PDF
Abstract
Recent advances in soft sensor technology have pushed digital healthcare toward life-changing solutions. Data reliability and robustness can be realised by building sensor arrays that collect comprehensive biological parameter data from several points on the underlying organs simultaneously, a principle that is inspired by bioreceptors. The rapid growth of soft lithography and printing, three-dimensional (3D) printing, and weaving/knitting technologies has facilitated the low-cost development of soft sensors in the array format. Advances in data acquisition, processing, and visualisation techniques have helped with the collection of meaningful data using arrays and their presentation to users on personal devices through wireless communication interfaces. Local- or cloud-based data storage helps with the collection of adequate data from sensor arrays over time to facilitate reliable prognoses based on historical data. Emerging energy harvesting technologies have led to the development of techniques to power sensor arrays sustainably. This review presents developmental building blocks in wearable and artificial organ-based soft sensor arrays, including bioreceptor-inspired sensing mechanisms, fabrication methods, digital data-acquisition techniques, methods to present the results to users, power systems, and target diseases/conditions for treatment or monitoring. Finally, we summarise the challenges associated with the development of single and multimodal array sensors for advanced digital healthcare and suggest possible solutions to overcome them.
Keywords
Bioreceptor-inspired
/
soft sensor arrays
/
multimodal
/
senses of vision
/
hearing
/
taste
/
smell
/
spatial perception
Cite this article
Download citation ▾
Faezeh Arab Hassani.
Bioreceptor-inspired soft sensor arrays: recent progress towards advancing digital healthcare.
Soft Science, 2023, 3(4): 31 DOI:10.20517/ss.2023.23
| [1] |
Alberts B,Johnson A. Molecular biology of the cell. 7th ed. New York, NY: Worldwide. Norton & Company; 2022. Available from: https://wwnorton.com/books/9780393884821. [Last accessed on 14 Aug 2023]
|
| [2] |
Lenau T,Stone R.An overview of biomimetic sensor technology.Sensor Rev2009;29:112-9
|
| [3] |
Kandel ER,Mack SH. Principles of neural science. 6th ed. New York, NY: McGraw Hill; 2021. Available from: https://www.mheducation.co.uk/principles-of-neural-science-sixth-edition-9781259642234-emea. [Last accessed on 14 Aug 2023]
|
| [4] |
French AS. Sensory receptors and mechanotransduction. In: Sperelakis N, editor. Cell Physiology Source Book. Elsevier; 2012. p. 633-47. Available from: https://edisciplinas.usp.br/pluginfile.php/5123031/mod_resource/content/2/Nicholas%20Sperelakis-Cell%20Physiology%20Source%20Book%2C%20Fourth%20Edition_%20Essentials%20of%20Membrane%20Biophysics-Academic%20Press%20%282012%29.pdf. [Last accessed on 14 Aug 2023]
|
| [5] |
Willis WD.Sensory receptors and peripheral nerves. In: Sensory Mechanisms of the Spinal Cord. Boston: Springer US; 2004. p. 19-90.
|
| [6] |
Abraira VE.The sensory neurons of touch.Neuron2013;79:618-39 PMCID:PMC3811145
|
| [7] |
Chapleau MW.Methods of assessing vagus nerve activity and reflexes.Heart Fail Rev2011;16:109-27 PMCID:PMC4322860
|
| [8] |
Proske U.The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force.Physiol Rev2012;92:1651-97
|
| [9] |
Kobayashi S.Temperature receptors in cutaneous nerve endings are thermostat molecules that induce thermoregulatory behaviors against thermal load.Temperature2015;2:346-51 PMCID:PMC4843900
|
| [10] |
Wong KY.A retinal ganglion cell that can signal irradiance continuously for 10 hours.J Neurosci2012;32:11478-85 PMCID:PMC3432977
|
| [11] |
Tricas TC.Electroreceptors and magnetoreceptors. In: Cell Physiology Source Book. Elsevier; 2012. p. 705-25.
