Liquid metals nanotransformer for healthcare biosensors

Yunlong Bai , Jie Zhang , Chennan Lu , Wei Rao

Soft Science ›› 2023, Vol. 3 ›› Issue (4) : 40

PDF
Soft Science ›› 2023, Vol. 3 ›› Issue (4) :40 DOI: 10.20517/ss.2023.38
Review Article

Liquid metals nanotransformer for healthcare biosensors

Author information +
History +
PDF

Abstract

Featuring low cost, low melting points, excellent biocompatibility, outstanding electrical conductivity, and mechanical properties, gallium-based liquid metals (LMs) have become a promising class of materials to fabricate flexible healthcare sensors. However, the extremely high surface tension hinders their manipulation and cooperation with substrates. To address this problem, the inspiration of nanomaterials has been adopted to mold LMs into LM nanoparticles (LMNPs) with expanded advantages. The transformability of LMNPs endows them with functionalities for sensors in multiple dimensions, such as intelligent response to specific molecules or strains, various morphologies, integration into high-resolution circuits, and conductive elastomers. This review aims to summarize the superior properties of LMs, transformability of LMNPs, and correlated advantages for sensor performance. Multidimensional functional sensing forms consisting of LMNPs and corresponding applications as healthcare sensors will be presented. In the end, the existing challenges and prospects in the processing and application of LMNPs will also be discussed.

Keywords

Liquid metal / nanoparticles / transformability / healthcare biosensors / flexible electronics

Cite this article

Download citation ▾
Yunlong Bai, Jie Zhang, Chennan Lu, Wei Rao. Liquid metals nanotransformer for healthcare biosensors. Soft Science, 2023, 3(4): 40 DOI:10.20517/ss.2023.38

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Roy P.Temperature-controlled switching of plasmonic response in gallium core-shell nanoparticles.J Phys D Appl Phys2020;53:465303

[2]

Quesada-González D.Nanomaterial-based devices for point-of-care diagnostic applications.Chem Soc Rev2018;47:4697-709

[3]

Gu Y,Chen H.Mini review on flexible and wearable electronics for monitoring human health information.Nanoscale Res Lett2019;14:263 PMCID:PMC6675826

[4]

Ullah H,Will G.Recent advances in stretchable and wearable capacitive electrophysiological sensors for long-term health monitoring.Biosensors2022;12:630 PMCID:PMC9406032

[5]

Zheng A,Zhang X,Xu X.Tentacled snakes-inspired flexible pressure sensor for pain sensation monitoring.Smart Mater Struct2022;31:045004

[6]

Song D,Li XP,Min P.Hollow-structured MXene-PDMS composites as flexible, wearable and highly bendable sensors with wide working range.J Colloid Interface Sci2019;555:751-8

[7]

Sun P,Liu C.High-sensitivity tactile sensor based on Ti2C-PDMS sponge for wireless human-computer interaction.Nanotechnology2021;32:295506

[8]

Li S,Wu G.A flexible piezoresistive sensor with highly elastic weave pattern for motion detection.Smart Mater Struct2019;28:035020

[9]

Li KH,Choi HW.Tunable GaN photonic crystal and microdisk on PDMS flexible films.ACS Appl Electron Mater2019;1:1112-9

[10]

Ruiz JAR, Sanjuán AM, Vallejos S, García FC, García JM. Smart polymers in micro and nano sensory devices.Chemosensors2018;6:12

[11]

Sang S,Cheng Y,Zhang Q.Graphene and MXene-based sponge pressure sensor array for rectal model pressure detection.Macro Mater Eng2021;306:2100251

[12]

Xu B,Chen R,Chang G.A wide sensing range and high sensitivity flexible strain sensor based on carbon nanotubes and MXene.Ceram Int2022;48:10220-6

[13]

Qin Y,Ding Y.Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application.ACS Nano2015;9:8933-41

[14]

Pu L,Li L.Polyimide nanofiber-reinforced Ti3C2Tx aerogel with “lamella-pillar” microporosity for high-performance piezoresistive strain sensing and electromagnetic wave absorption.ACS Appl Mater Interfaces2021;13:47134-46

[15]

Liu H,Zheng Y.Lightweight, superelastic, and hydrophobic polyimide nanofiber/MXene composite aerogel for wearable piezoresistive sensor and oil/water separation applications.Adv Funct Mater2021;31:2008006

[16]

Dai Y,Liu Z,Yu ZZ.Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption.Compos B Eng2020;200:108263

[17]

Luo S,Liu T.Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays.Carbon2016;96:522-31

[18]

Zhao Y,Ryu GH.Low-temperature synthesis of 2D MoS2 on a plastic substrate for a flexible gas sensor.Nanoscale2018;10:9338-45

[19]

Kenry, Yeo JC, Lim CT. Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications.Microsyst Nanoeng2016;2:16043 PMCID:PMC6444731

[20]

