.

[68]

Nocentini S,Martella D.Optically driven soft micro robotics.Adv Opt Mater2018;6:1800207

[69]

Jiang W,Liu H.Photoresponsive soft-robotic platform: biomimetic fabrication and remote actuation.Adv Funct Mater2014;24:7598-604

[70]

Jiang ZC,Tong X.Selective decrosslinking in liquid crystal polymer actuators for optical reconfiguration of origami and light-fueled locomotion.Angew Chem Int Ed2019;131:5386-91

[71]

Ahn C,Cai S.Bioinspired design of light-powered crawling, squeezing, and jumping untethered soft robot.Adv Mater Technol2019;4:1900185

[72]

Wu J,Hou K,Long Y.Light-driven soft climbing robot based on negative pressure adsorption.Chem Eng J2023;466:143131

[73]

De S,Johnson B,Beebe D.Equilibrium swelling and kinetics of pH-responsive hydrogels: models, experiments, and simulations.J Microelectromech Syst2002;11:544-55

[74]

Kocak G,Bütün V.pH-Responsive polymers.Polym Chem2017;8:144-76

[75]

Xu P,Murdoch WJ.Anticancer efficacies of cisplatin-releasing pH-responsive nanoparticles.Biomacromolecules2006;7:829-35 PMCID:PMC2533846

[76]

Loepfe M. Combustion-driven soft machines: design, manufacturing and application. 2016. Available from: https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/117172/eth-49181-01.pdf. [Last accessed on 13 Jan 2025]

[77]

Gupta P,Garg S.Hydrogels: from controlled release to pH-responsive drug delivery.Drug Discov Today2002;7:569-79

[78]

He Z,Jiao P,Lin G.Copebot: underwater soft robot with copepod-like locomotion.Soft Robot2023;10:314-25

[79]

Tolley MT,Karpelson M.An untethered jumping soft robot. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems; Chicago, USA. IEEE; 2014. pp. 561-6.

[80]

Xian S.Temperature-responsive supramolecular hydrogels.J Mater Chem B2020;8:9197-211

[81]

Jochum FD.Temperature- and light-responsive smart polymer materials.Chem Soc Rev2013;42:7468-83

[82]

Dai H,Qin H.A temperature-responsive copolymer hydrogel in controlled drug delivery.Macromolecules2006;39:6584-9

[83]

Yang H,Li W.Design and Implementation of a soft robotic arm driven by SMA coils.IEEE Trans Ind Electron2019;66:6108-16

[84]

Feng R,Liu J,Li J.Soft robotic perspective and concept for planetary small body exploration.Soft Robot2022;9:889-99

[85]

Wu S,Zhao Y,Zhu Y.Caterpillar-inspired soft crawling robot with distributed programmable thermal actuation.Sci Adv2023;9:eadf8014 PMCID:PMC10032605

[86]

Katzschmann RK,MacCurdy R.Exploration of underwater life with an acoustically controlled soft robotic fish.Sci Robot2018;3:eaar3449

[87]

Lindenroth L,Wang S,Rhode K.Design and integration of a parallel, soft robotic end-effector for extracorporeal ultrasound.IEEE Trans Biomed Eng2020;67:2215-29 PMCID:PMC7115900

[88]

Walker J,Harbel C.Soft robotics: a review of recent developments of pneumatic soft actuators.Actuators2020;9:3

[89]

Roche ET,Wamala I.Soft robotic sleeve supports heart function.Sci Transl Med2017;9:eaaf3925

[90]

Liu J,Chandler JH,Valdastri P.A dual-bending endoscope with shape-lockable hydraulic actuation and water-jet propulsion for gastrointestinal tract screening.Int J Med Robot2021;17:1-13

[91]

Galloway KC,Phillips B.Soft robotic grippers for biological sampling on deep reefs.Soft Robot2016;3:23-33 PMCID:PMC4997628

[92]

Palmieri P,Mauro S.Design of a lightweight and deployable soft robotic arm.Robotics2022;11:88

[93]

Der Maur PA,Haberthur Y.RoBoa: construction and evaluation of a steerable vine robot for search and rescue applications. In: 2021 IEEE 4th International Conference on Soft Robotics (RoboSoft); New Haven, USA. IEEE; 2021. pp. 15-20.

[94]

Talas SK,Altinsoy T,Samur E.Design and development of a growing pneumatic soft robot.Soft Robot2020;7:521-33

[95]

Stella F.The science of soft robot design: a review of motivations, methods and enabling technologies.Front Robot AI2022;9:1059026 PMCID:PMC9889359

[96]

Hartmann F,Kaltenbrunner M.Becoming sustainable, the new frontier in soft robotics.Adv Mater2021;33:e2004413 PMCID:PMC11468029

[97]

Wang D,Shen Z.Soft actuators and robots enabled by additive manufacturing.Annu Rev Control Robot Auton Syst2023;6:31-63

[98]

Hegde C,Tan JMR,Chen X.Sensing in soft robotics.ACS Nano2023;17:15277-307 PMCID:PMC10448757

[99]

Hajra S,Khanberh H.Revolutionizing self-powered robotic systems with triboelectric nanogenerators.Nano Energy2023;115:108729

[100]

Armanini C,Mathew AT,Renda F.Soft robots modeling: a structured overview.IEEE Trans Robot2023;39:1728-48

[101]

Patel DK,Luo Y.Highly dynamic bistable soft actuator for reconfigurable multimodal soft robots.Adv Mater Technol2023;8:2201259

[102]

Pal S.Mechanical properties of biological materials. In: Design of artificial human joints & organs. Boston: Springer; 2014. pp. 23-40.