|
| [12] |
Winklhofer M.A quantitative assessment of torque-transducer models for magnetoreception.J R Soc Interface2010;7 Suppl 2:S273-89 PMCID:PMC2843997
|
| [13] |
Wang J,Cai P.Artificial sense technology: emulating and extending biological senses.ACS Nano2021;15:18671-8
|
| [14] |
Lee Y,Choe A,Kim J.Mimicking human and biological skins for multifunctional skin electronics.Adv Funct Mater2020;30:1904523
|
| [15] |
Someya T,Malliaras GG.The rise of plastic bioelectronics.Nature2016;540:379-85
|
| [16] |
Hong SY,Park H.Stretchable active matrix temperature sensor array of polyaniline nanofibers for electronic skin.Adv Mater2016;28:930-5
|
| [17] |
Zhang C,Zhou K.Bioinspired artificial sensory nerve based on nafion memristor.Adv Funct Mater2019;29:1808783
|
| [18] |
Murray AR,Al-Ubaidi MR.Rhodopsin: the functional significance of asn-linked glycosylation and other post-translational modifications.Ophthalmic Genet2009;30:109-20 PMCID:PMC2881540
|
| [19] |
Kibenge FS.Introduction to the anatomy and physiology of the major aquatic animal species in aquaculture. In: Aquaculture Pharmacology. Elsevier; 2021. p. 1-111.
|
| [20] |
Zimmerman A,Ginty DD.The gentle touch receptors of mammalian skin.Science2014;346:950-4 PMCID:PMC4450345
|
| [21] |
Chandrashekar J,Ryba NJ.The receptors and cells for mammalian taste.Nature2006;444:288-94
|
| [22] |
Reisert J.Ca2+-activated Cl- current ensures robust and reliable signal amplification in vertebrate olfactory receptor neurons.Proc Natl Acad Sci U S A2019;116:1053-8 PMCID:PMC6338846
|
| [23] |
Mittal R,Patel AP.Recent advancements in the regeneration of auditory hair cells and hearing restoration.Front Mol Neurosci2017;10:236 PMCID:PMC5534485
|
| [24] |
Molday RS.Photoreceptors at a glance.J Cell Sci2015;128:4039-45 PMCID:PMC4712787
|
| [25] |
Bertalmío M.The biological basis of vision: the retina. In: Vision Models for High Dynamic Range and Wide Colour Gamut Imaging. Elsevier; 2020. p. 11-46.
|
| [26] |
Organisciak DT.Retinal light damage: mechanisms and protection.Prog Retin Eye Res2010;29:113-34 PMCID:PMC2831109
|
| [27] |
Gu L,Lin Y.A biomimetic eye with a hemispherical perovskite nanowire array retina.Nature2020;581:278-82
|
| [28] |
Stoddard P. Electrical signals. In: Breed MD, Moore J, editors. Encyclopedia of Animal Behavior. Elsevier; 2010. Available from: https://www.sciencedirect.com/referencework/9780080453378/encyclopedia-of-animal-behavior. [Last accessed on 14 Aug 2023]
|
| [29] |
England SJ.The ecology of electricity and electroreception.Biol Rev Camb Philos Soc2022;97:383-413
|
| [30] |
Newton KC,Kajiura SM.Electroreception in marine fishes: chondrichthyans.J Fish Biol2019;95:135-54
|
| [31] |
Baker CVH.Insights into electroreceptor development and evolution from molecular comparisons with hair cells.Integr Comp Biol2018;58:329-40 PMCID:PMC6927855
|
| [32] |
Shen Z,Majidi C.Cutaneous ionogel mechanoreceptors for soft machines, physiological sensing, and amputee prostheses.Adv Mater2021;33:e2102069
|
| [33] |
Aidley DJ.Mechanoreceptors. In: The Physiology of Excitable Cells. 4th ed. Cambridge: Cambridge University Press; 1998. p. 240-63.