Gao Y,Tan J,Pan L.Highly sensitive strain sensors based on fragmentized carbon nanotube/polydimethylsiloxane composites.Nanotechnology2018;29:235501

[21]

Zhao Y,Shang Y.Ultra-sensitive and durable strain sensor with sandwich structure and excellent anti-interference ability for wearable electronic skins.Compos Sci Technol2020;200:108448

[22]

Pu JH,Zha XJ.A strain localization directed crack control strategy for designing MXene-based customizable sensitivity and sensing range strain sensors for full-range human motion monitoring.Nano Energy2020;74:104814

[23]

Wang H,Li D.High-performance foam-shaped strain sensor based on carbon nanotubes and Ti3C2Tx MXene for the monitoring of human activities.ACS Nano2021;15:9690-700

[24]

Li X,Yuan W.Microstructured MXene/polyurethane fibrous membrane for highly sensitive strain sensing with ultra-wide and tunable sensing range.Compos Commun2021;23:100586

[25]

Wei Q,Pan H.MXene-sponge based high-performance piezoresistive sensor for wearable biomonitoring and real-time tactile sensing (Small Methods 2/2022).Small Methods2022;6:2270012

[26]

Yue Y,Liu W.3D hybrid porous Mxene-sponge network and its application in piezoresistive sensor.Nano Energy2018;50:79-87

[27]

Zhao L,Zheng Y.Highly-stable polymer-crosslinked 2D MXene-based flexible biocompatible electronic skins for in vivo biomonitoring.Nano Energy2021;84:105921

[28]

Qin R,Hu M,Seeram R.Preparation of high-performance MXene/PVA-based flexible pressure sensors with adjustable sensitivity and sensing range.Sens Actuator A Phys2022;338:113458

[29]

Zhang R,Valenca R.Carbon nanotube polymer coatings for textile yarns with good strain sensing capability.Sens Actuator A Phys2012;179:83-91

[30]

Huang J,Zhao M.Highly sensitive and stretchable CNT-bridged AgNP strain sensor based on TPU electrospun membrane for human motion detection.Adv Elect Mater2019;5:1900241

[31]

Sun J,Yang H.Highly transparent and flexible circuits through patterning silver nanowires into microfluidic channels.Chem Commun2018;54:4923-6

[32]

Hao Y,Xu Z,Luo J.Preparation of silver nanoparticles with hyperbranched polymers as a stabilizer for inkjet printing of flexible circuits.New J Chem2019;43:2797-803

[33]

Wei Y,Dong X,Liu L.Flexible piezoresistive sensors based on “dynamic bridging effect” of silver nanowires toward graphene.Carbon2017;113:395-403

[34]

Choi Y,Secor EB.Capacitively coupled hybrid ion gel and carbon nanotube thin-film transistors for low voltage flexible logic circuits.Adv Funct Mater2018;28:1802610

[35]

Xu X,He P.Wearable CNT/Ti3C2Tx MXene/PDMS composite strain sensor with enhanced stability for real-time human healthcare monitoring.Nano Res2021;14:2875-83

[36]

Xu X,He P,Yang J.Screen printed graphene electrodes on textile for wearable electrocardiogram monitoring.Appl Phys A2019;125:714

[37]

Hosseinzadeh A,Abdi Y,Mohajerzadeh S.Graphene based strain sensors: a comparative study on graphene and its derivatives.Appl Surf Sci2018;448:71-7

[38]

Zhang R,Dai Q.Sensitive and wearable carbon nanotubes/carbon black strain sensors with wide linear ranges for human motion monitoring.J Mater Sci Mater Electron2018;29:5589-96

[39]

Wang H,He Z.A highly stretchable liquid metal polymer as reversible transitional insulator and conductor.Adv Mater2019;31:1901337

[40]

Chang H,Sun Z.Direct writing and repairable paper flexible electronics using nickel-liquid metal ink.Adv Mater Interfaces2018;5:1800571

[41]

Wang Y,Tan S.Experimental and numerical analysis on a compact liquid metal blade heat dissipator with twin stage electromagnetic pumps.Int Commun Heat Mass Transf2019;104:15-22

[42]

Chen S,Liu J.High performance liquid metal thermal interface materials.Nanotechnology2021;32:092001

[43]

Wang X,Rao W.Liquid metal-based thermal interface materials with a high thermal conductivity for electronic cooling and bioheat-transfer applications.Appl Therm Eng2021;192:116937

[44]

Deng Y,Liu J.Liquid metal technology in solar power generation - Basics and applications.Sol Energy Mater Sol Cells2021;222:110925

[45]

Chen S,Zhang Q.Liquid metal fractals induced by synergistic oxidation.Sci Bull2018;63:1513-20

[46]

Li DD,Ye J,Liu J.Liquid metal-enabled soft logic devices.Adv Intell Syst2021;3:2000246

[47]

Liu TY,Ye J,Sheng L.An integrated soft jumping robotic module based on liquid metals.Adv Eng Mater2021;23:2100515

[48]

Shaini FJ,Marquis PM.In vitro evaluation of the effect of freshly mixed amalgam and gallium-based alloy on the viability of primary periosteal and osteoblast cell cultures.Biomaterials2000;21:113-9

[49]

Wang D,Wang X.In-situ synthesized liquid metal microgels. In: 2021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS); 2021 Apr 25-29; Xiamen, China. IEEE; 2021. p. 469-73.