[103]

Li-Baboud YS,Bostelman R.Evaluation methods and measurement challenges for industrial exoskeletons.Sensors2023;23:5604 PMCID:PMC10303665

[104]

Paternò L.Soft robotics in wearable and implantable medical applications: translational challenges and future outlooks.Front Robot AI2023;10:1075634 PMCID:PMC9945115

[105]

Yin S,Li X,Xu Y.Machine-learning-accelerated design of functional structural components in deep-sea soft robots.Extreme Mech Lett2022;52:101635

[106]

Katzschmann RK,Rus D.Hydraulic autonomous soft robotic fish for 3D swimming. In: Hsieh MA, Khatib O, Kumar V, editors. Experimental Robotics. Cham: Springer International Publishing; 2016. pp. 405-20.

[107]

Wen T,Zhang J,Kang S.Design, performance analysis, and experiments of a soft robot for rescue.J Mech Robot2024;16:071011

[108]

Milana E.Soft robotics for infrastructure protection.Front Robot AI2022;9:1026891 PMCID:PMC9684207

[109]

Lukaski HC.Estimation of body fluid volumes using tetrapolar bioelectrical impedance measurements.Aviat Space Environ Med1988;59:1163-9

[110]

Al-Shura AN. Holism. In: Integrative cardiovascular Chinese medicine. Elsevier; 2014. pp. 3-26. Available from: https://books.google.com/books?hl=zh-CN&lr=&id=i1gXAwAAQBAJ&oi=fnd&pg=PP1&dq=Integrative+Cardiovascular+Chinese+Medicine&ots=-N_4hWGvUg&sig=UKyIyyFsPyToM_6_RKgqxHBRUrE#v=onepage&q=Integrative%20Cardiovascular%20Chinese%20Medicine&f=false. [Last accessed on 13 Jan 2025]

[111]

Gaohua L,Dou L.Crosstalk of physiological pH and chemical pKa under the umbrella of physiologically based pharmacokinetic modeling of drug absorption, distribution, metabolism, excretion, and toxicity.Expert Opin Drug Metab Toxicol2021;17:1103-24

[112]

Baldwin DR.Heavy metal poisoning and its laboratory investigation.Ann Clin Biochem1999;36:267-300

[113]

Su Y,Chen J.Printable, highly sensitive flexible temperature sensors for human body temperature monitoring: a review.Nanoscale Res Lett2020;15:200 PMCID:PMC7561651

[114]

Ogunrinola GA,Oshamika OO.The human microbiome and its impacts on health.Int J Microbiol2020;2020:8045646 PMCID:PMC7306068

[115]

Zhang YJ,Gan RY,Xu DP.Impacts of gut bacteria on human health and diseases.Int J Mol Sci2015;16:7493-519 PMCID:PMC4425030

[116]

Zrinscak D,Maselli M.Soft robotics for physical simulators, artificial organs and implantable assistive devices.Prog Biomed Eng2023;5:012002

[117]

Runciman M,Mylonas GP.Soft robotics in minimally invasive surgery.Soft Robot2019;6:423-43 PMCID:PMC6690729

[118]

Banerjee S.Soft robots for the delivery of drugs. In: Saharan VA, editor. Computer aided pharmaceutics and drug delivery. Singapore: Springer Nature; 2022. pp. 415-38.

[119]

Marchese AD,Rus D.A recipe for soft fluidic elastomer robots.Soft Robot2015;2:7-25 PMCID:PMC4997626

[120]

Andriot M,Meeks R. Silicones in industrial applications. 2009. Available from: https://www.researchgate.net/publication/251935579_Silicones_in_Industrial_Applications. [Last accessed on 13 Jan 2025]

[121]

Elango N.A review article: investigations on soft materials for soft robot manipulations.Int J Adv Manuf Technol2015;80:1027-37

[122]

Krpovic S,Skov AL.Importance of Mullins effect in commercial silicone elastomer formulations for soft robotics.J Appl Polym Sci2021;138:50380

[123]

Garcia L,O’Reilley K.The role of soft robotic micromachines in the future of medical devices and personalized medicine.Micromachines2021;13:28 PMCID:PMC8781893

[124]

Banerjee H,Ren H.Hydrogel actuators and sensors for biomedical soft robots: brief overview with impending challenges.Biomimetics2018;3:15 PMCID:PMC6352708

[125]

Ionov L.Hydrogel-based actuators: possibilities and limitations.Mater Today2014;17:494-503

[126]

Shi Q,Tang D,Li X.Bioactuators based on stimulus-responsive hydrogels and their emerging biomedical applications.NPG Asia Mater2019;11:165

[127]

Mishra AK,Pan W.Autonomic perspiration in 3D-printed hydrogel actuators.Sci Robot2020;5:eaaz3918

[128]

Tang N,Guo R.Thermal transport in soft PAAm hydrogels.Polymers2017;9:688 PMCID:PMC6418834

[129]

Edward S.Gelatin soft actuators: benefits and opportunities.Actuators2023;12:63

[130]

Azevedo HS,Reis RL.4 - Controlling the degradation of natural polymers for biomedical applications. In: Natural-based polymers for biomedical applications. Elsevier; 2008. pp. 106-28.

