Morphing matter: from mechanical principles to robotic applications

Xudong Yang , Yuan Zhou , Huichan Zhao , Weicheng Huang , Yifan Wang , K. Jimmy Hsia , Mingchao Liu

Soft Science ›› 2023, Vol. 3 ›› Issue (4) : 38

PDF
Soft Science ›› 2023, Vol. 3 ›› Issue (4) :38 DOI: 10.20517/ss.2023.42
Review Article

Morphing matter: from mechanical principles to robotic applications

Author information +
History +
PDF

Abstract

The adaptability of natural organisms in altering body shapes in response to the environment has inspired the development of artificial morphing matter. These materials encode the ability to transform their geometrical configurations in response to specific stimuli and have diverse applications in soft robotics, wearable electronics, and biomedical devices. However, achieving the morphing of intricate three-dimensional shapes from a two-dimensional flat state is challenging, as it requires manipulations of surface curvature in a controlled manner. In this review, we first summarize the mechanical principles extensively explored for realizing morphing matter, both at the material and structural levels. We then highlight its applications in the soft robotics field. Moreover, we offer insights into the open challenges and opportunities that this rapidly growing field faces. This review aims to inspire researchers to uncover innovative working principles and create multifunctional morphing matter for various engineering fields.

Keywords

Shape-morphing / mechanical principles / strain-mismatch / elastic instability / origami/kirigami / discrete element / morphogenesis-inspiring / robotic application

Cite this article

Download citation ▾
Xudong Yang, Yuan Zhou, Huichan Zhao, Weicheng Huang, Yifan Wang, K. Jimmy Hsia, Mingchao Liu. Morphing matter: from mechanical principles to robotic applications. Soft Science, 2023, 3(4): 38 DOI:10.20517/ss.2023.42

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pikul JH,Bai H,Cohen I.Stretchable surfaces with programmable 3D texture morphing for synthetic camouflaging skins.Science2017;358:210-4

[2]

de Espinosa LM, Meesorn W, Moatsou D, Weder C. Bioinspired polymer systems with stimuli-responsive mechanical properties.Chem Rev2017;117:12851-92

[3]

Apsite I,Ionov L.Materials for smart soft actuator systems.Chem Rev2022;122:1349-415

[4]

Kim H,Mackie DM.Shape morphing smart 3D actuator materials for micro soft robot.Mater Today2020;41:243-69

[5]

Erol O,Liu W.Transformer hydrogels: a review.Adv Mater Technol2019;4:1900043

[6]

Jiao D,Li CY,Wu ZL.Programmable morphing hydrogels for soft actuators and robots: from structure designs to active functions.Acc Chem Res2022;55:1533-45

[7]

Li S.Plant-inspired adaptive structures and materials for morphing and actuation: a review.Bioinspir Biomim2016;12:011001

[8]

Rich SI,Majidi C.Untethered soft robotics.Nat Electron2018;1:102-12

[9]

Keneth ES, Kamyshny A, Totaro M, Beccai L, Magdassi S. 3D printing materials for soft robotics.Adv Mater2021;33:2003387

[10]

Rus D.Design, fabrication and control of soft robots.Nature2015;521:467-75

[11]

Manna RK,Stone HA.Chemically controlled shape-morphing of elastic sheets.Mater Horiz2020;7:2314-27

[12]

Zhu Z,Park HS.3D-printed multifunctional materials enabled by artificial-intelligence-assisted fabrication technologies.Nat Rev Mater2021;6:27-47

[13]

Xu S,Jang KI.Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling.Science2015;347:154-9

[14]

Zhang Y,Qi B.Multifunctional fibers to shape future biomedical devices.Adv Funct Mater2019;29:1902834

[15]

Ze Q,Wu S.Shape memory polymers: magnetic shape memory polymers with integrated multifunctional shape manipulation (Adv. Mater. 4/2020).Adv Mater2020;32:2070025

[16]

Kirillova A.Shape-changing polymers for biomedical applications.J Mater Chem B2019;7:1597-624

[17]

Callens SJP.From flat sheets to curved geometries: origami and kirigami approaches.Mater Today2018;21:241-64

[18]

Shah D,Kriegman S,Bongard J.Shape changing robots: bioinspiration, simulation, and physical realization.Adv Mater2021;33:2002882

[19]

Hannard F,Ameri A.Segmentations in fins enable large morphing amplitudes combined with high flexural stiffness for fish-inspired robotic materials.Sci Robot2021;6:eabf9710