[50]

Hou Y,Wang D,Rao W.Liquid metal hybrid platform-mediated ice-fire dual noninvasive conformable melanoma therapy.ACS Appl Mater Interfaces2020;12:27984-93

[51]

Kalantar-Zadeh K,Daeneke T.Emergence of liquid metals in nanotechnology.ACS Nano2019;13:7388-95

[52]

Dickey MD.Stretchable and soft electronics using liquid metals.Adv Mater2017;29:1606425

[53]

Farrell ZJ,Truong VK.Compositional design of surface oxides in gallium-indium alloys.Chem Mater2023;35:964-75

[54]

Lu Y,Dong H.Dynamic leakage-free liquid metals.Adv Funct Mater2023;33:2210961

[55]

Wang S,Liu J.Highly stable liquid metal conductors with superior electrical stability and tough interface bonding for stretchable electronics.ACS Appl Mater Interfaces2023;15:22291-300

[56]

Park CW,Seong H.Photolithography-based patterning of liquid metal interconnects for monolithically integrated stretchable circuits.ACS Appl Mater Interfaces2016;8:15459-65

[57]

Afrin S,Ren B.Liquid elementary metals and alloys: synthesis, characterization, properties, and applications.Appl Mater Today2023;31:101746

[58]

Zhang ZP.Nanoarchitectonics and applications of gallium-based liquid metal micro- and nanoparticles.ChemNanoMat2023;9:e202300078

[59]

Xu D,Liu F.Liquid metal based nano-composites for printable stretchable electronics.Sensors2022;22:2516 PMCID:PMC9002646

[60]

Segev-Bar M.Flexible sensors based on nanoparticles.ACS Nano2013;7:8366-78

[61]

Zheng R,Fu Y.A novel conductive core-shell particle based on liquid metal for fabricating real-time self-repairing flexible circuits.Adv Funct Mater2020;30:1910524

[62]

Li H,Davis TP.Biomedical applications of liquid metal nanoparticles: a critical review.Biosensors2020;10:196 PMCID:PMC7760560

[63]

Liu L,Wang X,Yang J.Recent advances in printed liquid metals for wearable healthcare sensors: a review.J Phys D Appl Phys2022;55:283002

[64]

Zuraiqi K,Allioux FM.Liquid metals in catalysis for energy applications.Joule2020;4:2290-321

[65]

Yan J,Chen G,Gu Z.Advances in liquid metals for biomedical applications.Chem Soc Rev2018;47:2518-33

[66]

Xie W,Ou JZ,Tang SY.Gallium-based liquid metal particles for therapeutics.Trends Biotechnol2021;39:624-40

[67]

Daeneke T,Mahmood N.Liquid metals: fundamentals and applications in chemistry.Chem Soc Rev2018;47:4073-111

[68]

Lin ZD,Li A.Preparation and mechanical property of graphene-reinforced copper matrix composites.J Inorg Mater2019;34:469-77

[69]

Jiang Q,Zhao M.Size-dependent melting point of noble metals.Mater Chem Phys2003;82:225-7

[70]

Bulmer JS,Elliott JA.A meta-analysis of conductive and strong carbon nanotube materials.Adv Mater2021;33:2008432

[71]

Ma KQ.Nano liquid-metal fluid as ultimate coolant.Phys Lett A2007;361:252-6

[72]

Wang Q,Liu J.Preparations, characteristics and applications of the functional liquid metal materials.Adv Eng Mater2018;20:1700781

[73]

Tian L,Webb RC.Sensors: flexible and stretchable 3ω sensors for thermal characterization of human skin (Adv. Funct. Mater. 26/2017).Adv Funct Mater2017;27:1770159

[74]

Singh K,Shriwastava S,Gupta M.Significance of nano-materials, designs consideration and fabrication techniques on performances of strain sensors - a review.Mat Sci Semicon Proc2021;123:105581

[75]

Song M,Kiani A,Dickey MD.Interfacial tension modulation of liquid metal via electrochemical oxidation.Adv Intell Syst2021;3:2100024

[76]

Tang J,Li J,Zhou Y.Gallium-based liquid metal amalgams: transitional-state metallic mixtures (TransM2ixes) with enhanced and tunable electrical, thermal, and mechanical properties.ACS Appl Mater Interfaces2017;9:35977-87

[77]

Guo R,Yao S.Semi-liquid-metal-(Ni-EGaIn)-based ultraconformable electronic tattoo.Adv Mater Technol2019;4:1900183