[131]

El-atab N,Al-modaf F.Soft actuators for soft robotic applications: a review.Adv Intell Syst2020;2:2000128

[132]

Byrne O,Glynn M.Additive manufacture of composite soft pneumatic actuators.Soft Robot2018;5:726-36

[133]

Liang W,Wang K,Ren L.Comparative study of robotic artificial actuators and biological muscle.Adv Mech Eng2020;12:1687814020933409

[134]

Yan B.Actuators for implantable devices: a broad view.Micromachines2022;13:1756 PMCID:PMC9610948

[135]

Rusu DM,Biriș CM,Morariu F.Soft robotics: a systematic review and bibliometric analysis.Micromachines2023;14:359 PMCID:PMC9961507

[136]

Hu L,Saeed MY.An implantable soft robotic ventilator augments inspiration in a pig model of respiratory insufficiency.Nat Biomed Eng2023;7:110-23 PMCID:PMC9991903

[137]

Zaidi S,Laschi C.Actuation technologies for soft robot grippers and manipulators: a review.Curr Robot Rep2021;2:355-69

[138]

Shi H,Zhang B.Review on research progress of hydraulic powered soft actuators.Energies2022;15:9048

[139]

Runciman M,Avery J,Mylonas G.Model based position control of soft hydraulic actuators. In: 2023 IEEE International Conference on Robotics and Automation (ICRA); London, United Kingdom. IEEE; 2023. pp. 2676-82.

[140]

Thai MT,Hoang TT,Lovell NH.Design, fabrication, and hysteresis modeling of soft microtubule artificial muscle (SMAM) for medical applications.IEEE Robot Autom Lett2021;6:5089-96

[141]

Lee JG,Thome CP.Bubble-based microrobots with rapid circular motions for epithelial pinning and drug delivery.Small2023;19:e2300409 PMCID:PMC10524026

[142]

Deng N,Lyu H,Liu H.Degradable silk-based soft actuators with magnetic responsiveness.J Mater Chem B2022;10:7650-60

[143]

Yang Z.Magnetic actuation systems for miniature robots: a review.Adv Intell Syst2020;2:2000082

[144]

Hu X,Li M,He G.Catheter-assisted bioinspired adhesive magnetic soft millirobot for drug delivery.Small2024;20:e2306510

[145]

Yang W,Ge Z.Magnetically controlled millipede inspired soft robot for releasing drugs on target area in stomach.IEEE Robot Autom Lett2024;9:3846-53

[146]

Kaufman G,Bradshaw A.A stiff-soft composite fabrication strategy for fiber optic tethered microtools.Adv Mater Technol2023;8:2202034

[147]

Zmyślony M,Haberko J,Rogóż M.Optical pliers: micrometer-scale, light-driven tools grown on optical fibers.Adv Mater2020;32:e2002779

[148]

Leber A,Laperrousaz S.Highly integrated multi-material fibers for soft robotics.Adv Sci2023;10:e2204016 PMCID:PMC9839840

[149]

Song S,Trouillet A,Lacour SP.Deployment of an electrocorticography system with a soft robotic actuator.Sci Robot2023;8:eadd1002

[150]

Wei L,Yan Y.Substrate-independent, mechanically tunable, and scalable gelatin methacryloyl hydrogel coating with drag-reducing and anti-freezing properties.ACS Appl Polym Mater2022;4:4876-85

[151]

Xu Y,Kundu S.Silicon-based sensors for biomedical applications: a review.Sensors2019;19:2908 PMCID:PMC6651638

[152]

Engin M,Engin EZ.Recent developments and trends in biomedical sensors.Measurement2005;37:173-88

[153]

Pang Q,Zhang H,Ma L.Temperature-responsive ionic conductive hydrogel for strain and temperature sensors.ACS Appl Mater Interfaces2022:26536-47

[154]

Zhai D,Shi Y.Highly sensitive glucose sensor based on pt nanoparticle/polyaniline hydrogel heterostructures.ACS Nano2013;7:3540-6

[155]

Lin PH,Chen CW,Li BR.Wearable hydrogel patch with noninvasive, electrochemical glucose sensor for natural sweat detection.Talanta2022;241:123187

[156]

Qiu Y,Nguyen CC,Do TN.Integrated sensors for soft medical robotics.Small2024;20:e2308805

[157]

Qasaimeh MA,Dargahi J.PVDF-based microfabricated tactile sensor for minimally invasive surgery.J Microelectromech Syst2009;18:195-207

[158]

