Recent advancements in liquid metal enabled flexible and wearable biosensors

Guoqiang Li , Sanhu Liu , Zhiwu Xu , Jinhong Guo , Shi-Yang Tang , Xing Ma

Soft Science ›› 2023, Vol. 3 ›› Issue (4) : 37

PDF
Soft Science ›› 2023, Vol. 3 ›› Issue (4) :37 DOI: 10.20517/ss.2023.30
Review Article

Recent advancements in liquid metal enabled flexible and wearable biosensors

Author information +
History +
PDF

Abstract

Wearable biosensors have demonstrated enormous potential in revolutionizing healthcare by providing real-time fitness tracking, enabling remote patient monitoring, and facilitating early detection of health issues. To better sense vital life signals, researchers are increasingly favoring wearable biosensors with flexible properties that can be seamlessly integrated with human tissues, achieved through the utilization of soft materials. Gallium (Ga)-based liquid metals (LMs) possess desirable properties, such as fluidity, high conductivity, and negligible toxicity, which make them inherently soft and well-suited for the fabrication of flexible and wearable biosensors. In this article, we present a comprehensive overview of the recent advancements in the nascent realm of flexible and wearable biosensors employing LMs as key components. This paper provides a detailed exposition of the unique characteristics of Ga-based LM materials, which set them apart from traditional materials. Moreover, the state-of-the-art applications of Ga-based LMs in flexible and wearable biosensors that expounded from six aspects are reviewed, including wearable interconnects, pressure sensors, strain sensors, temperature sensors, and implantable bioelectrodes. Furthermore, perspectives on the key challenges and future developing directions of LM-enabled wearable and flexible biosensors are also discussed.

Keywords

Liquid metal / flexible electronics / biosensors / wearable electronics

Cite this article

Download citation ▾
Guoqiang Li, Sanhu Liu, Zhiwu Xu, Jinhong Guo, Shi-Yang Tang, Xing Ma. Recent advancements in liquid metal enabled flexible and wearable biosensors. Soft Science, 2023, 3(4): 37 DOI:10.20517/ss.2023.30

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ma B,Chi J,Zhao C.A versatile approach for direct patterning of liquid metal using magnetic field.Adv Funct Mater2019;29:1901370

[2]

Zhou X,Yang J,Luo S.Flexible and highly sensitive pressure sensors based on microstructured carbon nanowalls electrodes.Nanomaterials2019;9:496 PMCID:PMC6523954

[3]

Jiang Y,Matsuhisa N.Auxetic mechanical metamaterials to enhance sensitivity of stretchable strain sensors.Adv Mater2018;30:e1706589

[4]

Li H,Li X.Epidermal inorganic optoelectronics for blood oxygen measurement.Adv Healthc Mater2017;6:1601013

[5]

Jiao B.Anti-motion interference wearable device for monitoring blood oxygen saturation based on sliding window algorithm.IEEE Access2020;8:124675-87

[6]

Liu Z,Hu G.Surface strain redistribution on structured microfibers to enhance sensitivity of fiber-shaped stretchable strain sensors.Adv Mater2018;30:1704229

[7]

Liao X,Kang Z,Liao Q.Ultrasensitive and stretchable resistive strain sensors designed for wearable electronics.Mater Horiz2017;4:502-10

[8]

Zhang M,Wang H,Hao X.Carbonized cotton fabric for high-performance wearable strain sensors.Adv Funct Mater2017;27:1604795

[9]

Maier D,Basavanna A.Toward continuous monitoring of breath biochemistry: a paper-based wearable sensor for real-time hydrogen peroxide measurement in simulated breath.ACS Sens2019;4:2945-51 PMCID:PMC6879172

[10]

Veeralingam S,Sha R.Direct growth of FeS2 on paper: a flexible, multifunctional platform for ultra-low cost, low power memristor and wearable non-contact breath sensor for activity detection.Mat Sci Semicon Proc2020;108:104910

[11]

Liu Z,Huang P.Highly stable and stretchable conductive films through thermal-radiation-assisted metal encapsulation.Adv Mater2019;31:1901360

[12]

Jeong YR,Park H.Stretchable, skin-attachable electronics with integrated energy storage devices for biosignal monitoring.Acc Chem Res2019;52:91-9

[13]

