A highly stretchable and sintering-free liquid metal composite conductor enabled by ferrofluid

Maoyu Peng , Biao Ma , Guoqiang Li , Yong Liu , Yang Zhang , Xing Ma , Sheng Yan

Soft Science ›› 2023, Vol. 3 ›› Issue (4) : 36

PDF
Soft Science ›› 2023, Vol. 3 ›› Issue (4) :36 DOI: 10.20517/ss.2023.28
Research Article

A highly stretchable and sintering-free liquid metal composite conductor enabled by ferrofluid

Author information +
History +
PDF

Abstract

Stretchable and highly conductive elastomers with intrinsically deformable liquid metal (LM) fillers exhibit promising potential in soft electronics, wearables, human-machine interfaces, and soft robotics. However, conventional LM-elastomer (LME) conductors require a high loading ratio of LM and the post-sintering to rupture LM particles to achieve electric conductivity, which results in high LM consumption and process complexity. In this work, we presented a straightforward and post-sintering-free method that utilizes magnetic aggregation to fabricate stretchable LME conductors. This was achieved by dispersing LM ferrofluid into the elastomer precursor, followed by applying the magnetic field to induce the aggregation and interconnection of the LM ferrofluid particles to form conductive pathways. This method not only simplifies the preparation of initially conductive LME but also reduces the LM loading ratio. The resulting conductive LME composites show high stretchability (up to 650% strain), high conductance stability, and magnetic responsiveness. The stretchable LME conductors were demonstrated in various applications, including the creation of flexible microcircuits, a magnetically controlled soft switch, and a soft hydrogel actuator for grasping tasks. We believe the stretchable LME conductors may find wide applications in electronic skins, soft sensors, and soft machines.

Keywords

Liquid metal / sintering-free / conductor / ferrofluid

Cite this article

Download citation ▾
Maoyu Peng, Biao Ma, Guoqiang Li, Yong Liu, Yang Zhang, Xing Ma, Sheng Yan. A highly stretchable and sintering-free liquid metal composite conductor enabled by ferrofluid. Soft Science, 2023, 3(4): 36 DOI:10.20517/ss.2023.28

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rogers JA,Huang Y.Materials and mechanics for stretchable electronics.Science2010;327:1603-7

[2]

Shim H,Wang B.Elastic integrated electronics based on a stretchable n-type elastomer-semiconductor-elastomer stack.Nat Electron2023;6:349-59

[3]

Sun X,Yuan B.Liquid metal-enabled cybernetic electronics.Mater Today Phys2020;14:100245

[4]

Zhang M,Huang Z.Liquid metal based flexible and implantable biosensors.Biosensors2020;10:170 PMCID:PMC7696291

[5]

Heng W,Gao W.Flexible electronics and devices as human-machine interfaces for medical robotics.Adv Mater2022;34:e2107902 PMCID:PMC9035141

[6]

Qu J,Sun Y.Multitasking device regulated by the gravity field: broadband anapole-excited absorber and linear polarization converter.Annalen der Physik2022;534:2200175

[7]

Wu F,Yi Z,Yi Y.Ultra-broadband solar absorber and high-efficiency thermal emitter from UV to mid-infrared spectrum.Micromachines2023;14:985 PMCID:PMC10220809

[8]

Matsuhisa N,Bao Z.Materials and structural designs of stretchable conductors.Chem Soc Rev2019;48:2946-66

[9]

Jiang Y,Mishra YK,Yang Y.Stretchable CNTs-Ecoflex composite as variable-transmittance skin for ultrasensitive strain sensing.Adv Mater Technol2018;3:1800248

[10]

Kim DC,Lee W,Kim DH.Material-based approaches for the fabrication of stretchable electronics.Adv Mater2020;32:e1902743

[11]

Larmagnac A,Janossy H.Stretchable electronics based on Ag-PDMS composites.Sci Rep2014;4:7254 PMCID:PMC4248267

[12]

Kim DH,Ma R.Epidermal electronics.Science2011;333:838-43

[13]

Lee P,Lee H.Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network.Adv Mater2012;24:3326-32

[14]

Kim Y,Yeom B.Stretchable nanoparticle conductors with self-organized conductive pathways.Nature2013;500:59-63

[15]