Li W,Wang Y.Implantable and degradable wireless passive protein-based tactile sensor for intracranial dynamic pressure detection.Electronics2023;12:2466

[159]

Chen J,Chang X.Recent progress in essential functions of soft electronic skin.Adv Funct Mater2021;31:2104686

[160]

Lyu Q,Lees JG.A soft and ultrasensitive force sensing diaphragm for probing cardiac organoids instantaneously and wirelessly.Nat Commun2022;13:7259 PMCID:PMC9700778

[161]

Kim DS,Shanmugasundaram A.Highly durable crack sensor integrated with silicone rubber cantilever for measuring cardiac contractility.Nat Commun2020;11:535 PMCID:PMC6985253

[162]

Pignanelli J,Carmichael TB,Ahamed MJ.A comparative analysis of capacitive-based flexible PDMS pressure sensors.Sens Actuators A Phys2019;285:427-36

[163]

Wang C,Liu Y.Tissue-adhesive piezoelectric soft sensor for in vivo blood pressure monitoring during surgical operation.Adv Funct Mater2023;33:2303696

[164]

Laschi C.Soft robot reaches the deepest part of the ocean.Nature2021;591:35-6

[165]

Calisti M.Soft robotics in underwater legged locomotion: from octopus–inspired solutions to running robots. In: Laschi C, Rossiter J, Iida F, Cianchetti M, Margheri L, editors. Soft robotics: trends, applications and challenges. Cham: Springer International Publishing; 2017. pp. 31-6.

[166]

García-Valdovinos LG,Bandala-Sánchez M,Hernández-Alvarado R.Modelling, design and robust control of a remotely operated underwater vehicle.Int J Adv Robot Syst2014;11:1

[167]

Wang R,Zhang Y,Chen W.Soft underwater swimming robots based on artificial muscle.Adv Mater Technol2023;8:2200962

[168]

Gomis-Bellmunt O,Galceran-Arellano S,Rull-Duran J.Hydraulic actuator modeling for optimization of mechatronic and adaptronic systems.Mechatronics2008;18:634-40

[169]

Wang R,Zhang Y.Fast-swimming soft robotic fish actuated by bionic muscle.Soft Robot2024;11:845-56

[170]

Zou T,Al-tamimi M,Wu J.Development of a low-cost soft robot fish with biomimetic swimming performance.J Mech Robot2024;16:061004

[171]

Luo R,Wang F.Design and motion characteristics analysis of underwater biomimetic jellyfish based on shape memory alloy springs.Ocean Eng2024;297:117069

[172]

Gong H,Meng F,Hou S.Octopus predation-inspired underwater robot capable of adsorption through opening and closing claws.Appl Sci2024;14:2250

[173]

Hu F,Sefene EM.An origami flexiball-inspired soft robotic jellyfish.JMSE2023;11:714

[174]

Ma H.Modeling, characterization, and application of soft bellows-type pneumatic actuators for bionic locomotion.Acta Mech Solida Sin2023;36:1-12

[175]

Chen S,Xiong X.An underwater jet-propulsion soft robot with high flexibility driven by water hydraulics. In: 2023 IEEE International Conference on Robotics and Automation (ICRA); London, United Kingdom. IEEE; 2023. pp. 2613-9.

[176]

Rajput G, Vora J, Prajapati P, Chaudhari R. Areas of recent developments for shape memory alloy: a review.Mater Today Proc2022;62:7194-8

[177]

Ulloa C, Terrile S, Barrientos A. Soft underwater robot actuated by shape-memory alloys “JellyRobcib” for path tracking through fuzzy visual control.Appl Sci2020;10:7160

[178]

Gu GY,Zhu LM.A survey on dielectric elastomer actuators for soft robots.Bioinspir Biomim2017;12:011003

[179]

Wang Y,Jiang Y.Dielectric elastomer actuators for artificial muscles: a comprehensive review of soft robot explorations.Res Chem Mater2022;1:308-24

[180]

Shintake J,Shea H.Soft biomimetic fish robot made of dielectric elastomer actuators.Soft Robot2018;5:466-74 PMCID:PMC6101101

[181]

Christianson C,Deheyn DD,Tolley MT.Translucent soft robots driven by frameless fluid electrode dielectric elastomer actuators.Sci Robot2018;3:eaat1893

[182]

Fu R,Xiao C.Tough and highly efficient underwater self-repairing hydrogels for soft electronics.Small Methods2022;6:e2101513

[183]

Qi X,Wang L.Underwater sensing and warming E-textiles with reversible liquid metal electronics.Chem Eng J2022;437:135382

[184]

Lin Y,Schwab F.Modeling and control of a soft robotic fish with integrated soft sensing.Adv Intell Syst2023;5:2000244

[185]

Hao M,Zhu Z,Zhu D.A compact review of IPMC as soft actuator and sensor: current trends, challenges, and potential solutions from our recent work.Front Robot AI2019;6:129 PMCID:PMC7806037

[186]

Shen Q,Kim KJ.A biomimetic underwater vehicle actuated by waves with ionic polymer-metal composite soft sensors.Bioinspir Biomim2015;10:055007

[187]

Minaian N,Kim KJ.Ionic polymer-metal composite (IPMC) artificial muscles in underwater environments: review of actuation, sensing, controls, and applications to soft robotics. In: Paley DA, Wereley NM, editors. Bioinspired sensing, actuation, and control in underwater soft robotic systems. Cham: Springer International Publishing; 2021. pp. 117-39.

