Soft devices empowered by mechanoluminescent materials

Chunfeng Wang , Hongjie Hu , Dengfeng Peng , Lin Dong , Deliang Zhu

Soft Science ›› 2023, Vol. 3 ›› Issue (4) : 39

PDF
Soft Science ›› 2023, Vol. 3 ›› Issue (4) :39 DOI: 10.20517/ss.2023.33
Perspective

Soft devices empowered by mechanoluminescent materials

Author information +
History +
PDF

Abstract

Mechanoluminescence is the phenomenon in which certain materials emit light when subjected to mechanical stimuli, such as bending, stretching, or compression. Soft devices containing embedded mechanoluminescent materials are capable of responding to mechanical deformation by emitting light, which can be utilized for various applications, including sensing, display, communication, and visual feedback. In this Perspective, we discuss recent advancements and emerging applications of mechanoluminescent materials for soft devices, with a focus on the remaining challenges in mechanoluminescent materials, such as performance, mechanism, synthesis, and device fabrication, that need to be addressed for developing advanced soft devices, and propose the potential solutions.

Keywords

Mechanoluminescence / mechano-to-light conversion / soft devices / wearable electronics / internet of things

Cite this article

Download citation ▾
Chunfeng Wang, Hongjie Hu, Dengfeng Peng, Lin Dong, Deliang Zhu. Soft devices empowered by mechanoluminescent materials. Soft Science, 2023, 3(4): 39 DOI:10.20517/ss.2023.33

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hu H,Li M.A wearable cardiac ultrasound imager.Nature2023;613:667-75 PMCID:PMC9876798

[2]

Wang W,Zhong D.Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin.Science2023;380:735-42

[3]

Zhang P,Chen G.Integrated 3D printing of flexible electroluminescent devices and soft robots.Nat Commun2022;13:4775 PMCID:PMC9399151

[4]

Shi X,Zhai P.Large-area display textiles integrated with functional systems.Nature2021;591:240-5

[5]

Zhuang Y.Mechanoluminescence rebrightening the prospects of stress sensing: a review.Adv Mater2021;33:2005925

[6]

Zhang JC,Marriott G.Trap-controlled mechanoluminescent materials.Prog Mater Sci2019;103:678-742

[7]

Tu L,Li Z.Advances in pure organic mechanoluminescence materials.J Phys Chem Lett2022;13:5605-17

[8]

Chandra BP.Classification of mechanoluminescence.Cryst Res Technol1995;30:885-96

[9]

Ma X,Wei R.Bimodal tactile sensor without signal fusion for user-interactive applications.ACS Nano2022;16:2789-97

[10]

Zhao X,Liao Q.Self-powered user-interactive electronic skin for programmable touch operation platform.Sci Adv2020;6:eaba4294 PMCID:PMC7439496

[11]

Jeong SM,Joo KI.Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer.Energy Environ Sci2014;7:3338-46

[12]

Song S,Cho CH,Jeong SM.Textile-fiber-embedded multiluminescent devices: a new approach to soft display systems.Mater Today2020;32:46-58

[13]

Wang C,Peng D.Mechanoluminescent hybrids from a natural resource for energy-related applications.InfoMat2021;3:1272-84

[14]

Li C,Wang Y.Highly robust and soft biohybrid mechanoluminescence for optical signaling and illumination.Nat Commun2022;13:3914 PMCID:PMC9263131

[15]

Wong MC,Bai G,Hao J.Temporal and remote tuning of piezophotonic-effect-induced luminescence and color gamut via modulating magnetic field.Adv Mater2017;29:1701945

[16]

Jeong SM,Seo HJ.Battery-free, human-motion-powered light-emitting fabric: mechanoluminescent textile.Adv Sustain Syst2017;1:1700126

[17]

Wang C,Yuan Y.Heartbeat-sensing mechanoluminescent device based on a quantitative relationship between pressure and emissive intensity.Matter2020;2:181-93

[18]

Jeong SM, Song S, Lee SK, Choi B. Mechanically driven light-generator with high durability.Appl Phys Lett2013;102:051110

[19]

Qian X,Su M.Printable skin-driven mechanoluminescence devices via nanodoped matrix modification.Adv Mater2018;30:1800291

[20]

Hou B,Li C.An interactive mouthguard based on mechanoluminescence-powered optical fibre sensors for bite-controlled device operation.Nat Electron2022;5:682-93