Wei C,Tao Y.Interfacial passivation by room-temperature liquid metal enabling stable 5 V-class lithium-metal batteries in commercial carbonate-based electrolyte.Energy Stor Mater2021;34:12-21

[14]

Wei C,Zhang Y.Highly reversible Mg metal anodes enabled by interfacial liquid metal engineering for high-energy Mg-S batteries.Energy Stor Mater2022;48:447-57

[15]

Dickey MD.Stretchable and soft electronics using liquid metals.Adv Mater2017;29:1606425

[16]

Zhu S,Mays R.Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core.Adv Funct Mater2013;23:2308-14

[17]

Dickey MD,Larsen RJ,Weitz DA.Eutectic Gallium-Indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature.Adv Funct Mater2008;18:1097-104

[18]

Yang X,Liu J.Numerical investigation of the phase change process of low melting point metal.Int J Heat Mass Transf2016;100:899-907

[19]

Liu S,McDonald S.Ga-based alloys in microelectronic interconnects: a review.Materials2018;11:1384 PMCID:PMC6119961

[20]

Zhang M,Huang L.Versatile fabrication of liquid metal nano-ink based flexible electronic devices.Appl Mater Today2021;22:100903

[21]

Sun X,Yuan B.Liquid metal microparticles phase change medicated mechanical destruction for enhanced tumor cryoablation and dual-mode imaging.Adv Funct Mater2020;30:2003359

[22]

Gao Q,Zhang J,Zhang J.Microchannel structural design for a room-temperature liquid metal based super-stretchable sensor.Sci Rep2019;9:5908 PMCID:PMC6459847

[23]

Gao Y,Schaler EW.Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring.Adv Mater2017;29:1701985

[24]

Chang H,Sun Z.Direct writing and repairable paper flexible electronics using nickel-liquid metal ink.Adv Mater Interfaces2018;5:1800571

[25]

Kim S,Jeong D.Direct wiring of eutectic gallium-indium to a metal electrode for soft sensor systems.ACS Appl Mater Interfaces2019;11:20557-65

[26]

Yoon Y,Kim D,Lee J.Four degrees-of-freedom direct writing of liquid metal patterns on uneven surfaces.Adv Mater Technol2019;4:1800379

[27]

Guo C,Liu J.Rapidly patterning conductive components on skin substrates as physiological testing devices via liquid metal spraying and pre-designed mask.J Mater Chem B2014;2:5739-45

[28]

Plevachuk Y,Shevchenko N.Electrophysical and structure-sensitive properties of liquid Ga-In alloys.Int J Mater Res2015;106:66-71

[29]

Plevachuk Y,Eckert S,Novakovic R.Thermophysical properties of the liquid Ga-In-Sn eutectic alloy.J Chem Eng Data2014;59:757-63

[30]

Lu Y,Lin Y.Transformable liquid-metal nanomedicine.Nat Commun2015;6:10066 PMCID:PMC4686762

[31]

Cicco AD.Local correlations in liquid and supercooled gallium probed by X-ray absorption spectroscopy.Europhys Lett1994;27:407-12

[32]

Tang S,Zhao Q.Phase separation in liquid metal nanoparticles.Matter2019;1:192-204

[33]

Koster JN.Directional solidification and melting of eutectic GaIn.Cryst Res Technol1999;34:1129-40Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1521-4079(199911)34:9%3C1129::AID-CRAT1129%3E3.0.CO;2-P. [Last accessed on 24 Aug 2023]

[34]

Chitambar CR.Medical applications and toxicities of gallium compounds.Int J Environ Res Public Health2010;7:2337-61 PMCID:PMC2898053

[35]

White SJO.Exposure potential and health impacts of indium and gallium, metals critical to emerging electronics and energy technologies.Curr Environ Health Rep2016;3:459-67

[36]

Li J,Wang Z,Shi X.Electrical stimulation towards melanoma therapy via liquid metal printed electronics on skin.Clin Transl Med2016;5:21 PMCID:PMC4919201

[37]

Fan L,Xie Z.Injectable and radiopaque liquid metal/calcium alginate hydrogels for endovascular embolization and tumor embolotherapy.Small2019;16:1903421

[38]

Hallfors N,Dickey MD.Integration of pre-aligned liquid metal electrodes for neural stimulation within a user-friendly microfluidic platform.Lab Chip2013;13:522-6 PMCID:PMC4394010