[188]

Abdulsadda AT.Underwater source localization using an IPMC-based artificial lateral line. In: 2011 IEEE International Conference on Robotics and Automation; Shanghai, China. IEEE; 2011. pp. 2719-24.

[189]

Levchenko I,Belmonte T,Xu S.Advanced materials for next-generation spacecraft.Adv Mater2018;30:e1802201

[190]

Araromi OA,Shintake J.Rollable multisegment dielectric elastomer minimum energy structures for a deployable microsatellite gripper.IEEE/ASME Trans Mechatron2015;20:438-46

[191]

Ogliani E,Mazurek P.Designing reliable silicone elastomers for high-temperature applications.Polym Degrad Stab2018;157:175-80

[192]

Porte E,Agrawala A.Characterization of temperature and humidity dependence in soft elastomer behavior.Soft Robot2024;11:118-30 PMCID:PMC10880277

[193]

Mirvakili SM,Sim D.Solar-driven soft robots.Adv Sci2021;8:2004235 PMCID:PMC8061385

[194]

Menon C,De Rossi D.Concept design of novel bio-inspired distributed actuators for space applications.Acta Astronautica2009;65:825-33

[195]

Jing Z,Su W.Dielectric elastomer-driven bionic inchworm soft robot realizes forward and backward movement and jump.Actuators2022;11:227

[196]

Romano D,Pucciariello C.Turning earthworms into moonworms: earthworms colonization of lunar regolith as a bioengineering approach supporting future crop growth in space.Heliyon2023;9:e14683 PMCID:PMC10068126

[197]

Giordano M,Formisano L.Iodine-biofortified microgreens as high nutraceutical value component of space mission crew diets and candidate for extraterrestrial cultivation.Plants2023;12:2628 PMCID:PMC10384207

[198]

Caporale AG,Liuzzi G,De Pascale S.Can peat amendment of mars regolith simulant allow soybean cultivation in mars bioregenerative life support systems?.Plants2022;12:64 PMCID:PMC9824670

[199]

Hammond M,Ward W.A hybrid soft material robotic end-effector for reversible in-space assembly of strut components.Front Robot AI2023;10:1099297 PMCID:PMC10354789

[200]

Molaei P,Palardy G.Cable decoupling and cable-based stiffening of continuum robots.IEEE Access2022;10:104852-62

[201]

Krishen K.Space applications for ionic polymer-metal composite sensors, actuators, and artificial muscles.Acta Astronautica2009;64:1160-6

[202]

Fu M,Jin Y,Huang S.A highly sensitive, reliable, and high-temperature-resistant flexible pressure sensor based on ceramic nanofibers.Adv Sci2020;7:2000258 PMCID:PMC7507114

[203]

Fan W,Meng K.Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring.Sci Adv2020;6:eaay2840 PMCID:PMC7069695

[204]

Akbari A,Bhandari U.Intelligent exploration and autonomous navigation in confined spaces. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); Las Vegas, USA. IEEE; 2020. pp. 2157-64.

[205]

Greer D,Abrantes J. Robots in urban search and rescue operations. In: Australasian Conference on Robotics and Automation. Auckland. 2002. Available from: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f89059556985a4456bd84591aeca6879ba549c97. [Last accessed on 13 Jan 2025]

[206]

Blumenschein LH,Usevitch NS,Rucker DC.Geometric solutions for general actuator routing on inflated-beam soft growing robots.IEEE Trans Robot2022;38:1820-40

[207]

El-Hussieny H,Zaky AB.Plant-inspired soft growing robots: a control approach using nonlinear model predictive techniques.Appl Sci2023;13:2601

[208]

Liu X,Fang Y,Cao C.Worm-inspired soft robots enable adaptable pipeline and tunnel inspection.Adv Intell Syst2022;4:2100128

[209]

Wang N,Zhang G,Peng L.Development and analysis of key components of a multi motion mode soft-bodied pipe robot.Actuators2022;11:125

[210]

Yeh C,Juang J.Soft hopping and crawling robot for in-pipe traveling.Extreme Mech Lett2020;39:100854

[211]

Singh G,Zhang X.A pipe-climbing soft robot. In: 2019 International Conference on Robotics and Automation (ICRA); Montreal, Canada. IEEE; 2019. pp. 8450-6.

[212]

Saleeby KS. Design of soft-body robot with wireless communication for leak detection in large diameter pipe systems. 2017. Available from: https://dspace.mit.edu/handle/1721.1/112547. [Last accessed on 13 Jan 2025]

[213]

Wang J,Zadan M.Wireless actuation for soft electronics-free robots. In: Proceedings of the 29th Annual International Conference on Mobile Computing and Networking. Madrid; Spain. ACM; 2023. pp. 1-16.

