Development of soft dry electrodes: from materials to structure design

Hua Liu , Xiaodi Chen , Zihao Wang , Yan Liu , Cuiyuan Liang , Ming Zhu , Dianpeng Qi

Soft Science ›› 2023, Vol. 3 ›› Issue (3) : 27

PDF
Soft Science ›› 2023, Vol. 3 ›› Issue (3) :27 DOI: 10.20517/ss.2023.16
Perspective

Development of soft dry electrodes: from materials to structure design

Author information +
History +
PDF

Abstract

Bioelectric signals reflect our daily physiological activities, which can be recorded in the form of electroencephalography, electrocardiography, electromyography, etc. The traditional Ag/AgCl wet electrode is the gold standard for clinical monitoring of bioelectrical signals at present, while complicated preparation and gel evaporation limit its long-term application. Therefore, it is meaningful to research dry electrodes without conductive paste or additional adhesives. Unfortunately, the high interface impedance between electrodes and skin is a fatal defect of dry electrodes, which leads to excessive noise levels and poor signal quality. Consequently, more efforts are required to achieve conformal contact between dry electrodes and skin to reduce the contact impedance. From this perspective, we review the recent progress in capacitive electrodes, invasive microneedle electrodes, and common-contact dry electrodes. Material selection and structural design to obtain conformal contact are highlighted. Finally, we propose the future development direction of dry electrodes.

Keywords

Dry electrode / conformal contact / electrode-skin impedance / bioelectric signal

Cite this article

Download citation ▾
Hua Liu, Xiaodi Chen, Zihao Wang, Yan Liu, Cuiyuan Liang, Ming Zhu, Dianpeng Qi. Development of soft dry electrodes: from materials to structure design. Soft Science, 2023, 3(3): 27 DOI:10.20517/ss.2023.16

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Niu X,Liu Y.Surface bioelectric dry electrodes: a review.Measurement2021;183:109774

[2]

Zhu M,Li S.Flexible electrodes for in vivo and in vitro electrophysiological signal recording.Adv Healthc Mater2021;10:e2100646

[3]

Eskandarian L,Nassif F.3D-knit dry electrodes using conductive elastomeric fibers for long-term continuous electrophysiological monitoring.Adv Materials Technologies2022;7:2101572

[4]

Carneiro MR, Majidi C, Tavakoli M. Multi-electrode printed bioelectronic patches for long-term electrophysiological monitoring.Adv Funct Materials2022;32:2205956

[5]

Wang Y,Guo S.Skin bioelectronics towards long-term, continuous health monitoring.Chem Soc Rev2022;51:3759-93

[6]

Zhao H,Teng L.Recent advances in flexible and wearable sensors for monitoring chemical molecules.Nanoscale2022;14:1653-69

[7]

Chen H,Lacour SP.Electronic skins for healthcare monitoring and smart prostheses.Annu Rev Control Robot Auton Syst2021;4:629-50

[8]

Lyu Q,Yin J,Cheng W.Soft wearable healthcare materials and devices.Adv Healthc Mater2021;10:e2100577

[9]

Kim H,Choi C.Advances in soft and dry electrodes for wearable health monitoring devices.Micromachines2022;13:629 PMCID:PMC9029742

[10]

Li Z,Huang Y,Yi H.On-skin graphene electrodes for large area electrophysiological monitoring and human-machine interfaces.Carbon2020;164:164-70

[11]

Wu H,Zhu K.Materials, devices, and systems of on-skin electrodes for electrophysiological monitoring and human-machine interfaces.Adv Sci2021;8:2001938 PMCID:PMC7816724

[12]

Tian G,Liang C.A nonswelling hydrogel with regenerable high wet tissue adhesion for bioelectronics.Adv Mater2023;35:e2212302

[13]

Yang L,Zhang Z,Zhang Y.Materials for dry electrodes for the electroencephalography: advances, challenges, perspectives.Adv Materials Technologies2022;7:2100612

[14]

Liu Q,Zhang Z,Zhang Y.The feature, performance, and prospect of advanced electrodes for electroencephalogram.Biosensors2023;13:101 PMCID:PMC9855417