[39]

Zhang M,Rao W.Transformable soft liquid metal micro/nanomaterials.Mate Sci Eng R Rep2019;138:1-35

[40]

Domingo JL. A review of the health hazards from gallium exposure. Trace Elem Med 1991;8:56-64. Available from: https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5304637. [Last accessed on 24 Aug 2023]

[41]

Liu S,Kemme N.Can liquid metal flow in microchannels made of its own oxide skin?.Microfluid Nanofluid2016;20:3

[42]

Regan MJ,Pershan PS.X-ray study of the oxidation of liquid-gallium surfaces.Phys Rev B1997;55:10786-90

[43]

Cademartiri L,Nijhuis CA.Electrical resistance of AgTS-S(CH2)n-1CH3//Ga2O3/EGaIn tunneling junctions.J Phys Chem C2012;116:10848-60

[44]

Dickey MD.Emerging applications of liquid metals featuring surface oxides.ACS Appl Mater Interfaces2014;6:18369-79 PMCID:PMC4231928

[45]

Zhang Q,Liu J.Atomized spraying of liquid metal droplets on desired substrate surfaces as a generalized way for ubiquitous printed electronics.Appl Phys A2014;116:1091-7

[46]

Gao Y,Liu J.Direct writing of flexible electronics through room temperature liquid metal ink.PLoS One2012;7:e45485 PMCID:PMC3446874

[47]

Zheng Y,Yang J.Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism.Sci Rep2014;4:4588 PMCID:PMC3975221

[48]

Tang L,Zhang L.Printable metal-polymer conductors for highly stretchable bio-devices.iScience2018;4:302-11 PMCID:PMC6146547

[49]

Boley JW,Kramer RK.Mechanically sintered gallium-indium nanoparticles.Adv Mater2015;27:2355-60

[50]

Ren L,Casillas G.Nanodroplets for stretchable superconducting circuits.Adv Funct Mater2016;26:8111-8

[51]

Li X,Zong L.Liquid metal droplets wrapped with polysaccharide microgel as biocompatible aqueous ink for flexible conductive devices.Adv Funct Mater2018;28:1804197

[52]

Li H,Davis TP.Biomedical applications of liquid metal nanoparticles: a critical review.Biosensors2020;10:196 PMCID:PMC7760560

[53]

Tang S.Liquid metal particles and polymers: a soft-soft system with exciting properties.Acc Mater Res2021;2:966-78

[54]

Lin Y,Wang M,Genzer J.Handwritten, soft circuit boards and antennas using liquid metal nanoparticles.Small2015;11:6397-403

[55]

Liu S,White EL.Laser sintering of liquid metal nanoparticles for scalable manufacturing of soft and flexible electronics.ACS Appl Mater Interfaces2018;10:28232-41

[56]

Deng B.Pulsed laser modulated shock transition from liquid metal nanoparticles to mechanically and thermally robust solid-liquid patterns.Adv Mater2019;31:e1807811

[57]

Li X,Xu J,Yang Z.Evaporation-induced sintering of liquid metal droplets with biological nanofibrils for flexible conductivity and responsive actuation.Nat Commun2019;10:3514 PMCID:PMC6683165

[58]

Bartlett MD,Powell-Palm MJ.High thermal conductivity in soft elastomers with elongated liquid metal inclusions.Proc Natl Acad Sci U S A2017;114:2143-8 PMCID:PMC5338550

[59]

Fassler A.Liquid-phase metal inclusions for a conductive polymer composite.Adv Mater2015;27:1928-32

[60]

Markvicka EJ,Huang X.An autonomously electrically self-healing liquid metal-elastomer composite for robust soft-matter robotics and electronics.Nat Mater2018;17:618-24

[61]

Ford MJ,Pan C,Majidi C.Controlled assembly of liquid metal inclusions as a general approach for multifunctional composites.Adv Mater2020;32:e2002929

[62]

Tang L,Zhang W.Large-scale fabrication of highly elastic conductors on a broad range of surfaces.ACS Appl Mater Interfaces2019;11:7138-47

[63]

Wang H,He Z.A highly stretchable liquid metal polymer as reversible transitional insulator and conductor.Adv Mater2019;31:e1901337

[64]

Yun G,Zhao Q.Liquid metal composites with anisotropic and unconventional piezoconductivity.Matter2020;3:824-41