[214]

Usevitch NS,Schwager M,Hawkes EW.An untethered isoperimetric soft robot.Sci Robot2020;5:eaaz0492

[215]

Shepherd RF,Freake J.Using explosions to power a soft robot.Angew Chem Int Ed Engl2013;52:2892-6

[216]

Mazzolai B,Tramacere F.Octopus-inspired soft arm with suction cups for enhanced grasping tasks in confined environments.Adv Intell Syst2019;1:1900041

[217]

Khatib M,Haick H.Self-healing soft sensors: from material design to implementation.Adv Mater2021;33:e2004190

[218]

Zhang W,Sun S.Skin-like mechanoresponsive self-healing ionic elastomer from supramolecular zwitterionic network.Nat Commun2021;12:4082 PMCID:PMC8253733

[219]

Georgopoulou A,Brancart J,Clemens F.Supramolecular self-healing sensor fiber composites for damage detection in piezoresistive electronic skin for soft robots.Polymers2021;13:2983 PMCID:PMC8433753

[220]

Laschi C,Lida F,Falotico E.Learning-based control strategies for soft robots: theory, achievements, and future challenges.IEEE Control Syst2023;43:100-13

[221]

Kim S,Trimmer B.Soft robotics: a bioinspired evolution in robotics.Trends Biotechnol2013;31:287-94

[222]

Villanueva A,Priya S.A biomimetic robotic jellyfish (Robojelly) actuated by shape memory alloy composite actuators.Bioinspir Biomim2011;6:036004

[223]

Zhang H,Fuh JYH.Design and development of a topology-optimized three-dimensional printed soft gripper.Soft Robot2018;5:650-61

[224]

Chen F.Design optimization of soft robots: a review of the state of the art.IEEE Robot Automat Mag2020;27:27-43

[225]

Zhu J,Xia L.Topology optimization in aircraft and aerospace structures design.Arch Computat Methods Eng2016;23:595-622

[226]

Yang RJ.Automotive applications of topology optimization.Struct Optim1995;9:245-9

[227]

Golecki T,Carrion J.Bridge topology optimization considering stochastic moving traffic.Eng Struct2023;292:116498

[228]

Liu CH,Chiu CH.Optimal design of a soft robotic gripper for grasping unknown objects.Soft Robot2018;5:452-65

[229]

Chen F,Zhang H.Topology optimized design, fabrication, and characterization of a soft cable-driven gripper.IEEE Robot Autom Lett2018;3:2463-70

[230]

Xing J,Deng Y,Gai Y.Topology optimization design of deformable flexible thermoelectric devices for voltage enhancement.Eng Optim2023;55:1686-703

[231]

Sanders ED,Paulino GH.Optimal and continuous multilattice embedding.Sci Adv2021;7:eabf4838 PMCID:PMC8046378

[232]

Wallin M.Nonlinear homogenization for topology optimization.Mech Mater2020;145:103324

[233]

Jumet B,Sanchez V.A data-driven review of soft robotics.Adv Intell Syst2022;4:2100163

[234]

Liu B,Huang K,Yang H.A topology optimization method for collaborative robot lightweight design based on orthogonal experiment and its applications.Int J Adv Robot Syst2022;19:17298814211056143

[235]

Zheng Y,Qian Z,Zhang W.Topology optimization of a fully compliant prosthetic finger: design and testing. In: 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob); Singapore, Singapore. IEEE; 2016. pp. 1029-34.

[236]

Li D,Song Z,Zhu X.Tailoring the in-plane and out-of-plane stiffness of soft fingers by endoskeleton topology optimization for stable grasping.Sci China Technol Sci2023;66:3080-9

[237]

Sun Y,Pancheri F,Lueth TC.Design of topology optimized compliant legs for bio-inspired quadruped robots.Sci Rep2023;13:4875 PMCID:PMC10039952

[238]

Al-Tamimi AA,Fernandes PR,Bartolo PJ.Topology optimization to reduce the stress shielding effect for orthopedic applications.Procedia CIRP2017;65:202-6

[239]

Sato Y,Yuhn C,Nomura T.Topology optimization of locomoting soft bodies using material point method.Struct Multidisc Optim2023;66:3502

[240]

Gillespie MT,Townsend EC,Killpack MD.Learning nonlinear dynamic models of soft robots for model predictive control with neural networks. In: 2018 IEEE International Conference on Soft Robotics (RoboSoft); Livorno, Italy. IEEE; 2018. pp. 39-45.

[241]

Goodwin GC,Salgado ME. Control system design. Available from: https://www.academia.edu/23184065/CONTROL_SYSTEM_DESIGN. [Last accessed on 13 Jan 2025]

[242]

Runciman M,Darzi A.Open loop position control of soft hydraulic actuators for minimally invasive surgery.Appl Sci2021;11:7391

[243]

Cianchetti M,Menciassi A.Biomedical applications of soft robotics.Nat Rev Mater2018;3:143-53

[244]

Beatty R,Schreiber LHJ.Soft robot-mediated autonomous adaptation to fibrotic capsule formation for improved drug delivery.Sci Robot2023;8:eabq4821

[245]

Grube M,Seifried R.Comparison of modern control methods for soft robots.Sensors2022;22:9464 PMCID:PMC9737487

[246]

Tonkens S,Pavone M.Soft robot optimal control via reduced order finite element models. In: 2021 IEEE International Conference on Robotics and Automation (ICRA); Xi’an, China. IEEE; 2021. pp. 12010-6.

