Injectable and tissue-conformable conductive hydrogel for MRI-compatible brain-interfacing electrodes

Sung Dong Kim , Kyuha Park , Sungjun Lee , Jeungeun Kum , Yewon Kim , Soojung An , Hyungmin Kim , Mikyung Shin , Donghee Son

Soft Science ›› 2023, Vol. 3 ›› Issue (2) : 18

PDF
Soft Science ›› 2023, Vol. 3 ›› Issue (2) :18 DOI: 10.20517/ss.2023.08
Research Article

Injectable and tissue-conformable conductive hydrogel for MRI-compatible brain-interfacing electrodes

Author information +
History +
PDF

Abstract

The development of flexible and stretchable materials has led to advances in implantable bio-integrated electronic devices that can sense physiological signals or deliver electrical stimulation to various organs in the human body. Such devices are particularly useful for neural interfacing systems that monitor neurodegenerative diseases such as Parkinson’s disease or epilepsy in real time. However, coupling current brain-interfacing devices with magnetic resonance imaging (MRI) remains a practical challenge due to resonance frequency variations from inorganic metal-based devices. Thus, organic conductive materials, such as poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), have recently been considered as promising candidates. Nonetheless, their conformability on curvilinear tissues remains questionable. In this study, we developed an injectable conductive hydrogel (ICH) composed of tyramine-conjugated hyaluronic acid (HATYR) and PEDOT:PSS for MRI-compatible brain-interfacing electrodes. Our ICH produced low impedance around 5 kΩ even under 10 Hz, demonstrating high confidence volumetric capacitance. Due to HATYR’s biocompatibility, histological and cytotoxicity assays showed almost no inflammation and toxicity, respectively; in addition, ICH was able to degrade into 40% of its original volume within four weeks in vivo. An electrocorticogram (ECoG) array was also patternable by syringe injections of ICH on a stretchable and flexible elastomeric substrate layer that conformed to curvy brain tissues and successfully recorded ECoG signals under light stimulation. Furthermore, MRI imaging of implanted devices did not show any artifacts, indicating the potential of the MRI-compatible hydrogel electrodes for advanced ECoG arrays. This study provides a promising solution for MRI-compatible neural electrodes, enabling the advancement of chronic neural interfacing systems for monitoring neurodegenerative diseases.

Keywords

Injectable conducting hydrogel / hyaluronic acid / PEDOT:PSS / electrode array / electrocorticogram / MRI

Cite this article

Download citation ▾
Sung Dong Kim, Kyuha Park, Sungjun Lee, Jeungeun Kum, Yewon Kim, Soojung An, Hyungmin Kim, Mikyung Shin, Donghee Son. Injectable and tissue-conformable conductive hydrogel for MRI-compatible brain-interfacing electrodes. Soft Science, 2023, 3(2): 18 DOI:10.20517/ss.2023.08

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kim DH,Choi WM.Stretchable and foldable silicon integrated circuits.Science2008;320:507-11

[2]

Cho KW,Hong YJ.Soft bioelectronics based on nanomaterials.Chem Rev2022;122:5068-143

[3]

Boutry CM,Jorda M.A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics.Sci Robot2018;3:eaau6914

[4]

Liu Y,Qazi R.Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human-machine interfaces.Sci Adv2016;2:e1601185 PMCID:PMC5262452

[5]

Chun KS,Lee JY.A skin-conformable wireless sensor to objectively quantify symptoms of pruritus.Sci Adv2021;7 PMCID:PMC8087407

[6]

Kim J,Shim HJ.Stretchable silicon nanoribbon electronics for skin prosthesis.Nat Commun2014;5:5747

[7]

Kim SH,Yoon J.A bioinspired stretchable sensory-neuromorphic system.Adv Mater2021;33:e2104690

[8]

Seo H,Song KI.Durable and fatigue-resistant soft peripheral neuroprosthetics for in vivo bidirectional signaling.Adv Mater2021;33:e2007346

[9]

Lim S,Kim J.Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures.Adv Funct Mater2015;25:375-83

[10]

Jung YH,Vázquez-guardado A.A wireless haptic interface for programmable patterns of touch across large areas of the skin.Nat Electron2022;5:374-85

[11]

Song KI,Seong D.Adaptive self-healing electronic epineurium for chronic bidirectional neural interfaces.Nat Commun2020;11:4195 PMCID:PMC7442836

[12]

Choi S,Jung D.Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics.Nat Nanotechnol2018;13:1048-56

[13]

Minev IR,Hirsch A.Biomaterials. Electronic dura mater for long-term multimodal neural interfaces.Science2015;347:159-63

[14]

Kim DH,Amsden JJ.Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics.Nat Mater2010;9:511-7 PMCID:PMC3034223

[15]

Tian L,Akhtar A.Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring.Nat Biomed Eng2019;3:194-205

[16]

Rathi S,Brinkhues S.PEDOT:PSS as a transparent electrically conducting polymer for brain stimulation electrodes. In: 2019 IEEE 16th India Council International Conference (INDICON).2019. p. 1-4.