|
| [34] |
Iheanacho F. Physiology, mechanoreceptors. Available from: https://www.ncbi.nlm.nih.gov/books/NBK541068/. [Last accessed on 14 Aug 2023]
|
| [35] |
Deflorio D,Wing AM.Skin and mechanoreceptor contribution to tactile input for perception: a review of simulation models.Front Hum Neurosci2022;16:862344 PMCID:PMC9201416
|
| [36] |
Boughter JD. Taste receptors. In: Lennarz WJ, Lane MD, editors. Encyclopedia of Biological Chemistry. Waltham: Academic Press; 2013. p. 366-8. Available from: https://books.google.com/books?hl=zh-CN&lr=&id=ykUu06JQrjcC&oi=fnd&pg=PP2&dq=Boughter+J,+Munger+S.+Taste+Receptors.+Encyclopedia+of+Biological+Chemistry.&ots=eHzTqQTnW4&sig=z09pfOC_nBMkfR_PDSJOpBbbRCM#v=onepage&q&f=false. [Last accessed on 14 Aug 2023]
|
| [37] |
Shahbandi A,Dando R.Receptor regulation in taste: can diet influence how we perceive foods?.J2018;1:106-15
|
| [38] |
Risso D,Morini G.Alteration, reduction and taste loss: main causes and potential implications on dietary habits.Nutrients2020;12:3284 PMCID:PMC7693910
|
| [39] |
Halpern BP.Constraints imposed on taste physiology by human taste reaction time data.Neurosci Biobehav Rev1986;10:135-51
|
| [40] |
Williams J.Human odour thresholds are tuned to atmospheric chemical lifetimes.Philos Trans R Soc Lond B Biol Sci2020;375:20190274 PMCID:PMC7209931
|
| [41] |
Bhatia-Dey N.The olfactory system as marker of neurodegeneration in aging, neurological and neuropsychiatric disorders.Int J Environ Res Public Health2021;18:6976 PMCID:PMC8297221
|
| [42] |
Stuck BA,Hummel T.Subjective olfactory desensitization and recovery in humans.Chem Senses2014;39:151-7
|
| [43] |
Pickles JO.Auditory pathways: anatomy and physiology.Handb Clin Neurol2015;129:3-25
|
| [44] |
Kurabi A,Housley GD,Wong AC.Cellular mechanisms of noise-induced hearing loss.Hear Res2017;349:129-37 PMCID:PMC6750278
|
| [45] |
Leventhall G.What is infrasound?.Prog Biophys Mol Biol2007;93:130-7
|
| [46] |
Legatt AD.Electrophysiologic auditory tests.Handb Clin Neurol2015;129:289-311
|
| [47] |
Soci C,Bao XY,Lo Y.Nanowire photodetectors.J Nanosci Nanotechnol2010;10:1430-49
|
| [48] |
Lapierre RR,Azizur-rahman KM.A review of III-V nanowire infrared photodetectors and sensors.J Phys D: Appl Phys2017;50:123001
|
| [49] |
Tang J,Chong Y.Nanowire arrays restore vision in blind mice.Nat Commun2018;9:786 PMCID:PMC5840349
|
| [50] |
Seo J,Kim M.Flexible phototransistors based on single-crystalline silicon nanomembranes.Adv Opt Mater2016;4:120-5
|
| [51] |
Zheng X,Tao X.Retina-inspired flexible photosensitive arrays based on selective photothermal conversion.J Mater Chem C2022;11:252-9
|
| [52] |
Li Z,Zhong J.Recent advances in nanogenerators-based flexible electronics for electromechanical biomonitoring.Biosens Bioelectron2021;186:113290
|
| [53] |
Guo ZH,Shao J.Bioinspired soft electroreceptors for artificial precontact somatosensation.Sci Adv2022;8:eabo5201 PMCID:PMC9140963
|
| [54] |
Ma C,Huang YC.Robust flexible pressure sensors made from conductive micropyramids for manipulation tasks.ACS Nano2020;14:12866-76
|
| [55] |
Shang C,Liang N,Li L.Multi-parameter e-skin based on biomimetic mechanoreceptors and stress field sensing.npj Flex Electron2023;7:19
|
| [56] |
Nguyen TD.Recent development of flexible tactile sensors and their applications.Sensors2021;22:50 PMCID:PMC8747637
|
| [57] |
Zhang J,Mo J.Finger-inspired rigid-soft hybrid tactile sensor with superior sensitivity at high frequency.Nat Commun2022;13:5076 PMCID:PMC9422944
|
| [58] |
Yang Y,Chen J.Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system.ACS Nano2013;7:7342-51
|
| [59] |
Arab Hassani F,Gammad GGL.Toward self-control systems for neurogenic underactive bladder: a triboelectric nanogenerator sensor integrated with a bistable micro-actuator.ACS Nano2018;12:3487-501
|
| [60] |
Hassani FA.A triboelectric energy harvester using low-cost, flexible, and biocompatible ethylene vinyl acetate (EVA).J Microelectromech Syst2015;24:1338-45
|
| [61] |
Kim C,Kang MS.Artificial olfactory sensor technology that mimics the olfactory mechanism: a comprehensive review.Biomater Res2022;26:40 PMCID:PMC9392354
|
| [62] |
Chouhdry HH,Bag A.A flexible artificial chemosensory neuronal synapse based on chemoreceptive ionogel-gated electrochemical transistor.Nat Commun2023;14:821 PMCID:PMC9929093
|
| [63] |
Moon D,Kim SO,Ko HJ.FET-based nanobiosensors for the detection of smell and taste.Sci China Life Sci2020;63:1159-67
|
| [64] |
Zhao T,Du A.Self-powered flexible sour sensor for detecting ascorbic acid concentration based on triboelectrification/enzymatic-reaction coupling effect.Sensors2021;21:373 PMCID:PMC7827105
|
| [65] |
Prasad BB.Molecularly imprinted nanomaterial-based highly sensitive and selective medical devices. In: Tiwari A, Ramalingam M, Kobayashi H, Turner APF, editors. Biomedical materials and diagnostic devices. Scrivener Publishing LLC; 2012. p. 339-91.