[21]

Wei R,Ge S.Self-powered all-optical tactile sensing platform for user-interactive interface.Adv Mater Technol2023;8:2200757

[22]

Akiyama M,Nonaka K.Intense visible light emission from Sr3Al2O6:Eu,Dy.Appl Phys Lett1998;73:3046-8

[23]

Xu CN,Akiyama M.Artificial skin to sense mechanical stress by visible light emission.Appl Phys Lett1999;74:1236-8

[24]

Du Y,Sun T.Mechanoluminescence: mechanically excited multicolor luminescence in lanthanide ions (Adv. Mater. 7/2019).Adv Mater2019;31:1970051

[25]

Peng D,Huang B.A ZnS/CaZnOS heterojunction for efficient mechanical-to-optical energy conversion by conduction band offset.Adv Mater2020;32:1907747

[26]

Suo H,Zhang X.A broadband near-infrared nanoemitter powered by mechanical action.Matter2023;6:2935-49

[27]

Chen C,Tu D,Pan C.Creating visible-to-near-infrared mechanoluminescence in mixed-anion compounds SrZn2S2O and SrZnSO.Nano Energy2020;68:104329

[28]

Zhan TZ,Yamada H.Enhancement of impact-induced mechanoluminescence by swift heavy ion irradiation.Appl Phys Lett2012;100:014101

[29]

Zhuang Y,Lin F.Visualizing dynamic mechanical actions with high sensitivity and high resolution by near-distance mechanoluminescence imaging.Adv Mater2022;34:2202864

[30]

Jeong SM,Kim H,Takezoe H.Mechanoluminescence color conversion by spontaneous fluorescent-dye-diffusion in elastomeric zinc sulfide composite.Adv Funct Mater2016;26:4848-58

[31]

Jeong HI,Jeong WH.Quantum dot-in-mechanoluminescent matrix for full-color implementation.Adv Opt Mater2023;11:2202088

[32]

Yuan J,Yang X.Regulating the trap distribution to achieve high-contrast mechanoluminescence with an extended saturation threshold through co-doping Nd3+ into CaZnOS:Bi3+,Li+.J Mater Chem C2021;9:7689-96

[33]

Li X,Hu R,Yao X.Modulating trap levels via co-doping Ca2+/Si4+ in LiTaO3:Pr3+ to improve both the intensity and threshold of mechanoluminescence.J Alloys Compd2022;896:162877

[34]

Zhou S,Xu J,Liang W.Design of ratiometric dual-emitting mechanoluminescence: lanthanide/transition-metal combination strategy.Laser Photonics Rev2022;16:2100666

[35]

Yang X,Xu J,Wang Y.Stress sensing by ratiometric mechanoluminescence: a strategy based on structural probe.Laser Photonics Rev2022;16:2200365

[36]

Zhou S,Xu J,Wang Y.Ratiometric mechanoluminescence of double-activator doped phosphatic phosphors: color-resolved visualization of stress-sensing and quantified evaluation for sensing performance.Adv Funct Mater2022;32:2208919

[37]

Ning J,Ren Y.MgF2:Mn2+: novel material with mechanically-induced luminescence.Sci Bull2022;67:707-15

[38]

Hu R,Zhao Y,Li G.Synergistic defect engineering and microstructure tuning in lithium tantalate for high-contrast mechanoluminescence of Bi3+: toward application for optical information display.Mater Chem Front2021;5:6891-903

[39]

Chen B,Wang F.Expanding the toolbox of inorganic mechanoluminescence materials.Acc Mater Res2021;2:364-73

[40]

Feng A.A review of mechanoluminescence in inorganic solids: compounds, mechanisms, models and applications.Materials2018;11:484 PMCID:PMC5951330

[41]

Chandra BP,Majumdar B.Dislocation models of mechanoluminescence in γ- and X-irradiated alkali halides crystals.Solid State Commun1982;42:753-7

[42]

Chandra BP.Mechanoluminescence induced by elastic deformation of coloured alkali halide crystals using pressure steps.J Lumin2008;128:1217-24

[43]

Li W,Yang Z.Activating versatile mechanoluminescence in organic host-guest crystals by controlling exciton transfer.Angew Chem Int Ed Engl2020;59:22645-51

[44]

Xie Y.Triboluminescence: recalling interest and new aspects.Chem2018;4:943-71

[45]