[17]

Wang Y,Pfattner R.A highly stretchable, transparent, and conductive polymer.Sci Adv2017;3:e1602076 PMCID:PMC5345924

[18]

Lu B,Lin S.Pure PEDOT:PSS hydrogels.Nat Commun2019;10:1043 PMCID:PMC6401010

[19]

Feig VR,Lee M.Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue.Nat Commun2018;9:2740 PMCID:PMC6048132

[20]

Feig VR,Lee M.An electrochemical gelation method for patterning conductive PEDOT:PSS hydrogels.Adv Mater2019;31:e1902869

[21]

Palumbiny CM,Russell TP,Wang C.The crystallization of PEDOT:PSS polymeric electrodes probed in situ during printing.Adv Mater2015;27:3391-7

[22]

Jiang Y,Wang YX.Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics.Science2022;375:1411-7

[23]

Green R.Elastic and conductive hydrogel electrodes.Nat Biomed Eng2019;3:9-10

[24]

Jo YJ,Hyun JH.Fibrillary gelation and dedoping of PEDOT:PSS fibers for interdigitated organic electrochemical transistors and circuits.npj Flex Electron2022;6

[25]

Lu L,Liew Y.Soft and MRI compatible neural electrodes from carbon nanotube fibers.Nano Lett2019;19:1577-86

[26]

Chen G,Johnson F.Tissue-susceptibility matched carbon nanotube electrodes for magnetic resonance imaging.J Magn Reson2018;295:72-9

[27]

Ye F,Ke D,Lu Y.Ultrafast Self‐healing and injectable conductive hydrogel for strain and pressure sensors.Adv Mater Technol2019;4:1900346

[28]

Tringides CM,de Lázaro I.Viscoelastic surface electrode arrays to interface with viscoelastic tissues.Nat Nanotechnol2021;16:1019-29 PMCID:PMC9233755

[29]

Son D,Vardoulis O.An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network.Nat Nanotechnol2018;13:1057-65

[30]

Zhao S,Xu Z.Graphene encapsulated copper microwires as highly MRI compatible neural electrodes.Nano Lett2016;16:7731-8

[31]

Bakhshaee Babaroud N,Velea AI.Multilayer CVD graphene electrodes using a transfer-free process for the next generation of optically transparent and MRI-compatible neural interfaces.Microsyst Nanoeng2022;8:107 PMCID:PMC9512798

[32]

Oribe S,Kusama S.Hydrogel-based organic subdural electrode with high conformability to brain surface.Sci Rep2019;9:13379 PMCID:PMC6746719

[33]

Fallegger F,Pirondini E.MRI-compatible and conformal electrocorticography grids for translational research.Adv Sci2021;8:2003761 PMCID:PMC8097365

[34]

Chen R,Anikeeva P.Neural recording and modulation technologies.Nat Rev Mater2017;2:16093 PMCID:PMC6707077

[35]

Kim DH,Ma R.Epidermal electronics.Science2011;333:838-43

[36]

Kim N,Seo J,Lee J.Stretchable inorganic LED displays with double-layer modular design for high fill factor.ACS Appl Mater Interfaces2022;14:4344-51

[37]

Jang KI,Xu S.Soft network composite materials with deterministic and bio-inspired designs.Nat Commun2015;6:6566 PMCID:PMC4383007

[38]

Liu J,Liu Y.Intrinsically stretchable electrode array enabled in vivo electrophysiological mapping of atrial fibrillation at cellular resolution.Proc Natl Acad Sci U S A2020;117:14769-78 PMCID:PMC7334471

[39]

Yuk H,Zhao X.Hydrogel bioelectronics.Chem Soc Rev2019;48:1642-67

[40]

Lee YY,Gwon SH.A Strain-insensitive stretchable electronic conductor: PEDOT:PSS/acrylamide organogels.Adv Mater2016;28:1636-43

[41]

Yang Q,Yin RT.Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices and soft biological tissues.Nat Mater2021;20:1559-70 PMCID:PMC8551016

[42]

Son D,Qiao S.Multifunctional wearable devices for diagnosis and therapy of movement disorders.Nat Nanotechnol2014;9:397-404

[43]

Ju J,Choi Y.Punicalagin-loaded alginate/chitosan-gallol hydrogels for efficient wound repair and hemostasis.Polymers2022;14:3248 PMCID:PMC9416046

[44]

Kim J,Kim SD.Plant-inspired Pluronic-gallol micelles with low critical micelle concentration, high colloidal stability, and protein affinity.Biomater Sci2022;10:3739-46