|
| [66] |
Wang J,Kiwa T.All-in-one terahertz taste sensor: integrated electronic and bioelectronic tongues.Sens Diagn2023;2:620-6
|
| [67] |
Nag A.Fabrication and implementation of printed sensors for taste sensing applications.Sens Actuator A Phys2018;269:53-61
|
| [68] |
Jung YH,Wang HS.Speech recognition: flexible piezoelectric acoustic sensors and machine learning for speech processing.Adv Mater2020;32:2070259
|
| [69] |
Viola G,Maltby T.Bioinspired multiresonant acoustic devices based on electrospun piezoelectric polymeric nanofibers.ACS Appl Mater Interfaces2020;12:34643-57 PMCID:PMC7460092
|
| [70] |
Wang HS,Han JH.Biomimetic and flexible piezoelectric mobile acoustic sensors with multiresonant ultrathin structures for machine learning biometrics.Sci Adv2021;7:eabe5683 PMCID:PMC7880591
|
| [71] |
Svechtarova MI,Toebes BJ,Anton N.Sensor devices inspired by the five senses: a review.Electroanalysis2016;28:1201-41
|
| [72] |
Johnson KJ.Sensor array design for complex sensing tasks.Annu Rev Anal Chem2015;8:287-310
|
| [73] |
Kashyap V,Xiao X.Bioinspired nanomaterials for wearable sensing and human-machine interfacing.Nano Res2023;1-17
|
| [74] |
Parameswaran C.Large area flexible pressure/strain sensors and arrays using nanomaterials and printing techniques.Nano Converg2019;6:28 PMCID:PMC6732266
|
| [75] |
Yeo JC, Lim CT. Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications.Microsyst Nanoeng2016;2:16043 PMCID:PMC6444731
|
| [76] |
Lu K,Jiang S.Advanced bioinspired organic sensors for future-oriented intelligent applications.Adv Sens Res2023;2:2200066
|
| [77] |
Liu Z,Qu M,Zhang C.Progress in data acquisition of wearable sensors.Biosensors2022;12:889 PMCID:PMC9599646
|
| [78] |
Marquez AV,Pakdel A.Organic electrochemical transistors (OECTs) toward flexible and wearable bioelectronics.Molecules2020;25:5288 PMCID:PMC7698176
|
| [79] |
Braendlein M,Leleux P,Malliaras GG.Voltage amplifier based on organic electrochemical transistor.Adv Sci2017;4:1600247 PMCID:PMC5238735
|
| [80] |
Li Z,Han J.Editorial: array-based sensing techniques for clinical, agricultural biotechnology, and environmental analysis.Front Chem2021;9:654707 PMCID:PMC7994765
|
| [81] |
Duan Y,Wu J,Wang Y.Recent progress in flexible pressure sensor arrays.Nanomaterials2022;12:2495 PMCID:PMC9319019
|
| [82] |
Dincer C,Costa-Rama E.Disposable sensors in diagnostics, food, and environmental monitoring.Adv Mater2019;31:e1806739
|
| [83] |
Yang Y.Wearable and flexible electronics for continuous molecular monitoring.Chem Soc Rev2019;48:1465-91
|
| [84] |
Cheng S,Zhou L.Recent progress in intelligent wearable sensors for health monitoring and wound healing based on biofluids.Front Bioeng Biotechnol2021;9:765987 PMCID:PMC8591136
|
| [85] |
Dong W,Zhou Y.Soft human-machine interfaces: design, sensing and stimulation.Int J Intell Robot Appl2018;2:313-38
|
| [86] |
Kim DH,Ma R.Epidermal electronics.Science2011;333:838-43
|
| [87] |
Arab Hassani F, Jin H, Yokota T, Someya T, Thakor NV. Soft sensors for a sensing-actuation system with high bladder voiding efficiency.Sci Adv2020;6:eaba0412 PMCID:PMC7195140
|
| [88] |
Ren L,Wei G.Biology and bioinspiration of soft robotics: actuation, sensing, and system integration.iScience2021;24:103075 PMCID:PMC8449090
|
| [89] |
Bhave G,Singer A,Robinson JT.Distributed sensor and actuator networks for closed-loop bioelectronic medicine.Mater Today2021;46:125-35 PMCID:PMC8336425
|
| [90] |
Yoo S,Park M.Responsive materials and mechanisms as thermal safety systems for skin-interfaced electronic devices.Nat Commun2023;14:1024 PMCID:PMC9950147
|
| [91] |
Röder PV,Liu Y.Pancreatic regulation of glucose homeostasis.Exp Mol Med2016;48:e219 PMCID:PMC4892884
|
| [92] |
Grose DN,Castle DJ.Type 1 diabetes and an insulin pump: an iterative review of qualitative literature.Pract Diab2017;34:281-7c
|
| [93] |
Ilami M,Ahmed R,Marvi H.Materials, actuators, and sensors for soft bioinspired robots.Adv Mater2021;33:e2003139
|
| [94] |
Li S.Plant-inspired adaptive structures and materials for morphing and actuation: a review.Bioinspir Biomim2016;12:011001
|
| [95] |
Speck T,Klimm F.Plants as inspiration for material-based sensing and actuation in soft robots and machines. MRS Bulletin 2023.