[78]

Ren L,Casillas-Garcia G.A liquid-metal-based magnetoactive slurry for stimuli-responsive mechanically adaptive electrodes.Adv Mater2018;30:1802595

[79]

Li M,Deng X.Graded Mxene-doped liquid metal as adhesion interface aiming for conductivity enhancement of hybrid rigid-soft interconnection.ACS Appl Mater Interfaces2023;15:14948-57

[80]

Chang H,Guo R.Recoverable liquid metal paste with reversible rheological characteristic for electronics printing.ACS Appl Mater Interfaces2020;12:14125-35

[81]

Zhu J,Ha S.Gallium oxide for gas sensor applications: a comprehensive review.Materials2022;15:7339 PMCID:PMC9611408

[82]

Zhang M,Huang Z.Liquid metal based flexible and implantable biosensors.Biosensors2020;10:170 PMCID:PMC7696291

[83]

Afzal A.β-Ga2O3 nanowires and thin films for metal oxide semiconductor gas sensors: sensing mechanisms and performance enhancement strategies.J Materiomics2019;5:542-57

[84]

Fleischer M.Fast gas sensors based on metal oxides which are stable at high temperatures.Sens Actuators B Chem1997;43:1-10

[85]

Unser S,He J.Localized surface plasmon resonance biosensing: current challenges and approaches.Sensors2015;15:15684-716 PMCID:PMC4541850

[86]

Catalán-Gómez S,Palomares FJ,Pau JL.Tunable plasmonic resonance of gallium nanoparticles by thermal oxidation at low temperatures.Nanotechnology2017;28:405705

[87]

Knight MW,Yang Y.Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles.ACS Nano2015;9:2049-60

[88]

Losurdo M,Suvorova A.Demonstrating the capability of the high-performance plasmonic gallium-graphene couple.ACS Nano2014;8:3031-41

[89]

Yang Y,Kim TH.Ultraviolet-visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and mueller matrix ellipsometry.ACS Photonics2014;1:582-9

[90]

Chen L,Jing Q.Gallium/gold composite microspheres fixed on a silicon substrate for surface enhanced Raman scattering.RSC Adv2015;5:67134-40

[91]

Langer J,Aizpurua J.Present and future of surface-enhanced Raman scattering.ACS Nano2020;14:28-117

[92]

Horák M,Mach J,Šikola T.Plasmonic properties of individual gallium nanoparticles.J Phys Chem Lett2023;14:2012-9 PMCID:PMC10017019

[93]

Gao X,Zhang J.Tunable plasmonic gallium nano liquid metal from facile and controllable synthesis.Mater Horiz2021;8:3315-23

[94]

Tang SY,Zhao Q.Phase separation in liquid metal nanoparticles.Matter2019;1:192-204

[95]

Hou Y,Song K.Coloration of liquid-metal soft robots: from silver-white to iridescent.ACS Appl Mater Interfaces2018;10:41627-36

[96]

Yang Y,Kim TH,Everitt HO.Ultraviolet nanoplasmonics: a demonstration of surface-enhanced Raman spectroscopy, fluorescence, and photodegradation using gallium nanoparticles.Nano Lett2013;13:2837-41

[97]

Wu PC,Kim TH.Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles.J Am Chem Soc2009;131:12032-3 PMCID:PMC2750845

[98]

Pau JL,Hernández MJ,Piqueras J.Optical biosensing platforms based on Ga-graphene plasmonic structures on Cu, quartz and SiO2/Si substrates.Phys Status Solidi B2016;253:664-70

[99]

Cai S,Saborio MG.Gallium nitride formation in liquid metal sonication.J Mater Chem C2020;8:16593-602

[100]

Marín AG,Bernabeu CN.Gallium plasmonic nanoparticles for label-free DNA and single nucleotide polymorphism sensing.Nanoscale2016;8:9842-51

[101]

Chen X,Wu D.Sonochemical and mechanical stirring synthesis of liquid metal nanograss structures for low-cost SERS substrates.J Raman Spectroscopy2018;49:1301-10

[102]

Alsaif MMYA,Alkathiri T.3D visible-light-driven plasmonic oxide frameworks deviated from liquid metal nanodroplets.Adv Funct Mater2021;31:2106397

[103]

Li J,Lian Z.Cell-capture and release platform based on peptide-aptamer-modified nanowires.ACS Appl Mater Interfaces2016;8:2511-6

[104]

Liu F,Yi L.Liquid metal as reconnection agent for peripheral nerve injury.Sci Bull2016;61:939-47

[105]

Yi L,Wang L.Liquid-solid phase transition alloy as reversible and rapid molding bone cement.Biomaterials2014;35:9789-801

[106]

Chen S,Sun X,Li L.Toxicity and biocompatibility of liquid metals.Adv Healthc Mater2023;12:2201924

[107]

Krug HF.Nanotoxicology: an interdisciplinary challenge.Angew Chem Int Ed Engl2011;50:1260-78

