A facile in-situ reaction method for preparing flexible Sb2Te3 thermoelectric thin films

Dongwei Ao , Bo Wu , Jabar Bushra , Bing Sun , Dong Yang , Yiming Zhong , Zhuanghao Zheng

Soft Science ›› 2024, Vol. 4 ›› Issue (1) : 3

PDF
Soft Science ›› 2024, Vol. 4 ›› Issue (1) :3 DOI: 10.20517/ss.2023.34
Research Article

A facile in-situ reaction method for preparing flexible Sb2Te3 thermoelectric thin films

Author information +
History +
PDF

Abstract

Inorganic p-type Sb2Te3 flexible thin films (f-TFs) with eco-friendly and high thermoelectric performance have attracted wide research interest and potential for commercial applications. This study employs a facile in-situ reaction method to prepare flexible Sb2Te3 thin films by rationally adjusting the synthesized temperature. The prepared thin films show good crystallinity, which enhances the electrical conductivity of ~1,440 S·cm-1 due to the weakened carrier scattering. Simultaneously, the optimized carrier concentration, through adjusting the synthesis temperature, causes the intermediate Seebeck coefficient. Consequently, a high-power factor (16.0 μW·cm-1·K-2 at 300 K) is achieved for Sb2Te3 f-TFs prepared at 623 K. Besides, the f-TFs also exhibit good flexibility due to the slight change in resistance after bending. This study specifies that the in-situ reaction method is an effective route to prepare Sb2Te3 f-TFs with high thermoelectric performance.

Keywords

Thermoelectric / Sb2Te3 / flexible thin film / thermal diffusion

Cite this article

Download citation ▾
Dongwei Ao, Bo Wu, Jabar Bushra, Bing Sun, Dong Yang, Yiming Zhong, Zhuanghao Zheng. A facile in-situ reaction method for preparing flexible Sb2Te3 thermoelectric thin films. Soft Science, 2024, 4(1): 3 DOI:10.20517/ss.2023.34

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu D,Hong T.Lattice plainification advances highly effective SnSe crystalline thermoelectrics.Science2023;380:841-6

[2]

Wu X,Zhu Y.A general design strategy for thermoelectric interface materials in n-type Mg3Sb1.5Bi0.5 single leg used in TEGs.Acta Mater2022;226:117616

[3]

Li Y,Yang J.Exceptionally high power factor Ag2Se/Se/polypyrrole composite films for flexible thermoelectric generators.Adv Funct Mater2022;32:2106902

[4]

Chen YX,Nisar M.Realizing high thermoelectric performance in n-type Bi2Te3 based thin films via post-selenization diffusion.J Materiomics2023;9:618-25

[5]

Li L,Liu Q.Multifunctional wearable thermoelectrics for personal thermal management.Adv Funct Mater2022;32:2200548

[6]

Shi XL,Chen ZG.Advanced thermoelectric design: from materials and structures to devices.Chem Rev2020;120:7399-515

[7]

Zhang L,Yang YL.Flexible thermoelectric materials and devices: from materials to applications.Mater Today2021;46:62-108

[8]

Wang Y,Shi XL.Flexible thermoelectric materials and generators: challenges and innovations.Adv Mater2019;31:1807916

[9]

Chi C,An M.Reversible bipolar thermopower of ionic thermoelectric polymer composite for cyclic energy generation.Nat Commun2023;14:306 PMCID:PMC9852232

[10]

Hu B,Zou J.Thermoelectrics for medical applications: progress, challenges, and perspectives.Chem Eng J2022;437:135268

[11]

Ao DW,Zheng ZH.Assembly-free fabrication of high-performance flexible inorganic thin-film thermoelectric device prepared by a thermal diffusion.Adv Energy Mater2022;12:2202731

[12]

Zhang R,Han ZJ,Zhao Z.Optimal performance of Cu1.8S1-xTex thermoelectric materials fabricated via high-pressure process at room temperature.J Adv Ceram2020;9:535-43

[13]

Shi X,Hao F.Room-temperature ductile inorganic semiconductor.Nat Mater2018;17:421-6

[14]

Hashizume M,Nakagawa K.Anisotropic magneto-Seebeck effect in the antiferromagnetic semimetal FeGe2.Phys Rev B2021;104:115109

