A review of worm-like pipe inspection robots: research, trends and challenges

Gabrielle Blewitt , David Cheneler , Jeremy Andrew , Stephen Monk

Soft Science ›› 2024, Vol. 4 ›› Issue (2) : 13

PDF
Soft Science ›› 2024, Vol. 4 ›› Issue (2) :13 DOI: 10.20517/ss.2023.49
Review Article

A review of worm-like pipe inspection robots: research, trends and challenges

Author information +
History +
PDF

Abstract

In recent years, the development of worm-like robots has increased significantly. These robots use peristaltic motion comprised of radial expansion and axial elongation to move leglessly through their environments. Soft worm-like robots have the advantage of conforming to their environment, making them ideal for confined spaces such as pipelines which are essential to societal infrastructure. Pipeline contamination and corrosion can be detrimental and costly and thus regular checking is vital. Some pipes are difficult to access due to size, access restrictions and harmful waste contamination (such as in nuclear power plants). This has led to an increase of research into soft worm-like robots for pipe inspection. This review will analyse the recent progress in this area to assess current robotic capabilities and where work may be further needed to ensure they are applicable to real-world applications.

Keywords

Worm robotics / pipe inspection robotics / soft robotics / inchworm / peristalsis

Cite this article

Download citation ▾
Gabrielle Blewitt, David Cheneler, Jeremy Andrew, Stephen Monk. A review of worm-like pipe inspection robots: research, trends and challenges. Soft Science, 2024, 4(2): 13 DOI:10.20517/ss.2023.49

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Verma A,Dhar Dubey N,Pradhan S.A review on various types of in-pipe inspection robot.Mater Today Proc2022;50:1425-34

[2]

Mishra D,Abbas A,Yadav RS.PIG [Pipe Inspection Gauge]: an artificial dustman for cross country pipelines.Procedia Comput Sci2019;152:333-40

[3]

Jang H,Lee YC.A review: technological trends and development direction of pipeline robot systems.J Intell Robot Syst2022;105:59

[4]

Kim S,Trimmer B.Soft robotics: a bioinspired evolution in robotics.Trends Biotechnol2013;31:287-94

[5]

Karipoth P,Pullanchiyodan A.Bioinspired inchworm- and earthworm-like soft robots with intrinsic strain sensing.Adv Intell Syst2022;4:2100092

[6]

Menciassi A,Gorini S.Development of a biomimetic miniature robotic crawler.Auton Robots2006;21:155-63

[7]

Pfeil S,Katzer K,Gerlach G.A worm-like biomimetic crawling robot based on cylindrical dielectric elastomer actuators.Front Robot AI2020;7:9 PMCID:PMC7805930

[8]

Liu J,Zuo S.Actuation and design innovations in earthworm-inspired soft robots: a review.Front Bioeng Biotechnol2023;11:1088105 PMCID:PMC9989016

[9]

Jung K,Nam J,Choi HR.Artificial annelid robot driven by soft actuators.Bioinspir Biomim2007;2:S42

[10]

Blumenschein LH,Haggerty DA,Hawkes EW.Design, modeling, control, and application of everting vine robots.Front Roboti AI2020;7:548266 PMCID:PMC7805729

[11]

Kamata M,Tanise Y,Nakamura T.Morphological change in peristaltic crawling motion of a narrow pipe inspection robot inspired by earthworm’s locomotion.Adv Robot2018;32:386-97

[12]

Du L,Tokuda K,Li L.Bidirectional locomotion of soft inchworm crawler using dynamic gaits.Front Robot AI2022;9:899850 PMCID:PMC9243582

[13]

Tang Z,Wang Z,Chen W.Development of a new multi-cavity pneumatic-driven earthworm-like soft robot.Robotica2020;38:2290-304

[14]

Gao H,Tang M.Research on a new type peristaltic micro in-pipe robot. In: The 2011 IEEE/ICME International Conference on Complex Medical Engineering; 2011 May 22-25; Harbin, China. IEEE; 2011. pp. 26-30.

[15]

Das R,Visentin F,Mazzolai B.An earthworm-like modular soft robot for locomotion in multi-terrain environments.Sci Rep2023;13:1571

[16]

Wang K,Ma G.An earthworm-like robotic endoscope system for human intestine: design, analysis, and experiment.Ann Biomed Eng2009;37:210-21

[17]

Yanagida T,Yokojima M.Development of a peristaltic crawling robot attached to a large intestine endoscope using bellows - type artificial rubber muscles. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2012 Oct 07-12; Vilamoura-Algarve, Portugal. IEEE; 2012. pp. 2935-40.