Wang X,Yu R.Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process.Adv Mater2015;27:2324-31

[46]

Chandra BP,Luka AK,Kuraria RK.Strong mechanoluminescence induced by elastic deformation of rare-earth-doped strontium aluminate phosphors.J Lumin2009;129:760-6

[47]

Zhang P,Wu L,Zhang Y.Self-reduction-related defects, long afterglow, and mechanoluminescence in centrosymmetric Li2ZnGeO4:Mn2+.Inorg Chem2021;60:18432-41

[48]

Yang L,Cheng LX.Intense and recoverable piezoluminescence in Pr3+-activated CaTiO3 with centrosymmetric structure.Appl Phys Lett2021;118:053901

[49]

Matsui H,Liu Y.Origin of mechanoluminescence from Mn-activated ZnAl2O4: triboelectricity-induced electroluminescence.Phys Rev B2004;69:235109

[50]

Bai Y,Zhang L.Interfacial triboelectrification-modulated self-recoverable and thermally stable mechanoluminescence in mixed-anion compounds.Nano Energy2022;96:107075

[51]

Wang W,Zhang J,Dong W.Contact electrification induced mechanoluminescence.Nano Energy2022;94:106920

[52]

Mukhina MV,Ondry JC,Paul Alivisatos A.Single-particle studies reveal a nanoscale mechanism for elastic, bright, and repeatable ZnS:Mn mechanoluminescence in a low-pressure regime.ACS Nano2021;15:4115-33 PMCID:PMC7995957

[53]

Chen Y,Karnaushenko D.Addressable and color-tunable piezophotonic light-emitting stripes.Adv Mater2017;29:1605165

[54]

Zhou T,Chen H.Self-recoverable near-infrared mechanoluminescence from ZnS:Mn by controlling manganese clusterization.Mater Des2022;224:111407

[55]

Xu CN,Imai Y,Adachi Y.Development of elastico-luminescent nanoparticles and their applications.Adv Sci Technol2006;45:939-44

[56]

Tiwari G,Sharma R,Sao SK.Fracto- mechanoluminescence and thermoluminescence properties of orange-red emitting Eu3+ doped Ca2Al2SiO7 phosphors.J Lumin2017;183:89-96

[57]

Novitskaya E,Herrera M.Effect of oxygen vacancies on the mechanoluminescence response of magnesium oxide.J Phys Chem C2021;125:854-64

[58]

Xiang X,Li R.Stress-induced CsPbBr3 nanocrystallization on glass surface: unexpected mechanoluminescence and applications.Nano Res2019;12:1049-54

[59]

Wu X,Chong P.Sono-optogenetics facilitated by a circulation-delivered rechargeable light source for minimally invasive optogenetics.Proc Natl Acad Sci U S A2019;116:26332-42 PMCID:PMC6936518

[60]

Peng S,Wang T.Mechano-luminescence behavior of lanthanide-doped fluoride nanocrystals for three-dimensional stress imaging.ACS Nano2023;17:9543-51

[61]

Yang F,Cui H.A palette of rechargeable mechanoluminescent fluids produced by a biomineral-inspired suppressed dissolution approach.J Am Chem Soc2022;144:18406-18 PMCID:PMC10519178

[62]

Ma R,Wang C.Reproducible mechanical-to-optical energy conversion in Mn (II) doped sphalerite ZnS.J Lumin2021;232:117838

[63]

Ma R,Yan W.Interface synergistic effects induced multi-mode luminescence.Nano Res2022;15:4457-65

[64]

Steimle BC,Schaak RE.Rational construction of a scalable heterostructured nanorod megalibrary.Science2020;367:418-24

[65]

Patel DK,Etgar L.Fully 2D and 3D printed anisotropic mechanoluminescent objects and their application for energy harvesting in the dark.Mater Horiz2018;5:708-14

[66]

Zhao J,Mu X,Bae J.Programming mechanoluminescent behaviors of 3D printed cellular structures.Nano Energy2022;103:107825

[67]

Zheng T,Martín IR.Mechanoluminescence and photoluminescence heterojunction for superior multimode sensing platform of friction, force, pressure, and temperature in fibers and 3D-printed polymers.Adv Mater2023;35:2304140

[68]

Wang X,Su F.Photopolymerization 3D printing of luminescent ceramics.Addit Manuf2023;73:103695

AI Summary AI Mindmap
PDF

435

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/