Emerging epidermal electrodes towards digital health and on-skin digitalization

Yan Wang

Soft Science ›› 2024, Vol. 4 ›› Issue (1) : 5

PDF
Soft Science ›› 2024, Vol. 4 ›› Issue (1) :5 DOI: 10.20517/ss.2023.44
Perspective

Emerging epidermal electrodes towards digital health and on-skin digitalization

Author information +
History +
PDF

Abstract

Epidermal electrodes can be directly attached to the human skin for high-fidelity electrophysiological monitoring owing to their preponderance in thinness, lightweight, conformability, biocompatibility, self-adhesiveness, mechanical flexibility, gas-permeability, etc. These devices have attracted immense attention due to their emerging applications in personalized health care, human/brain-machine interfaces, and soft robotics. This Perspective focuses on the most recent significant progress in this area, especially materials, properties, and applications. Challenges and prospects are summarized to underscore the unexploited areas and future directions toward digital health and on-skin digitalization.

Keywords

Epidermal electrodes, ultrathinness / ultra-conformability, electrophysiology, digital health, on-skin digitalization

Cite this article

Download citation ▾
Yan Wang. Emerging epidermal electrodes towards digital health and on-skin digitalization. Soft Science, 2024, 4(1): 5 DOI:10.20517/ss.2023.44

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Luo Y,Ahn JH.Technology roadmap for flexible sensors.ACS Nano2023;17:5211-95

[2]

Wang C,Hu H.Monitoring of the central blood pressure waveform via a conformal ultrasonic device.Nat Biomed Eng2018;2:687-95 PMCID:PMC6428206

[3]

Someya T,Malliaras GG.The rise of plastic bioelectronics.Nature2016;540:379-85

[4]

Chen Y,Liang Z,Han Z.Flexible inorganic bioelectronics.npj Flex Electron2020;4:2

[5]

Kim JJ,Wang H,Yokota T.Skin electronics: next-generation device platform for virtual and augmented reality.Adv Funct Mater2021;31:2009602

[6]

Ramasamy S.Wearable sensors for ECG measurement: a review.Sens Rev2018;38:412-9

[7]

Wang C,Li J.Conformal electrodes for on-skin digitalization.SmartMat2021;2:252-62

[8]

Ferrari LM,Tarantino S.Ultraconformable temporary tattoo electrodes for electrophysiology.Adv Sci2018;5:1700771 PMCID:PMC5867059

[9]

Yao S.Nanomaterial-enabled dry electrodes for electrophysiological sensing: a review.JOM2016;68:1145-55

[10]

Kireev D,Nederveld A.Fabrication, characterization and applications of graphene electronic tattoos.Nat Protoc2021;16:2395-417

[11]

Wang Y,Bai Y.Electrically compensated, tattoo-like electrodes for epidermal electrophysiology at scale.Sci Adv2020;6:43 PMCID:PMC7608837

[12]

Xue H,Jin M.Hydrogel electrodes with conductive and substrate-adhesive layers for noninvasive long-term EEG acquisition.Microsyst Nanoeng2023;9:79 PMCID:PMC10258200

[13]

Ershad F,Yue J.Ultra-conformal drawn-on-skin electronics for multifunctional motion artifact-free sensing and point-of-care treatment.Nat Commun2020;11:3823 PMCID:PMC7393123

[14]

Kim DH,Ma R.Epidermal electronics.Science2011;333:838-43

[15]

Jang KI,Chung HU.Self-assembled three dimensional network designs for soft electronics.Nat Commun2017;8:15894 PMCID:PMC5482057

[16]

Wang Y,Wang SJ,Cheng W.Volume-invariant ionic liquid microbands as highly durable wearable biomedical sensors.Mater Horiz2016;3:208-13

[17]

Wang Y,Wang SJ.Standing enokitake-like nanowire films for highly stretchable elastronics.ACS Nano2018;12:9742-9

[18]

Wei B,Guo H.Ultraflexible tattoo electrodes for epidermal and in vivo electrophysiological recording.Cell Rep Phys Sci2023;4:101335

[19]

Li Y,Zhang J.A highly stretchable and permeable liquid metal micromesh conductor by physical deposition for epidermal electronics.ACS Appl Mater Interfaces2022;14:13713-21

[20]

Niu W,Liu Z.Solvent-free and skin-like supramolecular ion-conductive elastomers with versatile processability for multifunctional ionic tattoos and on-skin bioelectronics.Adv Mater2023;35:2304157

[21]

Song D,Zhao Y,Hou X.An all-in-one, bioderived, air-permeable, and sweat-stable MXene epidermal electrode for muscle theranostics.ACS Nano2022;16:17168-78

[22]

Deng J,Wu J.Electrical bioadhesive interface for bioelectronics.Nat Mater2021;20:229-36

[23]

Jung D,Shim HJ.Highly conductive and elastic nanomembrane for skin electronics.Science2021;373:1022-6

[24]

Ho MD,Yap LW.Percolating network of ultrathin gold nanowires and silver nanowires toward “invisible” wearable sensors for detecting emotional expression and apexcardiogram.Adv Funct Mater2017;27:1700845