[18]

Nemitz MP,Barraclough TW,Stokes AA.Using voice coils to actuate modular soft robots: wormbot, an example.Soft Robot2016;3:198-204 PMCID:PMC5180079

[19]

Saga N,Ueda S.Study on peristaltic crawling robot using artificial muscle actuator. In: Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003); 2003 Jul 20-24; Kobe, Japan. IEEE; pp. 679-84.

[20]

Tanise Y,Yamazaki S,Nakamura T.High-speed response of the pneumatic actuator used in a peristaltic crawling robot inspecting long-distance gas pipes. In: 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM); 2016 Jul 12-15; Banff, Canada. IEEE; 2016. pp. 1234-9.

[21]

Ikeuchi M,Matsubara D.Development of an in-pipe inspection robot for narrow pipes and elbows using pneumatic artificial muscles. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2012 Oct 07-12; Vilamoura-Algarve, Portugal. IEEE; 2012. pp. 926-31.

[22]

Seok S,Cho KJ,Rus D.Meshworm: a peristaltic soft robot with antagonistic nickel titanium coil actuators.IEEE/ASME T Mech2013;18:1485-97

[23]

Horchler AD,Daltorio KA.Worm-like robotic locomotion with a compliant modular mesh. In: Wilson S, Verschure P, Mura A, Prescott T, editors. Biomimetic and biohybrid systems. Living machines 2015. Lecture Notes in Computer Science. Springer, Cham; 2015. pp. 26-37.

[24]

Daltorio KA,Horchler AD,Chiel HJ.Efficient worm-like locomotion: Slip and control of soft-bodied peristaltic robots.Bioinspir Biomim2013;8:035003

[25]

Dai X,Wang W,Li Y.Design and experimental validation of a worm-like tensegrity robot for in-pipe locomotion.J Bionic Eng2023;20:515-29

[26]

Sato H,Mano Y.Development of a compact pneumatic valve using rotational motion for a pneumatically driven mobile robot with periodic motion in a pipe.IEEE Access2021;9:165271-85

[27]

Seok S,Wood R,Kim S.Peristaltic locomotion with antagonistic actuators in soft robotics. In: 2010 IEEE International Conference on Robotics and Automation; 2010 May 03-07; Anchorage, USA. IEEE; 2010. pp. 1228-33.

[28]

Mano Y,Yamada Y.Development of high-speed type peristaltic crawling robot for long-distance and complex-line sewer pipe inspection. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2018 Oct 01-05; Madrid, Spain. IEEE; 2018. pp. 8177-83.

[29]

Yamamoto T,Tadakuma K.High-speed sliding-inchworm motion mechanism with expansion-type pneumatic hollow-shaft actuators for in-pipe inspections.Mechatronics2018;56:101-14

[30]

You TL,Matsuno F.A magneto-active elastomer crawler with peristaltic and caterpillar locomotion patterns.Actuators2021;10:74

[31]

Polygerinos P,Overvelde JTB.Modeling of soft fiber-reinforced bending actuators.IEEE T Robot2015;31:778-89

[32]

Shi L,Li M.A novel soft biomimetic microrobot with two motion attitudes.Sensors2012;12:16732-58

[33]

Lin HT,Trimmer B.GoQBot: a caterpillar-inspired soft-bodied rolling robot.Bioinsp Biomim2011;6:26007

[34]

Omori H,Nakamura T.Locomotion and turning patterns of a peristaltic crawling earthworm robot composed of flexible units. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2008 Sep 22-26; Nice, France. IEEE; 2008. pp. 1630-5.

[35]

Zhang Y,Sun H.Design and motion analysis of a flexible squirm pipe robot. In: 2010 International Conference on Intelligent System Design and Engineering Application; 2010 Oct 13-14; Changsha, China. IEEE; 2010. pp. 527-31.

[36]

Liu X,Fang Y,Cao C.Worm-inspired soft robots enable adaptable pipeline and tunnel inspection.Adv Intell Syst2022;4;2100128

[37]

Bertetto AM.In-pipe inch-worm pneumatic flexible robot. In: 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Proceedings (Cat. No.01TH8556); Como, Italy. IEEE; 2001. pp. 1226-31.