[45]

Shin M,Burrell JC,Burdick JA.Injectable and conductive granular hydrogels for 3D printing and electroactive tissue support.Adv Sci2019;6:1901229 PMCID:PMC6794627

[46]

Uman S,Burdick JA.Recent advances in shear‐thinning and self-healing hydrogels for biomedical applications.J Appl Polym Sci2020;137:48668

[47]

Jin S,Son D.Tissue adhesive, conductive, and injectable cellulose hydrogel ink for on-skin direct writing of electronics.Gels2022;8:336 PMCID:PMC9222510

[48]

Shin M,Lee H.Plant-inspired pyrogallol-containing functional materials.Adv Funct Mater2019;29:1903022

[49]

Kim S,Son D.Conductive and adhesive granular alginate hydrogels for on-tissue writable bioelectronics.Gels2023;9:167 PMCID:PMC9957464

[50]

Lee KY.Hydrogels for tissue engineering.Chem Rev2001;101:1869-79

[51]

Dromel PC,Andres E.A bioinspired gelatin-hyaluronic acid-based hybrid interpenetrating network for the enhancement of retinal ganglion cells replacement therapy.NPJ Regen Med2021;6:85 PMCID:PMC8688498

[52]

Xing F,Hui D.Hyaluronic acid as a bioactive component for bone tissue regeneration: Fabrication, modification, properties, and biological functions.Nanotechno Rev2020;9:1059-79

[53]

Kim S.Role of free catecholamine in thiol-ene crosslinking for hyaluronic acid hydrogels with high loading efficiency of anticancer drugs.Tissue Eng Regen Med2022;19:281-7 PMCID:PMC8971260

[54]

Shin J,Kim JH.Tissue adhesives: tissue tapes-phenolic hyaluronic acid hydrogel patches for off-the-shelf therapy (Adv. Funct. Mater. 49/2019).Adv Funct Mater2019;29:1970331

[55]

Choi S,Shin J.Osteoconductive hybrid hyaluronic acid hydrogel patch for effective bone formation.J Control Release2020;327:571-83

[56]

An S,Min S.Hyaluronic acid-based biomimetic hydrogels for tissue engineering and medical applications.Biotechnol Bioproc E2021;26:503-16

[57]

Kim KS,Yang JA.Injectable hyaluronic acid-tyramine hydrogels for the treatment of rheumatoid arthritis.Acta Biomater2011;7:666-74

[58]

Kurisawa M,Yang YY,Uyama H.Injectable biodegradable hydrogels composed of hyaluronic acid-tyramine conjugates for drug delivery and tissue engineering.Chem Commun2005;:4312-4

[59]

Kim SD,Kim S,Shin M.Tyramine-functionalized alginate-collagen hybrid hydrogel inks for 3D-bioprinting.Polymers2022;14:3173 PMCID:PMC9371113

[60]

Lee F,Kurisawa M.An injectable hyaluronic acid-tyramine hydrogel system for protein delivery.J Control Release2009;134:186-93

[61]

Wang LS,Lim J.Enzymatic conjugation of a bioactive peptide into an injectable hyaluronic acid-tyramine hydrogel system to promote the formation of functional vasculature.Acta Biomater2014;10:2539-50

[62]

Lee F,Kurisawa M.An injectable enzymatically crosslinked hyaluronic acid- hydrogel system with independent tuning of mechanical strength and gelation rate.Soft Matter2008;4:880-7

[63]

Shin J,Cho JH.Three-dimensional electroconductive hyaluronic acid hydrogels incorporated with carbon nanotubes and polypyrrole by catechol-mediated dispersion enhance neurogenesis of human neural stem cells.Biomacromolecules2017;18:3060-72

[64]

Kim S,Jang LK.Electrochemical deposition of dopamine-hyaluronic acid conjugates for anti-biofouling bioelectrodes.J Mater Chem B2017;5:4507-13

[65]

Kim J,Son D.Phenol-hyaluronic acid conjugates: correlation of oxidative crosslinking pathway and adhesiveness.Polymers2021;13:3130 PMCID:PMC8470095

[66]

Kim SH,Choi H.Mechanically and electrically durable, stretchable electronic textiles for robust wearable electronics.RSC Adv2021;11:22327-33 PMCID:PMC9034242

[67]

Song J,Kang K,Shin M.Stretchable and Self-healable graphene-polymer conductive composite for wearable EMG sensor.Polymers2022;14:3766 PMCID:PMC9505217

[68]

Park K,Kim J.Balanced coexistence of reversible and irreversible covalent bonds in a conductive triple polymeric network enables stretchable hydrogels with high toughness and adhesiveness.ACS Appl Mater Interfaces2022;14:56395-406

[69]