[108]

Elsaesser A.Toxicology of nanoparticles.Adv Drug Deliv Rev2012;64:129-37

[109]

Kumar VB,Kimmel G.Ultrasonic cavitation of molten gallium: formation of micro- and nano-spheres.Ultrason Sonochem2014;21:1166-73

[110]

Creighton MA,Susner MA,Maruyama B.Oxidation of gallium-based liquid metal alloys by water.Langmuir2020;36:12933-41

[111]

Adams WT 4th,Ivanisevic A.Ga ion-enhanced and particle shape-dependent generation of reactive oxygen species in X-ray-irradiated composites.ACS Omega2018;3:5252-9 PMCID:PMC6044904

[112]

Zhang M,Rao W.Transformable soft liquid metal micro/nanomaterials.Mater Sci Eng R Rep2019;138:1-35

[113]

Schedle A,Rausch-Fan XH.Response of L-929 fibroblasts, human gingival fibroblasts, and human tissue mast cells to various metal cations.J Dent Res1995;74:1513-20

[114]

Chechetka SA,Zhen X,Pu K.Light-driven liquid metal nanotransformers for biomedical theranostics.Nat Commun2017;8:15432 PMCID:PMC5460022

[115]

Tang SY,Lin Y.Functional liquid metal nanoparticles produced by liquid-based nebulization.Adv Mater Technol2019;4:1800420

[116]

Sun X,Liu M.Shape tunable gallium nanorods mediated tumor enhanced ablation through near-infrared photothermal therapy.Nanoscale2019;11:2655-67

[117]

Lu Y,Lin Y.Transformable liquid-metal nanomedicine.Nat Commun2015;6:10066 PMCID:PMC4686762

[118]

Kim JH,So JH,Koo HJ.Cytotoxicity of gallium-indium liquid metal in an aqueous environment.ACS Appl Mater Interfaces2018;10:17448-54

[119]

Homma T,Sekizawa K,Hirata M.Interstitial pneumonia developed in a worker dealing with particles containing indium-tin oxide.J Occup Health2003;45:137-9

[120]

Wang D,Guo R,Niu M.Magnetic liquid metal loaded nano-in-micro spheres as fully flexible theranostic agents for SMART embolization.Nanoscale2021;13:8817-36

[121]

Zhang Y,Zhu H.Synthesis of liquid gallium@reduced graphene oxide core-shell nanoparticles with enhanced photoacoustic and photothermal performance.J Am Chem Soc2022;144:6779-90

[122]

Song H,Kang S,Lee K.Ga-based liquid metal micro/nanoparticles: recent advances and applications.Small2020;16:1903391

[123]

Yu F,Li H.Ga-In liquid metal nanoparticles prepared by physical vapor deposition.Prog Nat Sci Mater Int2018;28:28-33

[124]

Yarema M,Rossell MD.Monodisperse colloidal gallium nanoparticles: synthesis, low temperature crystallization, surface plasmon resonance and Li-ion storage.J Am Chem Soc2014;136:12422-30 PMCID:PMC4525770

[125]

Kim S,Hong K,Park S.Liquid-metal-coated magnetic particles toward writable, nonwettable, stretchable circuit boards, and directly assembled liquid metal-elastomer conductors.ACS Appl Mater Interfaces2022;14:37110-9

[126]

Yamaguchi A,Iyoda T.Reversible size control of liquid-metal nanoparticles under ultrasonication.Angew Chem Int Ed Engl2015;54:12809-13

[127]

Lu H,Dong Z.Dynamic temperature control system for the optimized production of liquid metal nanoparticles.ACS Appl Nano Mater2020;3:6905-14

[128]

Lin Y,Dickey MD.Attributes, Fabrication, and applications of gallium-based liquid metal particles.Adv Sci2020;7:2000192 PMCID:PMC7312306

[129]

Tang SY,Yan S.Microfluidic mass production of stabilized and stealthy liquid metal nanoparticles.Small2018;14:1800118

[130]

Lin Y,Li W,Dickey MD.Sonication-enabled rapid production of stable liquid metal nanoparticles grafted with poly(1-octadecene-alt-maleic anhydride) in aqueous solutions.Nanoscale2018;10:19871-8

[131]

Gan T,Handschuh-Wang S.Light-induced shape morphing of liquid metal nanodroplets enabled by polydopamine coating.Small2019;15:1804838

[132]

Finkenauer LR,Hakem IF,Bockstaller MR.Analysis of the efficiency of surfactant-mediated stabilization reactions of EGaIn nanodroplets.Langmuir2017;33:9703-10

[133]

Wei Q,Wang Z.Surface engineering of liquid metal nanodroplets by attachable diblock copolymers.ACS Nano2020;14:9884-93

[134]

Cossio G.Zeta potential dependent self-assembly for very large area nanosphere lithography.Nano Lett2020;20:5090-6

[135]