[20]

Yokota K.Stiff bioinspired architectured beams bend Saint-Venant’s principle and generate large shape morphing.Int J Solids Struct2023;274:112270

[21]

Holmes DP.Elasticity and stability of shape-shifting structures.Curr Opin Colloid Inter Sci2019;40:118-37

[22]

Zhao Q,Luo Y.Shape memory polymer network with thermally distinct elasticity and plasticity.Sci Adv2016;2:e1501297 PMCID:PMC4730863

[23]

Saleem M,Hohendahl A,Lenz M.A balance between membrane elasticity and polymerization energy sets the shape of spherical clathrin coats.Nat Commun2015;6:6249 PMCID:PMC4346611

[24]

Leibler S.Curvature instability in membranes.J Phys France1986;47:507-16

[25]

Nagarkar A,Preston DJ.Elastic-instability-enabled locomotion.Proc Natl Acad Sci U S A2021;118:e2013801118 PMCID:PMC7923676

[26]

Van Meerbeek IM,Kim JW.Foams: morphing metal and elastomer bicontinuous foams for reversible stiffness, shape memory, and self-healing soft machines (Adv. Mater. 14/2016).Adv Mater2016;28:2653

[27]

Grönquist P,Hassani MM,Menges A.Analysis of hygroscopic self-shaping wood at large scale for curved mass timber structures.Sci Adv2019;5:eaax1311 PMCID:PMC6744262

[28]

Rus D.Design, fabrication and control of origami robots.Nat Rev Mater2018;3:101-12

[29]

Ning X,Zhang Y.Assembly of advanced materials into 3D functional structures by methods inspired by origami and kirigami: a review.Adv Mater Interfaces2018;5:1800284

[30]

Oliver K,Trask RS.Morphing in nature and beyond: a review of natural and synthetic shape-changing materials and mechanisms.J Mater Sci2016;51:10663-89

[31]

Guseinov R,Bickel B.CurveUps: shaping objects from flat plates with tension-actuated curvature.ACM Trans Graph2017;36:1-12

[32]

Mirabet V,Boudaoud A.The role of mechanical forces in plant morphogenesis.Annu Rev Plant Biol2011;62:365-85

[33]

Coen E.The mechanics of plant morphogenesis.Science2023;379:eade8055

[34]

Berleth T.Plant morphogenesis: long-distance coordination and local patterning.Curr Opin Plant Biol2001;4:57-62

[35]

Lee H,Ha I.Directional shape morphing transparent walking soft robot.Soft Robot2019;6:760-7

[36]

Wu S,Zhao Y,Zhu Y.Caterpillar-inspired soft crawling robot with distributed programmable thermal actuation.Sci Adv2023;9:eadf8014 PMCID:PMC10032605

[37]

Han B,Zhang YL.Reprogrammable soft robot actuation by synergistic magnetic and light fields.Adv Funct Mater2022;32:2110997

[38]

Wang XQ,Cheng Y.Somatosensory, light-driven, thin-film robots capable of integrated perception and motility.Adv Mater2020;32:2000351

[39]

Jing L,Yang H.Recent advances in integration of 2D materials with soft matter for multifunctional robotic materials.Mater Horiz2020;7:54-70

[40]

Efrati E,Kupferman R.Elastic theory of unconstrained non-Euclidean plates.J Mech Phys Solids2009;57:762-75

[41]

Sharon E.The mechanics of non-euclidean plates.Soft Matter2010;6:5693-704

[42]

Chun IS,Derickson B,Li X.Geometry effect on the strain-induced self-rolling of semiconductor membranes.Nano Lett2010;10:3927-32

[43]

Huang W,Yu X,Li X.Precision structural engineering of self-rolled-up 3D nanomembranes guided by transient quasi-static FEM modeling.Nano Lett2014;14:6293-7

[44]

Timoshenko S.Analysis of Bi-metal thermostats.J Opt Soc Am1925;11:233-55

[45]

Liu Y,Dickey MD.“2D or not 2D”: shape-programming polymer sheets.Prog Polym Sci2016;52:79-106

[46]

Bauhofer AA,Rys J,Constantinescu A.Harnessing photochemical shrinkage in direct laser writing for shape morphing of polymer sheets.Adv Mater2017;29:1703024

[47]

Liu K,Daraio C.Robotic surfaces with reversible, spatiotemporal control for shape morphing and object manipulation.Sci Robot2021;6:eabf5116