[25]

Xu X,He P,Yang J.Screen printed graphene electrodes on textile for wearable electrocardiogram monitoring.Appl Phys A2019;125:714

[26]

Koo JH,Shim HJ.Wearable electrocardiogram monitor using carbon nanotube electronics and color-tunable organic light-emitting diodes.ACS Nano2017;11:10032-41

[27]

Zhao Y,Yu T.Ultra-conformal skin electrodes with synergistically enhanced conductivity for long-time and low-motion artifact epidermal electrophysiology.Nat Commun2021;12:4880 PMCID:PMC8361161

[28]

Zhang L,He H.Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring.Nat Commun2020;11:4683 PMCID:PMC7499260

[29]

Sun B,Goswami S.Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene and sugar-templated elastomer sponges.Adv Mater2018;30:1804327

[30]

Namkoong M,Rahman MS.Moldable and transferrable conductive nanocomposites for epidermal electronics.Npj Flex Electron2022;6:41 PMCID:PMC9393028

[31]

Zhou W,Wang H,Ma Y.Gas-permeable, ultrathin, stretchable epidermal electronics with porous electrodes.ACS Nano2020;14:5798-805

[32]

Wang Y,Ameri SK.Low-cost, μm-thick, tape-free electronic tattoo sensors with minimized motion and sweat artifacts.npj Flex Electron2018;2:6

[33]

Liu Y,Salvatore GA.Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring.ACS Nano2017;11:9614-35

[34]

Ray TR,Bandodkar AJ.Bio-integrated wearable systems: a comprehensive review.Chem Rev2019;119:5461-533

[35]

Fu Y,Dong Y.Dry electrodes for human bioelectrical signal monitoring.Sensors2020;20:3651 PMCID:PMC7374322

[36]

Li G,Duan YY.Towards conductive-gel-free electrodes: understanding the wet electrode, semi-dry electrode and dry electrode-skin interface impedance using electrochemical impedance spectroscopy fitting.Sens Actuators B Chem2018;277:250-60

[37]

Gao Q,Li Y.Biological tissue-inspired ultrasoft, ultrathin, and mechanically enhanced microfiber composite hydrogel for flexible bioelectronics.Nanomicro Lett2023;15:139 PMCID:PMC10225432

[38]

Lim C,Jung J.Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable, and low-impedance hydrogels.Sci Adv2021;7:eabd3716 PMCID:PMC8104866

[39]

Jung HC,Baek DH.CNT/PDMS composite flexible dry electrodes for long-term ECG monitoring.IEEE Trans Biomed Eng2012;59:1472-9

[40]

Lee JH,Jung HC,Lee SH.Shear induced CNT/PDMS conducting thin film for electrode cardiogram (ECG) electrode.BioChip J2012;6:91-8

[41]

Lu L,Liu J.Flexible multifunctional graphite nanosheet/electrospun-polyamide 66 nanocomposite sensor for ECG, strain, temperature and gas measurements.Chem Eng J2020;400:125928

[42]

Yang X,Liu M.All-nanofiber-based janus epidermal electrode with directional sweat permeability for artifact-free biopotential monitoring.Small2022;18:2106477

[43]

Oh TI,Kim TE.Nanofiber web textile dry electrodes for long-term biopotential recording.IEEE Trans Biomed Circuits Syst2013;7:204-11

[44]

Wang Y,Wang H.Robust, self-adhesive, reinforced polymeric nanofilms enabling gas-permeable dry electrodes for long-term application.Proc Natl Acad Sci U S A2021;118:e2111904118 PMCID:PMC8463786

[45]

Yamagishi K,Fujie T.Printed nanofilms mechanically conforming to living bodies.Biomater Sci2019;7:520-31

[46]

Nawrocki RA,Lee S,Sekino M.Self-adhesive and ultra-conformable, sub-300 nm dry thin-film electrodes for surface monitoring of biopotentials.Adv Funct Mater2018;28:1803279

[47]

Ferrari LM,Badier JM,Ismailova E.Conducting polymer tattoo electrodes in clinical electro- and magneto-encephalography.npj Flex Electron2020;4:4

[48]

Ha T,Liu S.A chest-laminated ultrathin and stretchable E-tattoo for the measurement of electrocardiogram, seismocardiogram, and cardiac time intervals.Adv Sci2019;6:1900290 PMCID:PMC6662084

[49]

Yang J,Zhou P.Toward a new generation of permeable skin electronics.Nanoscale2023;15:3051-78

[50]

Miyamoto A,Cooray NF.Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes.Nat Nanotechnol2017;12:907-13

[51]

Wang Y,Yokota T.A durable nanomesh on-skin strain gauge for natural skin motion monitoring with minimum mechanical constraints.Sci Adv2020;6:eabb7043 PMCID:PMC7423357

[52]

Zhang JH,Xu J.Versatile self-assembled electrospun micropyramid arrays for high-performance on-skin devices with minimal sensory interference.Nat Commun2022;13:5839 PMCID:PMC9530173