Hu C,He P.Smart adhesive patches of antibacterial performance based on polydopamine-modified Ga liquid metal nanodroplets.ACS Appl Nano Mater2022;5:18349-56

[136]

He B,Zhao X.Dialkyl dithiophosphate-functionalized gallium-based liquid-metal nanodroplets as lubricant additives for antiwear and friction reduction.ACS Appl Nano Mater2020;3:10115-22

[137]

Xu D,Pan X,Yan X.Enzyme-powered liquid metal nanobots endowed with multiple biomedical functions.ACS Nano2021;15:11543-54

[138]

Wang P,Guo F.Thiadiazole dimer-functionalized liquid metal nanoparticles for anti-corrosion and friction reduction.ACS Appl Nano Mater2023;6:5799-807

[139]

Huang X,Shen A,Qiao R.Engineering polymers via understanding the effect of anchoring groups for highly stable liquid metal nanoparticles.ACS Appl Nano Mater2022;5:5959-71 PMCID:PMC9150068

[140]

Tevis ID,Thuo M.Synthesis of liquid core-shell particles and solid patchy multicomponent particles by shearing liquids into complex particles (SLICE).Langmuir2014;30:14308-13

[141]

Çınar S,Chen J.Mechanical fracturing of core-shell undercooled metal particles for heat-free soldering.Sci Rep2016;6:21864 PMCID:PMC4763186

[142]

Li X,Dong G.Preparation of nanoscale liquid metal droplet wrapped with chitosan and its tribological properties as water-based lubricant additive.Tribol Int2020;148:106349

[143]

Hafiz SS,Riddell R.Surfaces and interfaces of liquid metal core-shell nanoparticles under the microscope.Part Part Syst Charact2020;37:1900469 PMCID:PMC7567332

[144]

Cutinho J,Oyola-Reynoso S.Autonomous thermal-oxidative composition inversion and texture tuning of liquid metal surfaces.ACS Nano2018;12:4744-53

[145]

Hoang TT,Thai MT.Magnetically engineered conductivity of soft liquid metal composites for robotic, wearable electronic, and medical applications.Adv Intell Syst2022;4:2270059

[146]

Yu L,Liu Y,Li X.Transportable, endurable, and recoverable liquid metal powders with mechanical sintering conductivity for flexible electronics and electromagnetic interference shielding.ACS Appl Mater Interfaces2022;14:48150-60

[147]

Zeng H,Singh SC.Nanomaterials via laser ablation/irradiation in liquid: a review.Adv Funct Mater2012;22:1333-53

[148]

Im HG,Ko JH,Lee JY.Flexible transparent conducting composite films using a monolithically embedded AgNW electrode with robust performance stability.Nanoscale2014;6:711-5

[149]

Zeng X,Hu M.Copper inks for printed electronics: a review.Nanoscale2022;14:16003-32

[150]

Yu J,Guan X.Self-healing liquid metal confined in carbon nanofibers/carbon nanotubes paper as a free-standing anode for flexible lithium-ion batteries.Electrochimica Acta2022;425:140721

[151]

Lou Y,Zhang J.Liquid metals in plastics for super-toughness and high-performance force sensors.Chem Eng J2020;399:125732

[152]

Xu C,Lin M.Strengthened, antibacterial, and conductive flexible film for humidity and strain sensors.ACS Appl Mater Interfaces2020;12:35482-92

[153]

Lei D,Liu N.Tensible and flexible high-sensitive spandex fiber strain sensor enhanced by carbon nanotubes/Ag nanoparticles.Nanotechnology2021;32:505509

[154]

Xu S,Ma J.A multifunctional skin-like sensor based on liquid metal activated gelatin organohydrogel.Adv Mater Interfaces2022;9:2201212

[155]

Huang Y,Liu S,Guo J.Liquid metal-based epidermal flexible sensor for wireless breath monitoring and diagnosis enabled by highly sensitive SnS2 nanosheets.Research2021;2021:9847285

[156]

Chi Y,Zheng J.Insights into the interfacial contact and charge transport of gas-sensing liquid metal marbles.ACS Appl Mater Interfaces2022;14:30112-23

[157]

Schlingman K,Carmichael RS.Intrinsically conductive liquid metal-elastomer composites for stretchable and flexible electronics.Adv Mater Technol2023;8:2200374

[158]

Lopes PA,Silva AF.Bi-phasic Ag-In-Ga-embedded elastomer inks for digitally printed, ultra-stretchable, multi-layer electronics.ACS Appl Mater Interfaces2021;13:14552-61

[159]

Pan X,He H.Novel conductive polymer composites based on CNTs/CNFs bridged liquid metal.J Phys D Appl Phys2021;54:085401

[160]

Lu Y,Chen Z.Enhanced endosomal escape by light-fueled liquid-metal transformer.Nano Lett2017;17:2138-45

[161]