[48]

Arslan H,Jeon J.3D printing of anisotropic hydrogels with bioinspired motion.Adv Sci2019;6:1800703 PMCID:PMC6343088

[49]

Egunov AI,Luchnikov VA.Polydimethylsiloxane bilayer films with an embedded spontaneous curvature.Soft Matter2016;12:45-52

[50]

Tang J,Cai Y,Luo Y.Stretch-activated reprogrammable shape-morphing composite elastomers.Adv Funct Mater2022;32:2203308

[51]

Zhao T,Fan Y,Jiang H.Light-modulated liquid crystal elastomer actuator with multimodal shape morphing and multifunction.J Mater Chem C2022;10:3796-803

[52]

Guo J,Rossiter J.A soft and shape-adaptive electroadhesive composite gripper with proprioceptive and exteroceptive capabilities.Mater Design2018;156:586-7

[53]

Deng H,Zhang C,Huang G.Deterministic self-morphing of soft-stiff hybridized polymeric films for acoustic metamaterials.ACS Appl Mater Interfaces2020;12:13378-85

[54]

Li Q,Guo J.Biobased and programmable electroadhesive metasurfaces.ACS Appl Mater Interfaces2022;14:47198-208 PMCID:PMC9585522

[55]

Tan P,Xiao F.Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics.Nat Commun2022;13:358 PMCID:PMC8766561

[56]

Yang SY,Cheng H.Elastomer surfaces with directionally dependent adhesion strength and their use in transfer printing with continuous roll-to-roll applications.Adv Mater2012;24:2117-22

[57]

Hwang Y,Lim N.Enhancement of interfacial adhesion using micro/nanoscale hierarchical cilia for randomly accessible membrane-type electronic devices.ACS Nano2020;14:118-28

[58]

van Manen T, Janbaz S, Zadpoor AA. Programming the shape-shifting of flat soft matter.Mater Today2018;21:144-63

[59]

Zhang F,Wang C.Shape morphing of plastic films.Nat Commun2022;13:7294 PMCID:PMC9701196

[60]

Jamal M,Gracias DH.Differentially photo-crosslinked polymers enable self-assembling microfluidics.Nat Commun2011;2:527 PMCID:PMC3550000

[61]

Zhao Q,Qiu X.An instant multi-responsive porous polymer actuator driven by solvent molecule sorption.Nat Commun2014;5:4293

[62]

Alben S,Smela E.Edge effects determine the direction of bilayer bending.Nano Lett2011;11:2280-5

[63]

Holmes DP,Sinha T.Bending and twisting of soft materials by non-homogenous swelling.Soft Matter2011;7:5188-93

[64]

Abdullah AM,Braun PV,Hsia KJ.Self-folded gripper-like architectures from stimuli-responsive bilayers.Adv Mater2018;30:e1801669

[65]

Liu Y,Feng XQ.Phase transition and optimal actuation of active bilayer structures.Extreme Mech Lett2019;29:100467

[66]

Boley JW,Lissandrello C.Shape-shifting structured lattices via multimaterial 4D printing.Proc Natl Acad Sci U S A2019;116:20856-62 PMCID:PMC6800333

[67]

Armon S,Kupferman R.Geometry and mechanics in the opening of chiral seed pods.Science2011;333:1726-30

[68]

Gladman AS,Nuzzo RG,Lewis JA.Biomimetic 4D printing.Nat Mater2016;15:413-8

[69]

Jang HS,Kang SH,Kim GG.Extrusion shear printing: automatic transformation of membrane-type electronic devices into complex 3D structures via extrusion shear printing and thermal relaxation of acrylonitrile-butadiene-styrene frameworks (Adv. Funct. Mater. 5/2020).Adv Funct Mater2020;30:1907384

[70]

Siéfert E,Sharon E.Euclidean frustrated ribbons.Phys Rev X2021;11:011062

[71]

Yoo JI,Kim SH.Thermal shape morphing of membrane-type electronics based on plastic-elastomer frameworks for 3D electronics with various Gaussian curvatures.Mater Design2023;227:111811

[72]

Jourdan D,Vouga E.Computational design of self-actuated surfaces by printing plastic ribbons on stretched fabric.Comput Graph Forum2022;41:493-506

[73]

Hu N.Buckling-induced smart applications: recent advances and trends.Smart Mater Struct2015;24:063001