[65]

Yun G,Sun S.Liquid metal-filled magnetorheological elastomer with positive piezoconductivity.Nat Commun2019;10:1300 PMCID:PMC6428896

[66]

Bartlett MD,Kazem N,Mandal P.Liquid metals: stretchable, high-k dielectric elastomers through liquid-metal inclusions (Adv. Mater. 19/2016).Adv Mater2016;28:3791

[67]

Kazem N,Majidi C.Extreme toughening of soft materials with liquid metal.Adv Mater2018;30:e1706594

[68]

Pan C,Malakooti MH.A liquid-metal-elastomer nanocomposite for stretchable dielectric materials.Adv Mater2019;31:1900663

[69]

Kazem N,Majidi C.Soft multifunctional composites and emulsions with liquid metals.Adv Mater2017;29:1605985

[70]

Chen S,Zhao R,Liu J.Liquid metal composites.Matter2020;2:1446-80

[71]

Chen X,Guo R.A double-layered liquid metal-based electrochemical sensing system on fabric as a wearable detector for glucose in sweat.Microsyst Nanoeng2022;8:48 PMCID:PMC9079077

[72]

Lin R,Achavananthadith S.Digitally-embroidered liquid metal electronic textiles for wearable wireless systems.Nat Commun2022;13:2190 PMCID:PMC9023486

[73]

Lee GH,Yoon C.A personalized electronic tattoo for healthcare realized by on-the-spot assembly of an intrinsically conductive and durable liquid-metal composite (Adv. Mater. 32/2022).Adv Mater2022;34:2270236

[74]

Yang Y,Huang J.Stretchable energy-harvesting tactile interactive interface with liquid-metal-nanoparticle-based electrodes.Adv Funct Mater2020;30:1909652

[75]

Port A,Albisetti L.Detector clothes for MRI: a wearable array receiver based on liquid metal in elastic tubes.Sci Rep2020;10:8844 PMCID:PMC7264329

[76]

Gu L,Lin Y.A biomimetic eye with a hemispherical perovskite nanowire array retina.Nature2020;581:278-82

[77]

Khondoker MAH,Sameoto D.Direct 3D printing of stretchable circuits via liquid metal co-extrusion within thermoplastic filaments.Adv Eng Mater2019;21:1900060

[78]

Teng L,Handschuh-wang S,Gan T.Liquid metal-based transient circuits for flexible and recyclable electronics.Adv Funct Mater2019;29:1808739

[79]

Chen Y,Ren J.Conformable core-shell fiber tactile sensor by continuous tubular deposition modeling with water-based sacrificial coaxial writing.Mater Des2020;190:108567

[80]

Guo R,Dong S.One-step liquid metal transfer printing: toward fabrication of flexible electronics on wide range of substrates.Adv Mater Technol2018;3:1800265

[81]

Park TH,Seo S.Facile and rapid method for fabricating liquid metal electrodes with highly precise patterns via one-step coating.Adv Funct Mater2020;30:2003694

[82]

Kim MG,Brand O.Nanofabrication for all-soft and high-density electronic devices based on liquid metal.Nat Commun2020;11:1002 PMCID:PMC7035367

[83]

Abbasi R,Ghasemian MB.Photolithography-enabled direct patterning of liquid metals.J Mater Chem C2020;8:7805-11

[84]

Ozutemiz KB,Ozdoganlar OB.EGaIn-metal interfacing for liquid metal circuitry and microelectronics integration.Adv Mater Interfaces2018;5:1701596

[85]

Xu J,Ding H.Printable and recyclable conductive ink based on a liquid metal with excellent surface wettability for flexible electronics.ACS Appl Mater Interfaces2021;13:7443-52

[86]

Silva CA,Yin L.Liquid metal based island-bridge architectures for all printed stretchable electrochemical devices.Adv Funct Mater2020;30:2002041

[87]

Zhou L,Gao Q,He Y.All-printed flexible and stretchable electronics with pressing or freezing activatable liquid-metal-silicone inks.Adv Funct Mater2020;30:1906683

[88]

Guo R,Sun X.Semiliquid metal enabled highly conductive wearable electronics for smart fabrics.ACS Appl Mater Interfaces2019;11:30019-27

[89]

Guo R,Zhao X.Cu-EGaIn enabled stretchable e-skin for interactive electronics and CT assistant localization.Mater Horiz2020;7:1845-53