Xu J,You J.Polymerization of moldable self-healing hydrogel with liquid metal nanodroplets for flexible strain-sensing devices.Chem Eng J2020;392:123788

[162]

Li Y,Cao S,Kong D.Printable liquid metal microparticle ink for ultrastretchable electronics.ACS Appl Mater Interfaces2020;12:50852-9

[163]

Chiu SH,Chi Y.Exploring electrical conductivity of thiolated micro- and nanoparticles of gallium.Adv Intell Syst2023;5:2200364

[164]

Hou Y,Dou M.Soft liquid metal nanoparticles achieve reduced crystal nucleation and ultrarapid rewarming for human bone marrow stromal cell and blood vessel cryopreservation.Acta Biomater2020;102:403-15

[165]

Idrus-Saidi SA,Yang J.Liquid metal-based route for synthesizing and tuning gas-sensing elements.ACS Sens2020;5:1177-89

[166]

Hoshyargar F,Kalantar-zadeh K.Generation of catalytically active materials from a liquid metal precursor.Chem Commun2015;51:14026-9

[167]

Liang S,Li F.Supported Cu/W/Mo/Ni - liquid metal catalyst with core-shell structure for photocatalytic degradation.Catalysts2021;11:1419

[168]

Zhang W,Tang SY.Liquid metal/metal oxide frameworks.Adv Funct Mater2014;24:3799-807

[169]

Sivan V,O’Mullane AP.Liquid metal marbles.Adv Funct Materials2013;23:144-52

[170]

Nucciarelli F,Vázquez L,Pau JL.Gallium nanoparticles colloids synthesis for UV bio-optical sensors.Optical Sensors2017;10231:407-13

[171]

Boley JW,Kramer RK.Mechanically sintered gallium-indium nanoparticles.Adv Mater2015;27:2355-60

[172]

Zhang P,Guo R.Self-assembled ultrathin film of CNC/PVA-liquid metal composite as a multifunctional Janus material.Mater Horiz2019;6:1643-53

[173]

Wu P,Lv S,He Y.Self-sintering liquid metal ink with LAPONITE® for flexible electronics.J Mater Chem C2021;9:3070-80

[174]

Li X,Zong L.Liquid metal droplets wrapped with polysaccharide microgel as biocompatible aqueous ink for flexible conductive devices.Adv Funct Mater2018;28:1804197

[175]

Liu Y,Bi S,Zhou H.Water-processable liquid metal nanoparticles by single-step polymer encapsulation.Nanoscale2020;12:13731-41

[176]

Liu S,White EL.Laser sintering of liquid metal nanoparticles for scalable manufacturing of soft and flexible electronics.ACS Appl Mater Interfaces2018;10:28232-41

[177]

Liu S,Henry KE,Kramer-Bottiglio R.Printed and laser-activated liquid metal-elastomer conductors enabled by ethanol/PDMS/liquid metal double emulsions.ACS Appl Mater Interfaces2021;13:28729-36

[178]

Zheng L,Wu B,Sun S.Conductance-stable liquid metal sheath-core microfibers for stretchy smart fabrics and self-powered sensing.Sci Adv2021;7:eabg4041 PMCID:PMC8163087

[179]

Ning C,Sheng F.Scalable one-step wet-spinning of triboelectric fibers for large-area power and sensing textiles.Nano Res2023;16:7518-26

[180]

Zhang M,Huang L.Versatile fabrication of liquid metal nano-ink based flexible electronic devices.Appl Mater Today2021;22:100903

[181]

Zhang Q,Liu J.Atomized spraying of liquid metal droplets on desired substrate surfaces as a generalized way for ubiquitous printed electronics.Appl Phys A2014;116:1091-7

[182]

Li BM,Ingram K.Textile-integrated liquid metal electrodes for electrophysiological monitoring.Adv Healthc Mater2022;11:2200745

[183]

Hu Y,Chen G,Li M.Self-standing, photothermal-actuating, and motion-monitoring janus films one-pot synthesized by green carboxymethyl glucomannan/liquid metal nanoinks.ACS Appl Mater Interfaces2022;14:23717-25

[184]

Niu Y,Liang C.Thermal-sinterable EGaIn nanoparticle inks for highly deformable bioelectrode arrays.Adv Healthc Mater2022;12:2202531

[185]

Park K,Jeong SH,Kim H.Avalanche coalescence of liquid metal particles for uniform flexible and stretchable electrodes.Adv Mater Interfaces2022;9:2201693

[186]

Lee GH,Yoon C.A personalized electronic tattoo for healthcare realized by on-the-spot assembly of an intrinsically conductive and durable liquid-metal composite (Adv. Mater. 32/2022).Adv Mater2022;34:2270236

[187]

Liu Y,Chen Q.Deposition of vertically aligned Ag/Ag2S nanoflakes on EGaIn particles for humidity sensing.Chemistry2022;28:e202200298

[188]