[74]

Reis PM.A Perspective on the revival of structural (in)stability with novel opportunities for function: from buckliphobia to buckliphilia.J Appl Mech2015;82:111001

[75]

Kochmann DM.Exploiting microstructural instabilities in solids and structures: from metamaterials to structural transitions.Appl Mech Rev2017;69:050801

[76]

Liu Y,Ding B,Yang K.Multistable shape-reconfigurable metawire in 3D space.Extreme Mech Lett2022;50:101535

[77]

Nadkarni N,Chong C,Daraio C.Unidirectional transition waves in bistable lattices.Phys Rev Lett2016;116:244501

[78]

Jin L,Mueller J.Guided transition waves in multistable mechanical metamaterials.Proc Natl Acad Sci U S A2020;117:2319-25 PMCID:PMC7007517

[79]

Zareei A,Bertoldi K.Harnessing transition waves to realize deployable structures.Proc Natl Acad Sci U S A2020;117:4015-20 PMCID:PMC7049108

[80]

Haghpanah B,Pourrajab P,Valdevit L.Multistable shape-reconfigurable architected materials.Adv Mater2016;28:7915-20

[81]

Meng Z,Yan H,Chen CQ.Deployable mechanical metamaterials with multistep programmable transformation.Sci Adv2022;8:eabn5460 PMCID:PMC9176747

[82]

Meng Z,Mei T,Li Y.Bistability-based foldable origami mechanical logic gates.Extreme Mech Lett2021;43:101180

[83]

Zhang Y,van Keulen F.Concept and design of a metastructure-based multi-stable surface.Extreme Mech Lett2022;51:101553

[84]

Risso G,Ermanni P.A highly multi-stable meta-structure via anisotropy for large and reversible shape transformation.Adv Sci2022;9:e2202740 PMCID:PMC9475508

[85]

Liu M,Dupont de Dinechin I,Vella D.Snap-induced morphing: from a single bistable shell to the origin of shape bifurcation in interacting shells.J Mech Phys Solids2023;170:105116

[86]

Chen T.Computational design of multi-stable, reconfigurable surfaces.Mater Design2021;205:109688

[87]

Meng Z,Liu M,Genin GM.Encoding and storage of information in mechanical metamaterials.Adv Sci2023;10:e2301581 PMCID:PMC10369242

[88]

Pan F,Li Z,Liu B.3D pixel mechanical metamaterials.Adv Mater2019;31:e1900548

[89]

Yan Z,Liu F.Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials.Sci Adv2016;2:e1601014 PMCID:PMC5035128

[90]

Demaine ED. Recent results in computational origami. In: Hull T, editor. Origami3. 2002. Available from: https://www.semanticscholar.org/paper/Recent-Results-in-Computational-Origami-Demaine-Demaine/8c67754ac41e1eaea7d68f6dd49945bd881067e9. [Last accessed on 17 Oct 2023]

[91]

Yu Y,Paulino G.Programming curvatures by unfolding of the triangular Resch pattern.Int J Mech Sci2023;238:107861

[92]

Dudte LH,Tachi T.Programming curvature using origami tessellations.Nat Mater2016;15:583-8

[93]

Tachi T.Origamizing polyhedral surfaces.IEEE Trans Vis Comput Graph2010;16:298-311

[94]

Tachi T.Designing freeform origami tessellations by generalizing resch’s patterns.J Mech Des2013;135:111006

[95]

Xiao K,Zou B,Ju J.Inverse design of 3D reconfigurable curvilinear modular origami structures using geometric and topological reconstructions.Nat Commun2022;13:7474 PMCID:PMC9719498

[96]

Filipov ET,Paulino GH.Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials.Proc Natl Acad Sci U S A2015;112:12321-6 PMCID:PMC4603468

[97]

Hanna BH,Lang RJ,Howell LL.Waterbomb base: a symmetric single-vertex bistable origami mechanism.Smart Mater Struct2014;23:094009

[98]

Yasuda H,Lee M.Origami-based tunable truss structures for non-volatile mechanical memory operation.Nat Commun2017;8:962 PMCID:PMC5714951

[99]

Zhai Z,Jiang H.Origami-inspired, on-demand deployable and collapsible mechanical metamaterials with tunable stiffness.Proc Natl Acad Sci U S A2018;115:2032-7 PMCID:PMC5834720

[100]