Benli S,Pekel F.Effect of fillers on thermal and mechanical properties of polyurethane elastomer.J Appl Polym Sci1998;68:1057-65Available from: https://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-4628(19980516)68:7%3C1057::AID-APP3%3E3.0.CO;2-E. [Last accessed on 13 Oct 2023]

[16]

Boley JW,Kramer RK.Mechanically sintered gallium-indium nanoparticles.Adv Mater2015;27:2355-60

[17]

Dickey MD.Stretchable and soft electronics using liquid metals.Adv Mater2017;29:1606425

[18]

Khoshmanesh K,Zhu JY.Liquid metal enabled microfluidics.Lab Chip2017;17:974-93

[19]

Malakooti MH,Yan J.Liquid metal supercooling for low-temperature thermoelectric wearables.Adv Funct Mater2019;29:1906098

[20]

Paracha KN,Alghamdi AS,Soh PJ.Liquid metal antennas: materials, fabrication and applications.Sensors2019;20:177 PMCID:PMC6983104

[21]

Park YG,Jang J,Kim E.Liquid metal-based soft electronics for wearable healthcare.Adv Healthc Mater2021;10:2002280

[22]

Ren L.Room temperature liquid metals for flexible alkali metal-chalcogen batteries.Exploration2022;2:20210182 PMCID:PMC10190926

[23]

Liu T,Lan J.Study on the 3D printing of flexible pressure sensor by using polyurethane pressure sensitive materials and encapsulated gainsn liquid metal wires.Materials Reports2022;36:21030297-5

[24]

Jackson N,Clarke C.Manufacturing methods of stretchable liquid metal-based antenna.Microsyst Technol2019;25:3175-84

[25]

Fassler A.Liquid-phase metal inclusions for a conductive polymer composite.Adv Mater2015;27:1928-32

[26]

Chen S,Zhao R,Liu J.Liquid metal composites.Matter2020;2:1446-80

[27]

Liu S,Henry KE,Kramer-Bottiglio R.Printed and laser-activated liquid metal-elastomer conductors enabled by ethanol/PDMS/liquid metal double emulsions.ACS Appl Mater Interfaces2021;13:28729-36

[28]

Pan C,Ford MJ.Ultrastretchable, wearable triboelectric nanogenerator based on sedimented liquid metal elastomer composite.Adv Mater Technol2020;5:2000754

[29]

Lin Y,Wang M,Genzer J.Handwritten, soft circuit boards and antennas using liquid metal nanoparticles.Small2015;11:6397-403

[30]

Wang H,He Z.A highly stretchable liquid metal polymer as reversible transitional insulator and conductor.Adv Mater2019;31:e1901337

[31]

Liu S,White EL.Laser sintering of liquid metal nanoparticles for scalable manufacturing of soft and flexible electronics.ACS Appl Mater Interfaces2018;10:28232-41

[32]

Yun G,Lu H,Dickey MD.Hybrid-filler stretchable conductive composites: from fabrication to application.Small Sci2021;1:2000080

[33]

Liu S,Li G.Ultrasonic-enabled nondestructive and substrate-independent liquid metal ink sintering.Adv Sci2023;10:e2301292 PMCID:PMC10427386

[34]

Ren L,Casillas-Garcia G.A liquid-metal-based magnetoactive slurry for stimuli-responsive mechanically adaptive electrodes.Adv Mater2018;30:1802595

[35]

Cui Y,Yang Z.Metallic bond-enabled wetting behavior at the liquid Ga/CuGa2 interfaces.ACS Appl Mater Interfaces2018;10:9203-10

[36]

Kim JH,Kim H.Imbibition-induced selective wetting of liquid metal.Nat Commun2022;13:4763 PMCID:PMC9376080

[37]

Handschuh-wang S,Zhu L.Analysis and transformations of room-temperature liquid metal interfaces - a closer look through interfacial tension.ChemPhysChem2018;19:1551

[38]

Liu D,Chen Z.Magnetically driven soft continuum microrobot for intravascular operations in microscale.Cyborg Bionic Syst2022;2022:9850832 PMCID:PMC9494713

[39]

Zheng Y,Liu L.Numerical simulation of efficient solar absorbers and thermal emitters based on multilayer nanodisk arrays.Appl Therm Eng2023;230:120841

[40]

Mao G,Karami-Mosammam M.Soft electromagnetic actuators.Sci Adv2020;6:eabc0251 PMCID:PMC7319732

AI Summary AI Mindmap
PDF

206

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/