[53]

Ma Z,Xu Q.Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics.Nat Mater2021;20:859-68

[54]

Patel S,Lee J.Drawn-on-skin sensors from fully biocompatible inks toward high-quality electrophysiology.Small2022;18:2107099

[55]

Wang C,Wang B.On-skin paintable biogel for long-term high-fidelity electroencephalogram recording.Sci Adv2022;8:eabo1396 PMCID:PMC9122322

[56]

Cheng S,Zhang L.Ultrathin hydrogel films toward breathable skin-integrated electronics.Adv Mater2023;35:2206793

[57]

Cheng J,Cai X.Fermentation-inspired gelatin hydrogels with a controllable supermacroporous structure and high ductility for wearable flexible sensors.ACS Appl Mater Interfaces2022;14:26338-49

[58]

Ma X,Wang Y.Stretchable porous conductive hydrogel films prepared by emulsion template method as flexible sensors.Colloids Surf A Physicochem Eng Asp2023;676:132272

[59]

Li W,Zhang Y.Biodegradable materials and green processing for green electronics.Adv Mater2020;32:2001591

[60]

Ghosh SK,Na S,Ko H.A fully biodegradable ferroelectric skin sensor from edible porcine skin gelatine.Adv Sci2021;8:2005010 PMCID:PMC8261503

[61]

Meng L,Hao S,Yang J.Self-adhesive, biodegradable silk-based dry electrodes for epidermal electrophysiological monitoring.Chem Eng J2022;427:131999

[62]

Ye G,Song J,Liu N.A fully biodegradable and biocompatible ionotronic skin for transient electronics.Adv Funct Mater2023;33:2303990

[63]

Ma T,Ma X,Li D.Stretchable, breathable, and washable epidermal electrodes based on microfoam reinforced ultrathin conductive nanocomposites.Nano Res2023;16:10412-9

[64]

Chen T,Wu H.Highly conductive and underwater stable ionic skin for all-day epidermal biopotential monitoring.Adv Funct Mater2022;32:2206424

[65]

Tang M,Wang K.Autonomous self-healing, self-adhesive, highly conductive composites based on a silver-filled polyborosiloxane/polydimethylsiloxane double-network elastomer.J Mater Chem A2019;7:27278-88

[66]

Huang X,Ma X.In situ forming dual-conductive hydrogels enable conformal, self-adhesive and antibacterial epidermal electrodes.Adv Funct Mater2023;33:2302846

[67]

Wang Y,Guo S.Skin bioelectronics towards long-term, continuous health monitoring.Chem Soc Rev2022;51:3759-93

[68]

Majumder S,Marinov O,Mondal T.Noncontact wearable wireless ECG systems for long-term monitoring.IEEE Rev Biomed Eng2018;11:306-21

[69]

Yang H,Chaturvedi I.Adhesive biocomposite electrodes on sweaty skin for long-term continuous electrophysiological monitoring.ACS Mater Lett2020;2:478-84

[70]

Pan L,Mei L.A compliant ionic adhesive electrode with ultralow bioelectronic impedance.Adv Mater2020;32:2003723

[71]

Wan C,Ren M.In situ formation of conductive epidermal electrodes using a fully integrated flexible system and injectable photocurable ink.ACS Nano2023;17:10689-700

[72]

Jiang Y,Sun J.A universal interface for plug-and-play assembly of stretchable devices.Nature2023;614:456-62

[73]

Ji S,Wang T.Water-resistant conformal hybrid electrodes for aquatic endurable electrocardiographic monitoring.Adv Mater2020;32:2001496

[74]

Sun C,Jia T.Water-resistant and underwater adhesive ion-conducting gel for motion-robust bioelectric monitoring.Chem Eng J2022;431:134012

[75]

Ding Q,Tao K.Environment tolerant, adaptable and stretchable organohydrogels: preparation, optimization, and applications.Mater Horiz2022;9:1356-86

[76]

Xu Y,Paul A.In-ear integrated sensor array for the continuous monitoring of brain activity and of lactate in sweat.Nat Biomed Eng2023;7:1307-20 PMCID:PMC10589098

[77]

Yuk H,Zhao X.Hydrogel interfaces for merging humans and machines.Nat Rev Mater2022;7:935-52

[78]

Ouyang W,Zhang Y.A wireless and battery-less implant for multimodal closed-loop neuromodulation in small animals.Nat Biomed Eng2023;7:1252-69

[79]

Tian L,Akhtar A.Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring.Nat Biomed Eng2019;3:194-205

[80]

Chandra S,Afsharipour B.Performance evaluation of a wearable tattoo electrode suitable for high-resolution surface electromyogram recording.IEEE Trans Biomed Eng2021;68:1389-98 PMCID:PMC8015348

[81]

Kim N,Song K,Lee J.Stretchable multichannel electromyography sensor array covering large area for controlling home electronics with distinguishable signals from multiple muscles.ACS Appl Mater Interfaces2016;8:21070-6

[82]

Someya T.Toward a new generation of smart skins.Nat Biotechnol2019;37:382-8

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/