[90]

Wang J,Li S,Xiong J.Printable superelastic conductors with extreme stretchability and robust cycling endurance enabled by liquid-metal particles.Adv Mater2018;30:e1706157

[91]

Guo R,Chang H.Ni-GaIn amalgams enabled rapid and customizable fabrication of wearable and wireless healthcare electronics.Adv Eng Mater2018;20:1800054

[92]

Dong C,Das Gupta T.High-efficiency super-elastic liquid metal based triboelectric fibers and textiles.Nat Commun2020;11:3537 PMCID:PMC7363815

[93]

Zhang X,Zou R.Compressible and stretchable magnetoelectric sensors based on liquid metals for highly sensitive, self-powered respiratory monitoring.ACS Appl Mater Interfaces2021;13:15727-37

[94]

Feng B,Zou G.Nacre-inspired, liquid metal-based ultrasensitive electronic skin by spatially regulated cracking strategy.Adv Funct Mater2021;31:2102359

[95]

Mengüç Y,Pei H.Wearable soft sensing suit for human gait measurement.Int J Rob Res2014;33:1748-64

[96]

Do TN,Nguyen T.Miniature soft electromagnetic actuators for robotic applications.Adv Funct Mater2018;28:1800244

[97]

Xu C,Yuan S,Liu H.High-resolution patterning of liquid metal on hydrogel for flexible, stretchable, and self-healing electronics.Adv Electron Mater2020;6:1900721

[98]

Wissman JP,Freeman SE.Capacitive bio-inspired flow sensing cupula.Sensors2019;19:2639 PMCID:PMC6603685

[99]

Zhang L,Wang R,Gui L.Stretchable pressure sensor with leakage-free liquid-metal electrodes.Sensors2019;19:1316 PMCID:PMC6471364

[100]

Won D,Kim H.Arrayed-type touch sensor using micro liquid metal droplets with large dynamic range and high sensitivity.Sens Actuator A Phys2015;235:151-7

[101]

Won D,Huh M,Lee S.Robust capacitive touch sensor using liquid metal droplets with large dynamic range.Sensor Actuat A Phys2017;259:105-11

[102]

Yeo JC,Yu J,Wang Z.Triple-state liquid-based microfluidic tactile sensor with high flexibility, durability, and sensitivity.ACS Sens2016;1:543-51

[103]

Kim K,Jeong Y.Wearable sensors: highly sensitive and wearable liquid metal-based pressure sensor for health monitoring applications: integration of a 3D-printed microbump array with the microchannel.Adv Healthc Mater2019;8:1900986

[104]

Yeo JC,Koh ZM,Lim CT.Wearable tactile sensor based on flexible microfluidics.Lab Chip2016;16:3244-50

[105]

Jeong YR,Xie Z.A skin-attachable, stretchable integrated system based on liquid GaInSn for wireless human motion monitoring with multi-site sensing capabilities.NPG Asia Mater2017;9:e443

[106]

Park Y,Kramer R,Wood RJ.Hyperelastic pressure sensing with a liquid-embedded elastomer.J Micromech Microeng2010;20:125029

[107]

Zhang M,Huang Z.Liquid metal based flexible and implantable biosensors.Biosensors2020;10:170 PMCID:PMC7696291

[108]

Tepáyotl-ramírez D,Park Y.Collapse of triangular channels in a soft elastomer.Appl Phys Lett2013;102:044102

[109]

Nan K,Chan WW.Low-cost gastrointestinal manometry via silicone-liquid-metal pressure transducers resembling a quipu.Nat Biomed Eng2022;6:1092-104

[110]

Zhu M,Lou M,Li Z.Bioinspired transparent and antibacterial electronic skin for sensitive tactile sensing.Nano Energy2021;81:105669

[111]

Lin X,Li P.Ultra-conformable ionic skin with multi-modal sensing, broad-spectrum antimicrobial and regenerative capabilities for smart and expedited wound care.Adv Sci2021;8:2004627 PMCID:PMC8097371

[112]

Jiang C,Zhao N.A wearable braille recognition system based on high density tactile sensors. In: 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS); 2020 Jan 18-22; Vancouver, Canada; IEEE; 2020. p. 28-31.