[15]

Li G,Duan YY.Towards conductive-gel-free electrodes: understanding the wet electrode, semi-dry electrode and dry electrode-skin interface impedance using electrochemical impedance spectroscopy fitting.Sensor Actuat B-Chem2018;277:250-60

[16]

Yuan H,Yang J.State of the art of non-invasive electrode materials for brain-computer interface.Micromachines2021;12:1521 PMCID:PMC8705666

[17]

Fu Y,Dong Y.Dry electrodes for human bioelectrical signal monitoring.Sensors2020;20:3651 PMCID:PMC7374322

[18]

Asl SN,Schilling M.Noise model of capacitive and textile capacitive noncontact electrodes for bioelectric applications.IEEE Trans Biomed Circuits Syst2018;12:851-9

[19]

Ren L,Zhou W.A mini review of microneedle array electrode for bio-signal recording: a review.IEEE Sensors J2020;20:577-90

[20]

Wang Y,Ren L.Towards improving the quality of electrophysiological signal recordings by using microneedle electrode arrays.IEEE Trans Biomed Eng2021;68:3327-35

[21]

Yang JC,Kwon SY,Bao Z.Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics.Adv Mater2019;31:e1904765

[22]

Ren L,Wang H,Liu B.Fabrication of bendable microneedle-array electrode by magnetorheological drawing lithography for electroencephalogram recording.IEEE Trans Instrum Meas2020;69:8328-34

[23]

Huang D,Li T,Wang Q.Recent advances on fabrication of microneedles on the flexible substrate.J Micromech Microeng2021;31:073001

[24]

Li J,Huang D.High-performance flexible microneedle array as a low-impedance surface biopotential dry electrode for wearable electrophysiological recording and polysomnography.Nanomicro Lett2022;14:132 PMCID:PMC9198145

[25]

Hou Y,Wang Z.Miura-ori structured flexible microneedle array electrode for biosignal recording.Microsyst Nanoeng2021;7:53 PMCID:PMC8433437

[26]

Li Y,Liu C.Fabrication and characteristic of flexible dry bioelectrodes with microstructures inspired by golden margined century plant leaf.Sensor Actuat A-Phys2021;321:112397

[27]

Niu X,Li H,Liu H.Fructus xanthii-inspired low dynamic noise dry bioelectrodes for surface monitoring of ECG.ACS Appl Mater Interfaces2022;14:6028-38

[28]

Zhang L,He H.Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring.Nat Commun2020;11:4683 PMCID:PMC7499260

[29]

Cao J,Rao J.Stretchable and self-adhesive pedot:pss blend with high sweat tolerance as conformal biopotential dry electrodes.ACS Appl Mater Interfaces2022;14:39159-71

[30]

Park T,Kim YJ.Weak molecular interactions in organic composite dry film lead to degradable, robust wireless electrophysiological signal sensing.Adv Materials Inter2022;9:2200594

[31]

Li Q,Cui Y.Highly thermal-wet comfortable and conformal silk-based electrodes for on-skin sensors with sweat tolerance.ACS Nano2021;15:9955-66

[32]

Zhang S,Rana SMS.Highly conductive, stretchable, durable, skin-conformal dry electrodes based on thermoplastic elastomer-embedded 3D porous graphene for multifunctional wearable bioelectronics.Nano Res2023;16:7627-37

[33]

Fan W,Tian G,Gong G.Application of Conductive Polymer in Nerve Interface Electrode.Chem J Chin Univ2021;42:1146-55

[34]

Yun G,Sun S.Liquid metal-filled magnetorheological elastomer with positive piezoconductivity.Nat Commun2019;10:1300 PMCID:PMC6428896

[35]

Zhang J,Pearce G.Strain stiffening and positive piezoconductive effect of liquid metal/elastomer soft composites.Compos Sci Technol2021;201:108497

[36]

Niu Y,Liang C.Thermal-sinterable egain nanoparticle inks for highly deformable bioelectrode arrays.Adv Healthc Mater2023;12:e2202531

[37]