Yang Y,Huang J.Stretchable energy-harvesting tactile interactive interface with liquid-metal-nanoparticle-based electrodes.Adv Funct Mater2020;30:1909652

[189]

Zhang Z,Chen C.Liquid metal-created macroporous composite hydrogels with self-healing ability and multiple sensations as artificial flexible sensors.J Mater Chem A2021;9:875-83

[190]

Xu Y,Voigt D.Convergent synthesis of diversified reversible network leads to liquid metal-containing conductive hydrogel adhesives.Nat Commun2021;12:2407 PMCID:PMC8065207

[191]

Chen B,Wu M.Liquid metal-based organohydrogels for wearable flexible electronics.Adv Mater Technol2023;8:2201919

[192]

Zhou L,Xiao J.Liquid metal-doped conductive hydrogel for construction of multifunctional sensors.Anal Chem2023;95:3811-20

[193]

Dong Y,Hu Z.A sandwich-structure, low-temperature sensitive and recyclable liquid metal organic hydrogel for a wearable strain sensor.J Appl Polymer Sci2022;139:e53174

[194]

Liao M,Ye J,Zhang L.Polyvinyl alcohol-stabilized liquid metal hydrogel for wearable transient epidermal sensors.ACS Appl Mater Interfaces2019;11:47358-64

[195]

Cheng J,Yang S,Shi X.Wet-adhesive elastomer for liquid metal-based conformal epidermal electronics.Adv Funct Mater2022;32:2200444

[196]

Zhao B,Lv H.Self-healing liquid metal magnetic hydrogels for smart feedback sensors and high-performance electromagnetic shielding.Nanomicro Lett2023;15:79 PMCID:PMC10066054

[197]

Wang M,Wang X,Zhang C.Facile gelation of a fully polymeric conductive hydrogel activated by liquid metal nanoparticles.J Mater Chem A2021;9:24539-47

[198]

Feng X,Shang S.Self-healing, EMI shielding, and antibacterial properties of recyclable cellulose liquid metal hydrogel sensor.Carbohydr Polym2023;311:120786

[199]

Liu S,Wang X,Ma X.Fabrication of liquid metal loaded polycaprolactone conductive film for biocompatible and flexible electronics.Biosens Bioelectron X2022;11:100182

[200]

Chen B,Li Q.Liquid metal-tailored gluten network for protein-based e-skin.Nat Commun2022;13:1206 PMCID:PMC8904466

[201]

Chen B,Fang S.Liquid metal-tailored PEDOT:PSS for noncontact flexible electronics with high spatial resolution.ACS Nano2022;16:19305-18

[202]

Lee GH,Kim H.Rapid meniscus-guided printing of stable semi-solid-state liquid metal microgranular-particle for soft electronics.Nat Commun2022;13:2643 PMCID:PMC9098628

[203]

Cao J,Li H.Ultra-robust stretchable electrode for e-skin: In situ assembly using a nanofiber scaffold and liquid metal to mimic water-to-net interaction.InfoMat2022;4:e12302

[204]

Zhang C,Rahim MA.Nucleation and growth of polyaniline nanofibers onto liquid metal nanoparticles.Chem Mater2020;32:4808-19

[205]

Sippel JM,Tilles SA.Exhaled nitric oxide levels correlate with measures of disease control in asthma.J Allergy Clin Immunol2000;106:645-50

[206]

Yeung DKW,Li AFW,Yuan J.Air pressure-induced susceptibility changes in vascular reactivity studies using BOLD MRI.J Magn Reson Imaging2013;38:976-80

[207]

Wang C,Fang Z.Temperature-stress bimodal sensing conductive hydrogel-liquid metal by facile synthesis for smart wearable sensor.Macromol Rapid Commun2022;43:2100543

[208]

Kim S.Indentation and temperature response of liquid metal/hydrogel composites.J Ind Eng Chem2022;110:225-33

[209]

Gutiérrez Y,García-fernández P.Gallium polymorphs: phase-dependent plasmonics.Adv Opt Mater2019;7:1900307

[210]

Losurdo M,Rubanov S,Brown AS.Thermally stable coexistence of liquid and solid phases in gallium nanoparticles.Nat Mater2016;15:995-1002

[211]

Li X,Zhang S.A self-supporting, conductor-exposing, stretchable, ultrathin, and recyclable kirigami-structured liquid metal paper for multifunctional e-skin.ACS Nano2022;16:5909-19

[212]

Wang S,Luo J,Zou D.Liquid metal (LM) and its composites in thermal management.Compos Part A Appl Sci Manuf2022;163:107216

[213]

Reineck P,Gibson BC,Greentree AD.UV plasmonic properties of colloidal liquid-metal eutectic gallium-indium alloy nanoparticles.Sci Rep2019;9:5345 PMCID:PMC6441023

[214]

Qu X,Liu Y,Liu Z.Fingerprint-shaped triboelectric tactile sensor.Nano Energy2022;98:107324

AI Summary AI Mindmap
PDF

88

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/