[247]

Ding L,Su Y.Dynamic finite element modeling and simulation of soft robots.Chin J Mech Eng2022;35:701

[248]

Youssef SM,Saleh MA,Elsamanty M.Underwater soft robotics: a review of bioinspiration in design, actuation, modeling, and control.Micromachines2022;13:110 PMCID:PMC8778375

[249]

Vikas V,Trimmer B.Model-free control framework for multi-limb soft robots. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); Hamburg, Germany. IEEE; 2015. pp. 1111-6.

[250]

Li Y,Chong GCY.PID control system analysis and design.IEEE Control Syst May2006;26:32-41

[251]

Isidro IA,Alves PM.2.64 - Online control strategies. In: Comprehensive Biotechnology. Elsevier; 2019. pp. 943-51.

[252]

Landau ID,M’Saad M.Adaptive control: algorithms, analysis and applications. 2nd edition. London: Springer; 2011.

[253]

Zhang D.A review on model reference adaptive control of robotic manipulators.Annu Rev Control2017;43:188-98

[254]

Singh R.Reinforcement learning-based model-free controller for feedback stabilization of robotic systems.IEEE Trans Neural Netw Learn Syst2023;34:7059-73

[255]

Lewis FL.Reinforcement learning and adaptive dynamic programming for feedback control.IEEE Circuits Syst Mag2009;9:32-50

[256]

Li G,Hayashibe M.Deep reinforcement learning framework for underwater locomotion of soft robot. In: 2021 IEEE International Conference on Robotics and Automation (ICRA); Xi’an, China. IEEE; 2021. pp. 12033-9.

[257]

Thuruthel TG,Manti M.Stable open loop control of soft robotic manipulators.IEEE Robot Autom Lett2018;3:1292-8

[258]

Fei Y.Modeling and motion control of a soft robot.IEEE Trans Ind Electron2017;64:1737-42

[259]

Precup R,Roman R.Model-free sliding mode control of nonlinear systems: algorithms and experiments.Inform Sci2017;381:176-92

[260]

Vikas V,Grassi R,Trimmer B.Design and locomotion control of a soft robot using friction manipulation and motor–tendon actuation.IEEE Trans Robot2016;32:949-59

[261]

Li M,Branson DT.Model-free control for continuum robots based on an adaptive Kalman filter.IEEE/ASME Trans Mechatron2018;23:286-97

[262]

Patterson ZJ,Modeling and control of intrinsically elasticity coupled soft-rigid robots.In: 2024 IEEE International Conference on Robotics and Automation (ICRA); Yokohama, Japan. IEEE; 2024, pp. 14995-5001.

[263]

Zheng Z,Chen Y.Model-based control of planar piezoelectric inchworm soft robot for crawling in constrained environments. In: 2022 IEEE 5th International Conference on Soft Robotics (RoboSoft); Edinburgh, United Kingdom. IEEE; 2022. pp. 693-8.

[264]

Li Y,Chong GCY.PID control system analysis and design.IEEE Control Syst May2006;26:32-41

[265]

Campo AB. PID control design. In: Katsikis V, editor. MATLAB - A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1. InTech; 2012. Available from: http://www.intechopen.com/books/matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1/pid-control-design. [Last accessed on 14 Jan 2025]

[266]

Borase RP,Sondkar SY.A review of PID control, tuning methods and applications.Int J Dynam Control2021;9:818-27

[267]

Plum F,Dirks JH.SAUV-A bio-inspired soft-robotic autonomous underwater vehicle.Front Neurorobot2020;14:8 PMCID:PMC7047442

[268]

Li H,Zhang C.Kinematic modeling and control of a novel pneumatic soft robotic arm.Chin J Aeronaut2022;35:310-9

[269]

Dumont GA.Concepts, methods and techniques in adaptive control. In: Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301); Anchorage, USA. IEEE; 2002. pp. 1137-50.

[270]

Kaufman H,Sobel K.Direct adaptive control algorithms: theory and applications. New York, NY: Springer US; 1994.

[271]

Tonietti G.Adaptive simultaneous position and stiffness control for a soft robot arm. In: IEEE/RSJ International Conference on Intelligent Robots and System; Lausanne, Switzerland. IEEE; 2002. pp. 1992-7.

[272]

Xu F,Chen W.Adaptive visual servoing control for an underwater soft robot.Assem Autom2018;38:669-77

[273]

Arulkumaran K,Brundage M.Deep reinforcement learning: a brief survey.IEEE Signal Process Mag2017;34:26-38

[274]

Joshi DJ,Gandewar S,Patwari D.Reinforcement learning: a survey. In: Swain D, Pattnaik PK, Athawale T, editors. Machine learning and information processing. Singapore: Springer; 2021. pp. 297-308.