Wu S,Dai J,Paulino GH.Stretchable origami robotic arm with omnidirectional bending and twisting.Proc Natl Acad Sci U S A2021;118:e2110023118 PMCID:PMC8433528

[101]

Xia ZM,Tan HF.Quasi-static unfolding mechanics of a creased membrane based on a finite deformation crease-beam model.Int J Solids Struct2020;207:104-12

[102]

Xue Z,Rogers JA,Huang Y.Mechanically-guided structural designs in stretchable inorganic electronics.Adv Mater2020;32:e1902254

[103]

Jang HS,Kang SH.3D image sensors: a bezel-less tetrahedral image sensor formed by solvent-assisted plasticization and transformation of an acrylonitrile butadiene styrene framework (Adv. Mater. 30/2018).Adv Mater2018;30:1870224

[104]

Kim GG,Yoo S,Ko HC.Hexahedral LED arrays with row and column control lines formed by selective liquid-phase plasticization and nondisruptive tucking-based origami.Adv Mater Technol2020;5:2000010

[105]

Choi GPT,Mahadevan L.Compact reconfigurable kirigami.Phys Rev Res2021;3:043030

[106]

Lee YK,Lee YJ.Computational wrapping: a universal method to wrap 3D-curved surfaces with nonstretchable materials for conformal devices.Sci Adv2020;6:eaax6212 PMCID:PMC7148111

[107]

Choi GPT,Mahadevan L.Programming shape using kirigami tessellations.Nat Mater2019;18:999-1004

[108]

Konaković M,Deng B,Piker D.Beyond developable: computational design and fabrication with auxetic materials.ACM Trans Graph2016;35:1-11

[109]

Konaković-luković M,Crane K.Rapid deployment of curved surfaces via programmable auxetics.ACM Trans Graph2018;37:1-13

[110]

Rafsanjani A.Bistable auxetic mechanical metamaterials inspired by ancient geometric motifs.Extreme Mech Lett2016;9:291-6

[111]

Chen T,Schnaubelt M.Bistable auxetic surface structures.ACM Trans Graph2021;40:1-9

[112]

Liu M,Vella D.Tapered elasticæ as a route for axisymmetric morphing structures.Soft Matter2020;16:7739-50

[113]

Fan Z,Zhang F.Inverse design strategies for 3D surfaces formed by mechanically guided assembly.Adv Mater2020;32:e1908424

[114]

Zhang Y,Liu M.Shape-morphing structures based on perforated kirigami.Extreme Mech Lett2022;56:101857

[115]

Cheng X,Yao S.Programming 3D curved mesosurfaces using microlattice designs.Science2023;379:1225-32

[116]

Kansara H,He Y.Inverse design and additive manufacturing of shape-morphing structures based on functionally graded composites.J Mech Phys Solids2023;180:105382

[117]

Wang Z,Isvoranu F.Design and structural optimization of topological interlocking assemblies.ACM Trans Graph2019;38:1-13

[118]

Yang X,Zhang B.Self-sensing robotic structures from architectured particle assemblies.Adv Intell Syst2023;5:2200250

[119]

Alexa M.Recent advances in mesh morphing.Comput Graph Forum2002;21:173-98

[120]

Yang X,Zhang B. Hierarchical tessellation enables programmable morphing matter. 2023; In press.

[121]

Guerra A.Elastogranular sheets.Matter2023;6:1217-30

[122]

Wang Y,Hofmann D,Daraio C.Structured fabrics with tunable mechanical properties.Nature2021;596:238-43

[123]

Jeon SJ,Hayward RC.Shape-morphing materials from stimuli-responsive hydrogel hybrids.Acc Chem Res2017;50:161-9

[124]

Tanjeem N,Hayward RC.Shape-changing particles: from materials design and mechanisms to implementation.Adv Mater2022;34:e2105758 PMCID:PMC9579005

[125]

Ren Y,Panetta J.Umbrella meshes: elastic mechanisms for freeform shape deployment.ACM Trans Graph2022;41:1-15

[126]

Panetta J,Isvoranu F,Pauly M.X-shells: a new class of deployable beam structures.ACM Trans Graph2019;38:1-15

[127]

Ren Y,Chen T.3D weaving with curved ribbons.ACM Trans Graph2021;40:1-15

[128]

Bar M.Leaf development and morphogenesis.Development2014;141:4219-30

[129]

Hogan BLM.Morphogenesis.Cell1999;96:225-33

[130]