[113]

Leber A,Chandran R,Bartolomei N.Soft and stretchable liquid metal transmission lines as distributed probes of multimodal deformations.Nat Electron2020;3:316-26

[114]

Kim S,Jeong D,Bae J.Consistent and reproducible direct ink writing of eutectic gallium-indium for high-quality soft sensors.Soft Robot2018;5:601-12

[115]

Wu Y,Liu H.Liquid metal fiber composed of a tubular channel as a high-performance strain sensor.J Mater Chem C2017;5:12483-91

[116]

Lu T,Ruthika .Soft anisotropic conductors as electric vias for Ga-based liquid metal circuits.ACS Appl Mater Interfaces2015;7:26923-9

[117]

So J,Qusba A,Lazzi G.Reversibly deformable and mechanically tunable fluidic antennas.Adv Funct Mater2009;19:3632-7

[118]

Tang L,Jiang X.Multilayered electronic transfer tattoo that can enable the crease amplification effect.Sci Adv2021;7:eabe3778 PMCID:PMC7806229

[119]

Kramer RK,Sahai R.Soft curvature sensors for joint angle proprioception. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2011 Sep 25-30; San Francisco, CA, USA. IEEE; 2011.

[120]

Li G,Liu S.Three-dimensional flexible electronics using solidified liquid metal with regulated plasticity.Nat Electron2023;6:154-63

[121]

Uchida K,Harii K.Observation of the spin Seebeck effect.Nature2008;455:778-81

[122]

Adachi H,Saitoh E.Theory of the spin Seebeck effect.Rep Prog Phys2013;76:036501

[123]

Li H,Liu J.Printable tiny thermocouple by liquid metal gallium and its matching metal.Appl Phys Lett2012;101:073511

[124]

Wang Q,Zhang L,Gui L.A handy flexible micro-thermocouple using low-melting-point metal alloys.Sensors2019;19:314 PMCID:PMC6359204

[125]

Yu Y,Liu J.Biomedical implementation of liquid metal ink as drawable ECG electrode and skin circuit.PLoS One2013;8:e58771 PMCID:PMC3589353

[126]

Guo R,Yao S.Semi-liquid-metal-(Ni-EGaIn)-based ultraconformable electronic tattoo.Adv Mater Technol2019;4:1900183

[127]

Timosina V,Lu H.A non-newtonian liquid metal enabled enhanced electrography.Biosens Bioelectron2023;235:115414

[128]

Ding L,Cheng S.A soft, conductive external stent inhibits intimal hyperplasia in vein grafts by electroporation and mechanical restriction.ACS Nano2020;14:16770-80

[129]

Cheng S,Ding L.Electronic blood vessel.Matter2020;3:1664-84

[130]

Liu F,Yi L.Liquid metal as reconnection agent for peripheral nerve injury.Science Bulletin2016;61:939-47

[131]

Dong R,Hang C.Printed stretchable liquid metal electrode arrays for in vivo neural recording.Small2021;17:e2006612

[132]

Wen X,Huang S.Flexible, multifunctional neural probe with liquid metal enabled, ultra-large tunable stiffness for deep-brain chemical sensing and agent delivery.Biosens Bioelectron2019;131:37-45 PMCID:PMC6602555

[133]

Lim T,Akbarian A,Tresco PA.Conductive polymer enabled biostable liquid metal electrodes for bioelectronic applications.Adv Healthc Mater2022;11:e2102382

[134]

Wang S,Zhu H.Intrinsically stretchable electronics with ultrahigh deformability to monitor dynamically moving organs.Sci Adv2022;8:eabl5511 PMCID:PMC8967218

[135]

Li G,Xu Z.A crack compensation strategy for highly stretchable conductors based on liquid metal inclusions.iScience2022;25:105495 PMCID:PMC9676391

[136]

Schedle A,Rausch-Fan XH.Response of L-929 fibroblasts, human gingival fibroblasts, and human tissue mast cells to various metal cations.J Dent Res1995;74:1513-20

[137]

Kim JH,So JH,Koo HJ.Cytotoxicity of gallium-indium liquid metal in an aqueous environment.ACS Appl Mater Interfaces2018;10:17448-54

[138]

Zhang C,Biazik JM.Gallium nanodroplets are anti-inflammatory without interfering with iron homeostasis.ACS Nano2022;16:8891-903

AI Summary AI Mindmap
PDF

312

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/