Pei D,Liu P.Reversible wet-adhesive and self-healing conductive composite elastomer of liquid metal.Adv Funct Materials2022;32:2204257

[38]

Shi C,Wu R.New silk road: from mesoscopic reconstruction/functionalization to flexible meso-electronics/photonics based on cocoon silk materials.Adv Mater2021;33:e2005910

[39]

Hu M,Liu Y.Highly conformal polymers for ambulatory electrophysiological sensing.Macromol Rapid Commun2022;43:e2200047

[40]

Yang H,Chaturvedi I.Adhesive biocomposite electrodes on sweaty skin for long-term continuous electrophysiological monitoring.ACS Materials Lett2020;2:478-84

[41]

Meng L,Hao S,Yang J.Self-adhesive, biodegradable silk-based dry electrodes for epidermal electrophysiological monitoring.Chem Eng J2022;427:131999

[42]

Zhao Y,Yu T.Ultra-conformal skin electrodes with synergistically enhanced conductivity for long-time and low-motion artifact epidermal electrophysiology.Nat Commun2021;12:4880 PMCID:PMC8361161

[43]

Cheng Y,Wang R.An elastic and damage-tolerant dry epidermal patch with robust skin adhesion for bioelectronic interfacing.ACS Nano2022;16:18608-20

[44]

Tang W,Chen S.Delamination-resistant imperceptible bioelectrode for robust electrophysiological signals monitoring.ACS Materials Lett2021;3:1385-93

[45]

Jiang Z,Yi Z.A 1.3-micrometre-thick elastic conductor for seamless on-skin and implantable sensors.Nat Electron2022;5:784-93

[46]

Yao S,Hinson R.Ultrasoft porous 3d conductive dry electrodes for electrophysiological sensing and myoelectric control.Adv Mater Technol2022;7:2101637 PMCID:PMC9581336

[47]

Pei Z,Li Q.A fully 3D printed electronic skin with bionic high resolution and air permeable porous structure.J Colloid Interface Sci2021;602:452-8

[48]

Tian Q,Zhou R.Ultrapermeable and wet-adhesive monolayer porous film for stretchable epidermal electrode.ACS Appl Mater Interfaces2022;14:52535-43

[49]

Xie R,Teng L.Strenuous exercise-tolerance stretchable dry electrodes for continuous multi-channel electrophysiological monitoring.npj Flex Electron2022;6:75

[50]

Yu L,Zhou X.Current understanding of the wettability of mxenes.Adv Materials Inter2023;10:2201818

[51]

Song D,Zhao Y,Hou X.An all-in-one, bioderived, air-permeable, and sweat-stable mxene epidermal electrode for muscle theranostics.ACS Nano2022;16:17168-78

[52]

Liu H,He X.Stretchable conductive fabric enabled by surface functionalization of commercial knitted cloth.ACS Appl Mater Interfaces2021;13:55656-65

[53]

Zhang Y,Huang Z.A new class of electronic devices based on flexible porous substrates.Adv Sci2022;9:e2105084 PMCID:PMC8895116

[54]

Jeong W,Gwon G.All-organic, solution-processed, extremely conformal, mechanically biocompatible, and breathable epidermal electrodes.ACS Appl Mater Interfaces2021;13:5660-7

[55]

Yan X,Zhang G.Highly breathable, surface-hydrophobic and wet-adhesive silk based epidermal electrode for long-term electrophysiological monitoring.Compos Sci Technol2022;230:109751

[56]

Zhao Q,Tian G.Highly sensitive and omnidirectionally stretchable bioelectrode arrays for in vivo neural interfacing.Adv Healthc Mater2023;:e2203344

[57]

Xing X,Pei W.A high-speed SSVEP-Based BCI using dry EEG electrodes.Sci Rep2018;8:14708 PMCID:PMC6168577

[58]

Liu J,He E.A novel dry-contact electrode for measuring electroencephalography signals.Sensor Actuat A-Phys2019;294:73-80

[59]

Niu X,Wang T,Liu H.Ordered nanopillar arrays of low dynamic noise dry bioelectrodes for electrocardiogram surface monitoring.ACS Appl Mater Interfaces2022;14:33861-70