[275]

Ishige M,Taniguchi T.Exploring behaviors of caterpillar-like soft robots with a central pattern generator-based controller and reinforcement learning.Soft Robot2019;6:579-94 PMCID:PMC6786347

[276]

Wang J.Control strategies for soft robot systems.Adv Intell Syst2022;4:2100165

[277]

Mavrovouniotis M.Hierarchical neural networks.Comput Chem Eng1992;16:347-69

[278]

Jain LC,Lim CP.A review of online learning in supervised neural networks.Neural Comput Appl2014;25:491-509

[279]

Psichogios DC.Direct and indirect model based control using artificial neural networks.Ind Eng Chem Res1991;30:2564-73

[280]

Narendra KS.Adaptive control using neural networks and approximate models.IEEE Trans Neural Netw1997;8:475-85

[281]

Hecht-Nielsen R.III.3 - Theory of the Backpropagation Neural Network. In: Neural networks for perception. Elsevier; 1992. pp. 65-93.

[282]

Red’ko VG,Burtsev MS.Theory of functional systems, adaptive critics and neural networks. In: 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541); Budapest, Hungary. IEEE; 2004. pp. 1787-92.

[283]

Slotine JE.Neural networks for adaptive control and recursive identification: a theoretical framework. In: Trentelman HL, Willems JC, editors. Essays on control. Boston: Birkhäuser; 1993. pp. 381-436.

[284]

Low JH,Han QQ.Sensorized reconfigurable soft robotic gripper system for automated food handling.IEEE/ASME Trans Mechatronics2022;27:3232-43

[285]

Somnox. Somnox, Breathe, relax, sleep. Available from: https://somnox.com/. [Last accessed on 14 Jan 2025]

[286]

Awad LN,Francisco GE,Jayaraman A.The ReWalk ReStore™ soft robotic exosuit: a multi-site clinical trial of the safety, reliability, and feasibility of exosuit-augmented post-stroke gait rehabilitation.J Neuroeng Rehabil2020;17:80 PMCID:PMC7301475

[287]

Squishy Robotics. Life-saving, Cost-saving information in real time. Available from: https://squishy-robotics.com/. [Last accessed on 14 Jan 2025]

[288]

Mitchell SK,Acome E.An easy-to-implement toolkit to create versatile and high-performance HASEL actuators for untethered soft robots.Adv Sci2019;6:1900178 PMCID:PMC6662077

[289]

Amend J,Fakhouri S.Soft robotics commercialization: jamming grippers from research to product.Soft Robot2016;3:213-22 PMCID:PMC5180083

[290]

Olkkola LS,Quigley C. Defining potential market growth of innovative applications for military and commercial use in soft robotics. Defense Technical Information Center. 2022. Available from: https://apps.dtic.mil/sti/citations/AD1160075. [Last accessed on 14 Jan 2025]

[291]

Wang Y,Ge W,Chen Z.Perceived safety assessment of interactive motions in human-soft robot interaction.Biomimetics2024;9:58 PMCID:PMC10813124

[292]

Sundaravadivel P,Suwal B.IoT-enabled soft robotics for electrical engineers. In: Proceedings of the Great Lakes Symposium on VLSI 2022. Irvine CA USA: ACM; 2022. pp. 329-32.

[293]

Golecki HM,Cvetkovic C.Empowering students in medical device design: an interdisciplinary soft robotics course.Biomed Eng Education2024;4:399-408

[294]

Lamer S,McNeela E,Golecki H.Using drawings to understand impacts of soft robotics activity on elementary age students’ perceptions of robots. In: 2022 IEEE Frontiers in Education Conference (FIE); Uppsala, Sweden. IEEE; 2022. p. 1-5.

[295]

Medina DR,Ohk K.Pre-college robotics: best practices for adapting research to outreach. In: 2023 ASEE Annual Conference & Exposition. 2023.

[296]

Greer AH,Lee E.Design of a guided inquiry classroom activity to investigate effects of chemistry on physical properties of elastomers.J Chem Educ2021;98:915-23

[297]

Finio B,Lipson H.Air-powered soft robots for K-12 classrooms. In: 2013 IEEE Integrated STEM Education Conference (ISEC). Princeton, USA. IEEE; 2013. p. 1-6.

[298]

Greer AH,Lee EH.Soluble polymer pneumatic networks and a single-pour system for improved accessibility and durability of soft robotic actuators.Soft Robot2021;8:144-51

[299]

Sardesai AN,Baumholtz MN.Design and characterization of edible soft robotic candy actuators.MRS Adv2018;3:3003-9

[300]

Lee DJ. The influence of fiber aspect ratio on the tensile and tear properties of short-fiber reinforced rubber. 1999. Available from: https://api.semanticscholar.org/CorpusID:45044228. [Last accessed on 14 Jan 2025]

[301]

Motsoeneng T,Mohapi M,Sefadi J.7 - Elastomer matrix based natural fiber composites. In: Fiber Reinforced Composites. Elsevier; 2021. pp. 167-85.

[302]

Yasa O,Michelis MY.An overview of soft robotics.Annu Rev Control Robot Auton Syst2023;6:1-29

AI Summary AI Mindmap
PDF

252

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/