[38]

Tanaka T,Nakamura T.Development of a peristaltic crawling robot for long-distance inspection of sewer pipes. In: 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics; 2014 Jul 08-11; Besacon, France. IEEE; 2014. pp. 1552-7.

[39]

Basem F. Worm robot with dynamic adaptation to pipe diameter for in-pipe inspection 1. 2014. Available from: https://www.semanticscholar.org/paper/Worm-Robot-with-Dynamic-Adaptation-to-Pipe-Diameter-Yousef-Bastaki/b666c6bf7259ee0b7feb898f99d12359f6a11c76. [Last accessed on 5 Mar 2024]

[40]

Kusunose K,Dohta S,Nakagawa K.Development of pipe holding mechanism and bending unit using extension type flexible actuator for flexible pipe inspection robot.Int J Mech Eng Robot Res2019;8:129-34

[41]

Hayashi K,Dohta S.Improvement of pipe holding mechanism and inchworm type flexible pipe inspection robot.Int J Mech Eng Robot Res2020;9:894-9

[42]

Persson BNJ.Theory of rubber friction and contact mechanics.J Chem Phys2001;115:3840-61

[43]

Fang D,Wu J.A novel worm-like in-pipe robot with the rigid and soft structure.J Bionic Eng2023;20:2559-69

[44]

Li M,Wang J,Jiao X.Development of an inchworm-like soft pipe robot for detection.Int J Mech Sci2023;253:108392

[45]

Shen YZ,Tan HF.A method for predicting the blasting pressure of balloons using the surface strain in low pressure.Adv Mech Eng2019;11:1-8

[46]

Tang C,Jiang S.A pipeline inspection robot for navigating tubular environments in the sub-centimeter scale.Sci Robot2022;7;66

[47]

Jiang C.An in-pipe worm robot with pneumatic actuators based on origami paper-fabric composites.Text Res J2021;91;2724-37

[48]

Takahashi M,Iwatsuki N,Ohki N.The development of an in-pipe microrobot applying the motion of an earthworm. In: 1994 5th International Symposium on Micro Machine and Human Science Proceedings; 1994 Oct 02-04; Nagoya, Japan. IEEE; 1994. pp. 35.

[49]

Verma MS,Yang D,Whitesides GM.A soft tube-climbing robot.Soft Robot2018;5:133-7

[50]

Hu ZJ.Bio-inspired soft robot for locomotion and navigation in restricted spaces.J Robot Automat2021;5:236-50

[51]

Daerden F,Verrelst B.Pleated pneumatic artificial muscles: actuators for automation and robotics. In: 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Proceedings (Cat. No.01TH8556); 2001 Jul 08-12; Como, Italy. IEEE; 2001. pp. 738-43.

[52]

Kalita B,Dwivedy SK.A review on the development of pneumatic artificial muscle actuators: force model and application.Actuators2022;11:288

[53]

Serres JL,Phillips CA,Repperger DW.Characterization of a pneumatic muscle test station with two dynamic plants in cascade.Comput Method Biomec2010;13:11-8

[54]

Serres JL,Phillips CA,Repperger DW.Characterisation of a phenomenological model for commercial pneumatic muscle actuators.Comput Method Biomec2009;12:423-30

[55]

Zhang Z,Wang S,Liang B.Design and modelling of a parallel-pipe-crawling pneumatic soft robot.IEEE Access2019;7:134301-17

[56]

Wickramatunge KC. Empirical modeling of pneumatic artificial muscle. In: Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II; 2009 Mar 08-20; Hong Kong, China. IMECS 2009. Available from: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=fe4608d1e7162cbd52ed47534fccb29668b9f768. [Last accessed on 5 Mar 2024]

[57]

Wickramatunge KC, Leephakpreeda T. Study on mechanical behaviors of pneumatic artificial muscle.Int J Eng Sci2010;48:188-98

[58]

Yamamoto T,Kamimura A.Pneumatic duplex-chambered inchworm mechanism for narrow pipes driven by only two air supply lines.IEEE Robot Autom Lett2020;5:5034-42

[59]

Lim J,An J,Kim B.One pneumatic line based inchworm-like micro robot for half-inch pipe inspection.Mechatronics2008;18:315-22

[60]

Gilbertson MD,Korinek G,Kowalewski TM.Serially actuated locomotion for soft robots in tube-like environments.IEEE Robot Autom Lett2017;2:1140-7

[61]

Ko UH,Rosen B.Characterization of bending balloon actuators.Front Robot AI2022;9:991748 PMCID:PMC9528995

[62]

Rad C,Lapusan C.Data-driven kinematic model of pneunets bending actuators for soft grasping tasks.Actuators2022;11:58

[63]

Hwang Y,Candler RN.Pneumatic microfinger with balloon fins for linear motion using 3D printed molds.Sensor Actuat2015;234:65-71

[64]

Xavier MS,Yong YK.Experimental characterisation of hydraulic fiber-reinforced soft actuators for worm-like robots. In: 2019 7th International Conference on Control, Mechatronics and Automation (ICCMA); 2019 Nov 06-08; Delft, Netherlands. IEEE; 2019. pp. 204-9.