[60]

Ye G,Fang X.A Lamellibranchia-inspired epidermal electrode for electrophysiology.Mater Horiz2021;8:1047-57

[61]

Dong J,Wang D.Quasi-homogeneous and hierarchical electronic textiles with porosity-hydrophilicity dual-gradient for unidirectional sweat transport, electrophysiological monitoring, and body-temperature visualization.Small2023;19:e2206572

[62]

Stauffer F,Sauter C.Skin conformal polymer electrodes for clinical ecg and eeg recordings.Adv Healthc Mater2018;7:e1700994

[63]

Kim DW,Min H.Highly permeable skin patch with conductive hierarchical architectures inspired by amphibians and octopi for omnidirectionally enhanced wet adhesion.Adv Funct Mater2019;29:1807614

[64]

Min H,Kim J.Tough carbon nanotube-implanted bioinspired three-dimensional electrical adhesive for isotropically stretchable water-repellent bioelectronics.Adv Funct Materials2022;32:2107285

[65]

Li P,Chen B.A bioinspired sweat-drainable janus electrophysiological electrode for scientific sports training.Adv Materials Technologies2022;7:2200040

[66]

Yang D,Liang C.Double-microcrack coupling stretchable neural electrode for electrophysiological communication. Adv Funct Mater 2023;33:2300412.

[67]

Chen B,Sun J.Programmable living assembly of materials by bacterial adhesion.Nat Chem Biol2022;18:289-94

[68]

He K,Wan C.An on-skin electrode with anti-epidermal-surface-lipid function based on a zwitterionic polymer brush.Adv Mater2020;32:e2001130

[69]

Huang Y,Liu S,Guo J.Liquid metal-based epidermal flexible sensor for wireless breath monitoring and diagnosis enabled by highly sensitive SnS2 nanosheets.Research2021;2021:9847285

[70]

Wang X,Zhang G.Flexible sensors array based on frosted microstructured ecoflex film and tpu nanofibers for epidermal pulse wave monitoring.Sensors2023;23:3717 PMCID:PMC10099249

[71]

Zou X,Li X.High-fidelity sEMG signals recorded by an on-skin electrode based on AgNWs for hand gesture classification using machine learning.ACS Appl Mater Interfaces2023;15:19374-83

[72]

Dong P,Yu S.Electromyogram-based lip-reading via unobtrusive dry electrodes and machine learning methods.Small2023;19:e2205058

[73]

Alizadeh-Meghrazi M,Jain S.A mass-producible washable smart garment with embedded textile emg electrodes for control of myoelectric prostheses: a pilot study.Sensors2022;22:666 PMCID:PMC8779154

[74]

Cui T,Li D.Multifunctional, breathable MXene-PU mesh electronic skin for wearable intelligent 12-lead ECG monitoring system.Chem Eng J2023;455:140690

[75]

Wan C,Ren M.In situ formation of conductive epidermal electrodes using a fully integrated flexible system and injectable photocurable ink.ACS Nano2023;17:10689-700

[76]

Zhang X,Li C.A wearable master–slave rehabilitation robot based on an epidermal array electrode sleeve and multichannel electromyography network.Adv Intell Syst-Ger2023;5:2200313

[77]

Parak J,Myllymäki T.Comparison of heart rate monitoring accuracy between chest strap and vest during physical training and implications on training decisions.Sensors2021;21:8411 PMCID:PMC8706206

[78]

Chun S,Kim J.Human arm workout classification by arm sleeve device based on machine learning algorithms.Sensors2023;23:3106 PMCID:PMC10057383

[79]

Liu Y,Shi L,Sun J.Breathable, self-adhesive dry electrodes for stable electrophysiological signal monitoring during exercise.ACS Appl Mater Interfaces2022;14:12812-23

[80]

Liang C,Liu Z.Wide range strain distributions on the electrode for highly sensitive flexible tactile sensor with low hysteresis.ACS Appl Mater Interfaces2023;15:15096-107

AI Summary AI Mindmap
PDF

75

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/