Efroni I,Lifschitz E.Morphogenesis of simple and compound leaves: a critical review.Plant Cell2010;22:1019-32 PMCID:PMC2879760

[131]

Guo K,Miao Y,Hsia KJ.Leaf morphogenesis: the multifaceted roles of mechanics.Mol Plant2022;15:1098-119

[132]

Tsukaya H.Organ shape and size: a lesson from studies of leaf morphogenesis.Curr Opin Plant Biol2003;6:57-62

[133]

Huang C,Quinn D,Hsia KJ.Differential growth and shape formation in plant organs.Proc Natl Acad Sci U S A2018;115:12359-64 PMCID:PMC6298086

[134]

Zhao T,Lv J.Photomorphogenesis of diverse autonomous traveling waves in a monolithic soft artificial muscle.ACS Appl Mater Interfaces2022;14:23839-49

[135]

Siéfert E,Bico J.Bio-inspired pneumatic shape-morphing elastomers.Nat Mater2019;18:24-8

[136]

Siéfert E,Bico J.Programming curvilinear paths of flat inflatables.Proc Natl Acad Sci U S A2019;116:16692-6 PMCID:PMC6708383

[137]

Baines R,Gorissen B,Kramer-Bottiglio R.Programming 3D curves with discretely constrained cylindrical inflatables.Adv Mater2023;35:e2300535

[138]

Kim J,Byun M,Hayward RC.Designing responsive buckled surfaces by halftone gel lithography.Science2012;335:1201-5

[139]

Laschi C,Cianchetti M.Soft robotics: technologies and systems pushing the boundaries of robot abilities.Sci Robot2016;1:eaah3690

[140]

Huang W,Hsia KJ.Modeling of magnetic cilia carpet robots using discrete differential geometry formulation.Extreme Mech Lett2023;59:101967

[141]

Qin L,Huang X,Huang W.Modeling and simulation of dynamics in soft robotics: a review of numerical approaches. Curr Robot Rep 2023.

[142]

Shah DS,Tilton LG,Bongard J.A soft robot that adapts to environments through shape change.Nat Mach Intell2021;3:51-9

[143]

Wang Y,Liu M.Insect-scale jumping robots enabled by a dynamic buckling cascade.Proc Natl Acad Sci U S A2023;120:e2210651120 PMCID:PMC9945960

[144]

Rajappan A,Preston DJ.Pneumatic soft robots take a step toward autonomy.Sci Robot2021;6:eabg6994

[145]

Tawk C.A review of 3D-printable soft pneumatic actuators and sensors: research challenges and opportunities.Adv Intell Syst2021;3:2000223

[146]

Jones TJ,Marthelot J.Bubble casting soft robotics.Nature2021;599:229-33

[147]

Becker K,Charles N.Active entanglement enables stochastic, topological grasping.Proc Natl Acad Sci U S A2022;119:e2209819119 PMCID:PMC9586297

[148]

Li M,Aghakhani A,Sitti M.Soft actuators for real-world applications.Nat Rev Mater2022;7:235-49 PMCID:PMC7612659

[149]

Hines L,Lum GZ.Soft actuators for small-scale robotics. Adv Mater 2017;29:1603483.

[150]

Chen Y,Zhang X.Light-driven bimorph soft actuators: design, fabrication, and properties.Mater Horiz2021;8:728-57

[151]

Zeng H,Wiersma DS.Light robots: bridging the gap between microrobotics and photomechanics in soft materials.Adv Mater2018;30:e1703554

[152]

Yang Y,Zhang Y.Reprocessable thermoset soft actuators.Angew Chem Int Ed Engl2019;58:17474-9

[153]

Won P,Kim H.Transparent soft actuators/sensors and camouflage skins for imperceptible soft robotics.Adv Mater2021;33:e2002397

[154]

Yang Y,Holmes DP.Grasping with kirigami shells.Sci Robot2021;6:eabd6426

[155]

Hong Y,Wu S,Zhu Y.Boundary curvature guided programmable shape-morphing kirigami sheets.Nat Commun2022;13:530 PMCID:PMC8792031

[156]

Kim Y,Zhao R,Zhao X.Printing ferromagnetic domains for untethered fast-transforming soft materials.Nature2018;558:274-9

[157]

Zhai F,Li Z.4D-printed untethered self-propelling soft robot with tactile perception: rolling, racing, and exploring.Matter2021;4:3313-26

[158]