|
| [96] |
Yang M,Jiang W,Iqbal MI.Bioinspired and hierarchically textile‐structured soft actuators for healthcare wearables.Adv Funct Mater2023;33:2210351
|
| [97] |
Lan R,Yao W,Chen X.Bioinspired humidity-responsive liquid crystalline materials: from adaptive soft actuators to visualized sensors and detectors.Mater Horiz2023;10:2824-44
|
| [98] |
Jiang L,Zeng Y.Flexible ultrasound-induced retinal stimulating piezo-arrays for biomimetic visual prostheses.Nat Commun2022;13:3853 PMCID:PMC9253314
|
| [99] |
Lee HJ,Hwang GW.An electronically perceptive bioinspired soft wet-adhesion actuator with carbon nanotube-based strain sensors.ACS Nano2021;15:14137-48
|
| [100] |
Ren J,Pei Y.Bioinspired energy storage and harvesting devices.Adv Mater Technol2021;6:2001301
|
| [101] |
Peng L,Wang J.Slug-inspired magnetic soft millirobot fully integrated with triboelectric nanogenerator for on-board sensing and self-powered charging.Nano Energy2022;99:107367
|
| [102] |
Arab Hassani F,Wen F.Smart materials for smart healthcare- moving from sensors and actuators to self-sustained nanoenergy nanosystems.Smart Mater Med2020;1:92-124
|
| [103] |
Wang Y,Venezuela J,Dargusch M.Expedient secondary functions of flexible piezoelectrics for biomedical energy harvesting.Bioact Mater2023;22:291-311 PMCID:PMC9556936
|
| [104] |
Wang X,Yi F.Bioinspired stretchable triboelectric nanogenerator as energy-harvesting skin for self-powered electronics.Nano Energy2017;39:429-36
|
| [105] |
Tauber FJ.Early career scientists converse on the future of soft robotics.Front Robot AI2023;10:1129827 PMCID:PMC9994530
|
| [106] |
Zhi C,Zhang S.Bioinspired all-fibrous directional moisture-wicking electronic skins for biomechanical energy harvesting and all-range health sensing.Nanomicro Lett2023;15:60 PMCID:PMC9981859
|
| [107] |
Li W,Zhang C.Bioinspired designs and biomimetic applications of triboelectric nanogenerators.Nano Energy2021;84:105865
|
| [108] |
Shin D,Kim W.Bioinspired piezoelectric nanogenerators based on vertically aligned phage nanopillars.Energy Environ Sci2015;8:3198-203
|
| [109] |
Senthil R.A comprehensive review on bioinspired solar photovoltaic cells.Int J Energy Res2019;43:1068-81
|
| [110] |
Liu R,Fukuda K.Flexible self-charging power sources.Nat Rev Mater2022;7:870-86
|
| [111] |
Valle M. Bioinspired sensor systems.Sensors2011;11:10180-6 PMCID:PMC3274279
|
| [112] |
Jung YH,Kim JU.Bioinspired electronics for artificial sensory systems.Adv Mater2019;31:e1803637
|
| [113] |
Xiao K,Jiang L,Antonietti M.Bioinspired ionic sensory systems: the successor of electronics.Adv Mater2020;32:e2000218
|
| [114] |
Li P,Cheng W,Tee BCK.Bioinspired prosthetic interfaces.Adv Mater Technol2020;5:1900856
|
| [115] |
Xue J,Deng Y.Bioinspired sensor system for health care and human-machine interaction.EcoMat2022;4:e12209
|
| [116] |
Choi C,Liu S.Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array.Nat Commun2017;8:1664 PMCID:PMC5698290
|
| [117] |
Song WJ,Jung Y.Soft artificial electroreceptors for noncontact spatial perception.Sci Adv2021;7:eabg9203 PMCID:PMC8612677
|
| [118] |
Yu X,Yu Y.Skin-integrated wireless haptic interfaces for virtual and augmented reality.Nature2019;575:473-9
|
| [119] |
Zhou Q,Wei Y.A bio-inspired cilia array as the dielectric layer for flexible capacitive pressure sensors with high sensitivity and a broad detection range.J Mater Chem A2019;7:27334-46
|
| [120] |