[15]

Hong M,Chen ZG.Thermoelectric GeTe with diverse degrees of freedom having secured superhigh performance.Adv Mater2019;31:1807071

[16]

Deng L,Zhang Y,Gao P.Organic thermoelectric materials: niche harvester of thermal energy.Adv Funct Mater2023;33:2210770

[17]

Wu Z,Liu Z,Hu Z.Thermoelectric converter: strategies from materials to device application.Nano Energy2022;91:106692

[18]

Wu L,Chai H,Chen Y.Anion-dependent molecular doping and charge transport in ferric salt-doped P3HT for thermoelectric application.ACS Appl Electron Mater2021;3:1252-9

[19]

Li H,Li P,Du F.Enhanced thermoelectric performance of carbon nanotubes/polyaniline composites by multiple interface engineering.ACS Appl Mater Interfaces2021;13:6650-8

[20]

Fan Z,Du D.Significantly enhanced thermoelectric properties of PEDOT:PSS films through sequential post-treatments with common acids and bases.Adv Energy Mater2017;7:1602116

[21]

Gao Q,Lu Y.High power factor Ag/Ag2Se composite films for flexible thermoelectric generators.ACS Appl Mater Interfaces2021;13:14327-33

[22]

Rongione NA,Wu H.High-performance solution-processable flexible snse nanosheet films for lower grade waste heat recovery.Adv Elect Mater2019;5:1800774

[23]

Zheng ZH,Jabar B.Realizing high thermoelectric performance in highly (0l0)-textured flexible Cu2Se thin film for wearable energy harvesting.Mater Today Phys2022;24:100659

[24]

Ao DW,Chen YX.Novel thermal diffusion temperature engineering leading to high thermoelectric performance in Bi2Te3-based flexible thin-films.Adv Sci2022;9:2103547 PMCID:PMC8844477

[25]

Wei M,Zheng ZH.Directional thermal diffusion realizing inorganic Sb2Te3/Te hybrid thin films with high thermoelectric performance and flexibility.Adv Funct Mater2022;32:2207903

[26]

Liu H,Ma C.Van der Waals epitaxial growth of vertically stacked Sb2Te3/MoS2 p-n heterojunctions for high performance optoelectronics.Nano Energy2019;59:66-74

[27]

Ma F,Liu X.Ti-doping inducing high-performance flexible p-type Bi0.5Sb1.5Te3-based thin film.Ceram Int2023;49:18584-91

[28]

Shen S,Deng Y,Peng Y.Enhancing thermoelectric properties of Sb2Te3 flexible thin film through microstructure control and crystal preferential orientation engineering.Appl Surf Sci2017;414:197-204

[29]

Vieira EMF,Pires AL.Enhanced thermoelectric properties of Sb2Te3 and Bi2Te3 films for flexible thermal sensors.J Alloys Compd2019;774:1102-16

[30]

Shang H,Luo D.High-performance Ag-modified Bi0.5Sb1.5Te3 films for the flexible thermoelectric generator.ACS Appl Mater Interfaces2020;12:7358-65

[31]

Chang PS.Screen-printed flexible thermoelectric generator with directional heat collection design.J Alloys Compd2020;836:155471

[32]

Zheng ZH,Ao DW.Harvesting waste heat with flexible Bi2Te3 thermoelectric thin film.Nat Sustain2023;6:180-91

[33]

Liu WD,Zou J.Eco-friendly higher manganese silicide thermoelectric materials: progress and future challenges.Adv Energy Mater2018;8:1800056

[34]

Shi J,Wang W.A new rapid synthesis of thermoelectric Sb2Te3 ingots using selective laser melting 3D printing.Mater Sci Semicond Process2021;123:105551

[35]

Yang Q,Qiu P.Flexible thermoelectrics based on ductile semiconductors.Science2022;377:854-8

[36]

Hollar C,Kongara M.Flexible thermoelectrics: high-performance flexible bismuth telluride thin film from solution processed colloidal nanoplates (Adv. Mater. Technol. 11/2020).Adv Mater Technol2020;5:2000600

AI Summary AI Mindmap
PDF

71

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/