[65]

Zhang B,Yang P,Liao H.Worm-like soft robot for complicated tubular environments.Soft Robot2019;6:399-413

[66]

Webster RJ III.Design and kinematic modeling of constant curvature continuum robots: a review.Int J Robot Res2010;29:1661-83

[67]

Zhang X,Heung HL,Li Z.A Biomimetic soft robot for inspecting pipeline with significant diameter variation. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2018 Oct 01-05; Madrid, Spain. IEEE; 2018. pp. 7486-91.

[68]

Liu Z.State of the art review of inspection technologies for condition assessment of water pipes.Measurement2013;46:1-15

[69]

Guan L,Liu H,Noureldin A.A review on small-diameter pipeline inspection gauge localization techniques: problems, methods and challenges. In: 2019 International Conference on Communications, Signal Processing, and their Applications (ICCSPA); 2019 Mar 19-21; Sharjah, United Arab Emirates. IEEE; 2019. p. 1-6.

[70]

Ayali A.Rhythmic behaviour and pattern-generating circuits in the locust: key concepts and recent updates.J Insect Physiol2010;56:834-43

[71]

Lin Y,Juang JY.Single-actuator soft robot for in-pipe crawling.Soft Robot2023;10:174-86

[72]

Gray J.Studies in animal locomotion: VII. locomotory reflexes in the earthworm.J Exp Biol1938;15:506-17

[73]

Kandhari A,Zucker GS,Chiel HJ.Sensing contact constraints in a worm-like robot by detecting load anomalies. In: Lepora N, Mura A, Mangan M, Verschure P, Desmulliez M, Prescott T, editors. Biomimetic and biohybrid systems. Springer, Cham; 2016. pp. 97-106.

[74]

Kandhari A,Jayachandran PR.Distributed sensing for soft worm robot reduces slip for locomotion in confined environments. In: Vouloutsi V, editor. Biomimetic and biohybrid systems. Springer, Cham; 2018. pp. 236-48.

[75]

Calderón AA,Chang L,Pérez-Arancibia NO.An earthworm-inspired soft robot with perceptive artificial skin.Bioinspir Biomim2019;14:056012

[76]

Aitken JM,Worley R.Simultaneous localization and mapping for inspection robots in water and sewer pipe networks: a review.IEEE Access2021;9:140173-98

[77]

Goldoni R,Kim YS.Stretchable nanocomposite sensors, nanomembrane interconnectors, and wireless electronics toward feedback-loop control of a soft earthworm robot.ACS Appl Mater Interfaces2020;12:43388-97

[78]

Negm A,Aggidis G.Review of leakage detection in water distribution networks.IOP Conf Ser Earth Environ Sci2023;1136:012052

[79]

Ishikawa R,Yamada Y.Investigation of odometry method of pipe line shape by peristaltic crawling robot combined with inner sensor. In: 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM); 2017 Jul 03-07; Munich, Germany. IEEE; 2017. pp. 1279-84.

[80]

Se S,Little JJ.Vision-based global localization and mapping for mobile robots.IEEE T Robot2005;21:364-75

[81]

Lu D,Gong Z.A SLAM method based on multi-robot cooperation for pipeline environments underground.Sustainability2022;14:12995

[82]

Zhang R,Worley R,Mihaylova L.Improving SLAM in pipe networks by leveraging cylindrical regularity. In: Towards Autonomous Robotic Systems. Lecture Notes in Computer Science. Springer, Cham; 2021. pp. 56-65.

[83]

Lim H,Kwon YS,Yi BJ.SLAM in indoor pipelines with 15mm diameter. In: 2008 IEEE International Conference on Robotics and Automation; 2008 May 19-23; Pasadena, CA. IEEE; 2008. pp. 4005-11.

AI Summary AI Mindmap
PDF

262

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/