Kim SH,Yoon J.A bioinspired stretchable sensory-neuromorphic system.Adv Mater2021;33:e2104690
|
| [121] |
Wang J,Wu Z.Wearable multichannel pulse condition monitoring system based on flexible pressure sensor arrays.Microsyst Nanoeng2022;8:16 PMCID:PMC8821641
|
| [122] |
Fan W,Meng K.Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring.Sci Adv2020;6:eaay2840 PMCID:PMC7069695
|
| [123] |
Huang S,Li H.Flexible tongue electrode array system for in vivo mapping of electrical signals of taste sensation.ACS Sens2021;6:4108-17
|
| [124] |
Yeom J,Lim S,Na S.Soft and ion-conducting hydrogel artificial tongue for astringency perception.Sci Adv2020;6:eaba5785 PMCID:PMC7274767
|
| [125] |
Lorwongtragool P,Sowade E,Kerdcharoen T.A Zigbee-based wireless wearable electronic nose using flexible printed sensor array. In: 2013 IEEE 5th International Nanoelectronics Conference; 2013 Jan 2-4; Singapore. IEEE; 2013. p. 291-3.
|
| [126] |
Zheng Y,Shen W.Wearable electronic nose for human skin odor identification: a preliminary study.Sens Actuator A Phys2019;285:395-405
|
| [127] |
Yang C,Liao B.3D-printed bionic ear for sound identification and localization based on in situ polling of PVDF-TrFE film.Macromol Biosci2023;23:2200374
|
| [128] |
Shin YE,Ghosh SK,Park J.Ultrasensitive multimodal tactile sensors with skin-inspired microstructures through localized ferroelectric polarization.Adv Sci2022;9:2105423
|
| [129] |
Hua Q,Liu H.Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing.Nat Commun2018;9:244 PMCID:PMC5770430
|
| [130] |
Curcio CA,Kalina RE.Human photoreceptor topography.J Comp Neurol1990;292:497-523
|
| [131] |
Kalmijn AJ.The electric sense of sharks and rays.J Exp Biol1971;55:371-83
|
| [132] |
Collin SP. Electroreception in vertebrates and invertebrates. In: Breed MD, Moore J, editors. Encyclopedia of Animal Behavior. Elsevier; 2010. p. 611-20. Available from: https://www.sciencedirect.com/referencework/9780080453378/encyclopedia-of-animal-behavior. [Last accessed on 14 Aug 2023]
|
| [133] |
Gonzalez-Franco M.Model of illusions and virtual reality.Front Psychol2017;8:1125 PMCID:PMC5492764
|
| [134] |
Syed TA,Abdullah HB.In-depth review of augmented reality: tracking technologies, development tools, ar displays, collaborative ar, and security concerns.Sensors2022;23:146 PMCID:PMC9824627
|
| [135] |
Stein BE,Rowland BA.Multisensory integration and the society for neuroscience: then and now.J Neurosci2020;40:3-11 PMCID:PMC6939490
|
| [136] |
Liu Y,Zhao Z.Soft, miniaturized, wireless olfactory interface for virtual reality.Nat Commun2023;14:2297 PMCID:PMC10169775
|
| [137] |
Tauber F,Piccin O.Perspective for soft robotics: the field’s past and future.Bioinspir Biomim2023;18:035001
|
| [138] |
Lopez-Ojeda W,Mandy A. Anatomy, skin (Integument). Available from: https://www.ncbi.nlm.nih.gov/books/NBK441980/. [Last accessed on 14 Aug 2023]
|
| [139] |
Caire MJ,Varacallo M. Physiology, synapse. Available from: https://www.ncbi.nlm.nih.gov/books/NBK526047/. [Last accessed on 14 Aug 2023]
|
| [140] |
Kebe M,Mohammad B,Saleh H.Human vital signs detection methods and potential using radars: a review.Sensors2020;20:1454 PMCID:PMC7085680
|
| [141] |
Ahmad R.G protein-coupled receptors in taste physiology and pharmacology.Front Pharmacol2020;11:587664 PMCID:PMC7774309
|
| [142] |
Essick GK.Tactile sensation in oral region. In: Binder MD, Hirokawa N, Windhorst U, editors. Encyclopedia of Neuroscience. Berlin: Springer Berlin Heidelberg; 2009. p. 3999-4005.