Hajiesmaili E.Reconfigurable shape-morphing dielectric elastomers using spatially varying electric fields.Nat Commun2019;10:183 PMCID:PMC6331644

[159]

Tang C,Jiang S.A pipeline inspection robot for navigating tubular environments in the sub-centimeter scale.Sci Robot2022;7:eabm8597

[160]

Whitesides GM.Soft robotics.Angew Chem Int Ed Engl2018;57:4258-73

[161]

Chen Z,Majidi C,Srolovitz DJ.Nonlinear geometric effects in mechanical bistable morphing structures.Phys Rev Lett2012;109:114302

[162]

Sofla AYN,Tan KT.Shape morphing of aircraft wing: status and challenges.Mater Design2010;31:1284-92

[163]

Shi J,Mirabolghasemi A,Akbarzadeh A.Programmable multistable perforated shellular.Adv Mater2021;33:e2102423

[164]

Aksoy B.Multistable shape programming of variable-stiffness electromagnetic devices.Sci Adv2022;8:eabk0543 PMCID:PMC9140967

[165]

Forte AE,Jin L.Inverse design of inflatable soft membranes through machine learning.Adv Funct Mater2022;32:2111610

[166]

Wang C,Zhang XS.Inverse design of magneto-active metasurfaces and robots: theory, computation, and experimental validation.Comput Method Appl Mech Eng2023;413:116065

[167]

Bai Y,Xue Y.A dynamically reprogrammable surface with self-evolving shape morphing.Nature2022;609:701-8

[168]

Zheng X,Chen TT.Deep learning in mechanical metamaterials: from prediction and generation to inverse design.Adv Mater2023;35:2302530

[169]

Jiang C,Zhao B,Gu G.Modeling and inverse design of bio-inspired multi-segment pneu-net soft manipulators for 3D trajectory motion.Appl Phys Rev2021;8:041416

[170]

Peng J,Akkiraju K.Human- and machine-centred designs of molecules and materials for sustainability and decarbonization.Nat Rev Mater2022;7:991-1009

[171]

Chen Y,Mao J.Controlled flight of a microrobot powered by soft artificial muscles.Nature2019;575:324-9

[172]

Duduta M,Zhao H,Clarke DR.Realizing the potential of dielectric elastomer artificial muscles.Proc Natl Acad Sci U S A2019;116:2476-81 PMCID:PMC6377461

[173]

Zhao H,Duduta M,Wood RJ.Compact dielectric elastomer linear actuators.Adv Funct Mater2018;28:1804328

[174]

Alapan Y,Guzelhan SN,Sitti M.Reprogrammable shape morphing of magnetic soft machines.Sci Adv2020;6:eabc6414 PMCID:PMC7500935

[175]

Cui J,Luo Z.Nanomagnetic encoding of shape-morphing micromachines.Nature2019;575:164-8

[176]

Ford MJ,Kent TA.A multifunctional shape-morphing elastomer with liquid metal inclusions.Proc Natl Acad Sci U S A2019;116:21438-44 PMCID:PMC6815160

[177]

Zhao Z,Hwang Y.Digital printing of shape-morphing natural materials.Proc Natl Acad Sci U S A2021;118:e2113715118 PMCID:PMC8639332

[178]

Dudek KK,Ulliac G.Micro-scale auxetic hierarchical mechanical metamaterials for shape morphing.Adv Mater2022;34:e2110115

[179]

Karniadakis GE,Lu L,Wang S.Physics-informed machine learning.Nat Rev Phys2021;3:422-40

[180]

Wood RJ,Fearing RS.Optimal energy density piezoelectric bending actuators.Sensor Actuat A Phys2005;119:476-88

[181]

Lin Z,Liu X.An anthropomorphic musculoskeletal system with soft joint and multifilament pneumatic artificial muscles.Adv Intell Syst2022;4:2200126

[182]

Li J,Song L.Superfast-response and ultrahigh-power-density electromechanical actuators based on hierarchal carbon nanotube electrodes and chitosan.Nano Lett2011;11:4636-41

[183]

Zhao H,Elsamadisi A.Scalable manufacturing of high force wearable soft actuators.Extreme Mech Lett2015;3:89-104

[184]

Li S,Shepherd RF.Bio-inspired design and additive manufacturing of soft materials, machines, robots, and haptic interfaces.Angew Chem Int Ed Engl2019;58:11182-204

AI Summary AI Mindmap
PDF

102

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/