|
| [143] |
Kaczmarek KA.The tongue display unit (TDU) for electrotactile spatiotemporal pattern presentation.Sci Iran D Comput Sci Eng Electr Eng2011;18:1476-85 PMCID:PMC5523951
|
| [144] |
Krautwurst D.Human olfactory receptor families and their odorants.Chem Biodivers2008;5:842-52
|
| [145] |
Ramgir NS.Electronic nose based on nanomaterials: issues, challenges, and prospects.ISRN Nanomaterials2013;2013:1-21
|
| [146] |
Manley GA,Simões P,Russell IJ.The mammalian ear: physics and the principles of evolution.Acoust Today2018;14:1-9Available from: https://acousticstoday.org/wp-content/uploads/2019/03/The-Mammalian-Ear-Physics-and-the-Principles-of-Evolution.pdf. [Last accessed on 14 Aug 2023]
|
| [147] |
Sheikh A,Shabbir K.Structure and physiology of human ear involved in hearing. In: Naz S, editor. Auditory System - Function and Disorders. IntechOpen; 2022.
|
| [148] |
Xiang L,Xia F.An epidermal electronic system for physiological information acquisition, processing, and storage with an integrated flash memory array.Sci Adv2022;8:eabp8075 PMCID:PMC9385141
|
| [149] |
Liu M,Wang J.A star-nose-like tactile-olfactory bionic sensing array for robust object recognition in non-visual environments.Nat Commun2022;13:79 PMCID:PMC8748716
|
| [150] |
Gao Y,Yeo T.A flexible multiplexed immunosensor for point-of-care in situ wound monitoring.Sci Adv2021;7:eabg9614 PMCID:PMC8139589
|
| [151] |
Kim J,Lee MS.Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics.Nat Commun2017;8:14997 PMCID:PMC5414034
|
| [152] |
Guo S,Li C.Integrated contact lens sensor system based on multifunctional ultrathin MoS2 transistors.Matter2021;4:969-85 PMCID:PMC7773002
|
| [153] |
Gao W,Nyein HYY.Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis.Nature2016;529:509-14 PMCID:PMC4996079
|
| [154] |
Beduk T,Hasan MR.Smartphone-based multiplexed biosensing tools for health monitoring.Biosensors2022;12:583 PMCID:PMC9406027
|
| [155] |
Lee S,Jeon KH.A fabric-based wearable sensor for continuous monitoring of decubitus ulcer of subjects lying on a bed.Sci Rep2023;13:5773 PMCID:PMC10082782
|
| [156] |
Wu X,Liu Y.Artificial multisensory integration nervous system with haptic and iconic perception behaviors.Nano Energy2021;85:106000
|
| [157] |
Yu J,Deng Y.Recent progress in pressure and temperature tactile sensors: Principle, classification, integration and outlook.Soft Sci2021;1:6
|
| [158] |
Duan S,Wu J.Multimodal sensors and ml-based data fusion for advanced robots.Adv Intell Syst2022;4:2200213
|
| [159] |
Matsuda R,Nakamura F.Highly stretchable sensing array for independent detection of pressure and strain exploiting structural and resistive control.Sci Rep2020;10:12666 PMCID:PMC7391712
|
| [160] |
Cho S,Park H.Wireless, multimodal sensors for continuous measurement of pressure, temperature, and hydration of patients in wheelchair.npj Flex Electron2023;7:8
|
| [161] |
Hozumi S,Arie T,Takei K.Multimodal wearable sensor sheet for health-related chemical and physical monitoring.ACS Sens2021;6:1918-24
|
| [162] |
Philip J.Photopyroelectric spectroscopy: a direct photothermal technique to evaluate thermal properties of condensed matter. In: Thakur SN, Rai VN, Singh JP, editors. Photoacoustic and Photothermal Spectroscopy. Elsevier; 2023. p. 231-43.
|
| [163] |
Sin ML,Wong PK.Advances and challenges in biosensor-based diagnosis of infectious diseases.Expert Rev Mol Diagn2014;14:225-44 PMCID:PMC4104499
|
| [164] |
Pauliukaite R.Multisensor systems and arrays for medical applications employing naturally-occurring compounds and materials.Sensors2020;20:3551 PMCID:PMC7349305
|
| [165] |
Lee S,Hassani FA.Nanomesh pressure sensor for monitoring finger manipulation without sensory interference.Science2020;370:966-70
|
| [166] |
Mannsfeld SC,Stoltenberg RM.Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers.Nat Mater2010;9:859-64
|
| [167] |
Lim HR,Qazi R,Jeong JW.Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment.Adv Mater2020;32:e1901924
|
| [168] |
Rogers JA,Huang Y.Materials and mechanics for stretchable electronics.Science2010;327:1603-7
|
| [169] |
Wang C,Yu Z.User-interactive electronic skin for instantaneous pressure visualization.Nat Mater2013;12:899-904
|
| [170] |
Li Y,Chen Y,Zhao N.Crosstalk-free, high-resolution pressure sensor arrays enabled by high-throughput laser manufacturing.Adv Mater2022;34:e2200517
|
| [171] |
Wang R,Zhu W.Recent progress in high-resolution tactile sensor array: from sensor fabrication to advanced applications.Prog Nat Sci Mater Inter2023;33:55-66
|
| [172] |
Nan X,Cao X.A review of epidermal flexible pressure sensing arrays.Biosensors2023;13:656 PMCID:PMC10296057
|
| [173] |
Yao G,Wang Q.Flexible bioelectronics for physiological signals sensing and disease treatment.J Materiomics2020;6:397-413
|
| [174] |
Ates HC,Gonzalez-Macia L.End-to-end design of wearable sensors.Nat Rev Mater2022;7:887-907 PMCID:PMC9306444
|
| [175] |
Zhang S,Yang J,Tan SC.Augmenting sensor performance with machine learning towards smart wearable sensing electronic systems.Adv Intell Syst2022;4:2100194
|
| [176] |
Zeng X.Sensation and perception of a bioinspired flexible smart sensor system.ACS Nano2021;15:9238-43
|
| [177] |
Faura G,Holmeide AK.Colorimetric and electrochemical screening for early detection of diabetes mellitus and diabetic retinopathy-application of sensor arrays and machine learning.Sensors2022;22:718 PMCID:PMC8839630
|
| [178] |
Luo Y,Ahn JH.Technology roadmap for flexible sensors.ACS Nano2023;17:5211-95
|
| [179] |
Zhang Y,Jiang N.Wearable artificial intelligence biosensor networks.Biosens Bioelectron2022;219:114825
|
| [180] |
Tu J,Li W.Electronic skins with multimodal sensing and perception.Soft Sci2023;3:25
|
| [181] |
Muhammad G,Karray F,Alsulaiman M.A comprehensive survey on multimodal medical signals fusion for smart healthcare systems.Information Fusion2021;76:355-75
|
| [182] |
Christodouleas DC,Chorti P.From point-of-care testing to ehealth diagnostic devices (eDiagnostics).ACS Cent Sci2018;4:1600-16 PMCID:PMC6311959
|
| [183] |
Affia AO,Jung W,Potter L.IoT health devices: exploring security risks in the connected landscape.IoT2023;4:150-82
|
| [184] |
Bhatti DS,Imran A.A survey on wireless wearable body area networks: a perspective of technology and economy.Sensors2022;22:7722 PMCID:PMC9607184
|
| [185] |
Liu D,Zhou L,Wang ZL.Recent advances in high-performance triboelectric nanogenerators.Nano Res2023;
|
| [186] |
Liu H,Sun L,Yeatman EM.Hybrid energy harvesting technology: from materials, structural design, system integration to applications.Renew Sust Energ2021;137:110473
|
| [187] |
Dagdeviren C,Su Y.Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm.Proc Natl Acad Sci U S A2021;118:e2110994118 PMCID:PMC8325289
|
| [188] |
Dai C,Wang L.A highly temperature- and pressure-sensitive soft sensor self-powered by a galvanic cell design.J Mater Chem A2022;10:4408-17
|