Lee S,Kum J.Stretchable surface electrode arrays using an alginate/PEDOT:PSS-based conductive hydrogel for conformal brain interfacing.Polymers2022;15:84 PMCID:PMC9824691

[70]

Park K,Kang K,Son D.Soft stretchable conductive carboxymethylcellulose hydrogels for wearable sensors.Gels2022;8:92 PMCID:PMC8871095

[71]

Kim Y,An S,Son D.Soft liquid metal-based conducting composite with robust electrical durability for a wearable electrocardiogram sensor.Polymers2022;14:3409 PMCID:PMC9416678

[72]

Sun JY,Illeperuma WR.Highly stretchable and tough hydrogels.Nature2012;489:133-6 PMCID:PMC3642868

[73]

Ju J,Kim S.Addressing the shortcomings of polyphenol-derived adhesives: achievement of long shelf life for effective hemostasis.ACS Appl Mater Interfaces2022;14:25115-25

[74]

Oliva N,Burdick JA.Editorial: special issue on advanced biomedical hydrogels.ACS Biomater Sci Eng2021;7:3993-6

[75]

Choi Y,Son D.Molecular rationale for the design of instantaneous, strain-tolerant polymeric adhesive in a stretchable underwater human-machine interface.ACS Nano2022;16:1368-80

[76]

Nguyen LTB,Ye H.Development of an in situ injectable hydrogel containing hyaluronic acid for neural regeneration.Biomed Mater2020;15:055005

[77]

Moraes MR,Toptan F.Glycerol/PEDOT:PSS coated woven fabric as a flexible heating element on textiles.J Mater Chem C2017;5:3807-22

[78]

Koizumi Y,Watanabe T,Tomita I.Synthesis of poly(3,4-ethylenedioxythiophene)-platinum and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) hybrid fibers by alternating current bipolar electropolymerization.Langmuir2018;34:7598-603

[79]

Liu X,Iqbal A.Glycerol-crosslinked PEDOT:PSS as bifunctional binder for Si anodes: Improved interfacial compatibility and conductivity.J Colloid Interface Sci2020;565:270-7

[80]

Kim J,Kwak J,Kim SH.Enhanced humid reliability of organic thermoelectrics via crosslinking with glycerol.Nanomaterials2019;9:1591 PMCID:PMC6915656

[81]

Choi Y,Choi H,Shin M.Self-healing, stretchable, biocompatible, and conductive alginate hydrogels through dynamic covalent bonds for implantable electronics.Polymers2021;13:1133 PMCID:PMC8038184

[82]

Wang Z,Chen Y,Duan H.3D printed ultrastretchable, hyper-antifreezing conductive hydrogel for sensitive motion and electrophysiological signal monitoring.Research2020;2020:1426078 PMCID:PMC7877384

[83]

Aggas JR,Phipps JF,Guiseppi-Elie A.Microfabricated and 3-D printed electroconductive hydrogels of PEDOT:PSS and their application in bioelectronics.Biosens Bioelectron2020;168:112568

[84]

Hiendlmeier L,Vogel J.4D-Printed soft and stretchable self-folding cuff electrodes for small-nerve interfacing.Adv Mater2023;35:e2210206

[85]

Puza F.3D printing of polymer hydrogels-from basic techniques to programmable actuation.Adv Funct Materials2022;32:2205345

[86]

Kim K,Shin M.Mechanical stabilization of alginate hydrogel fiber and 3D constructs by mussel-inspired catechol modification.Polymers2021;13:892 PMCID:PMC8001931

[87]

Jeong JW,Park SI,Xu L.Soft materials in neuroengineering for hard problems in neuroscience.Neuron2015;86:175-86

[88]

Lacour SP,Guck J.Materials and technologies for soft implantable neuroprostheses.Nat Rev Mater2016;1

[89]

Kang J,Wang GN.Tough and water-insensitive self-healing elastomer for robust electronic skin.Adv Mater2018;30:e1706846

[90]

Lim C,Jung J.Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable, and low-impedance hydrogels.Sci Adv2021;7 PMCID:PMC8104866

[91]

Liu Y,Chen S.Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation.Nat Biomed Eng2019;3:58-68

[92]

Shahini A,Walker KJ.3D conductive nanocomposite scaffold for bone tissue engineering.Int J Nanomedicine2014;9:167-81 PMCID:PMC3875523

[93]

Ouyang L,Kuo CC,Martin DC.In vivo polymerization of poly(3,4-ethylenedioxythiophene) in the living rat hippocampus does not cause a significant loss of performance in a delayed alternation task.J Neural Eng2014;11:026005 PMCID:PMC4124934

[94]

Filho G,Spinelli B,Fiuza F.All-polymeric electrode based on PEDOT:PSS for in vivo neural recording.Biosensors2022;12:853 PMCID:PMC9599788

[95]

Feig VR,Bao Z.Biodegradable polymeric materials in degradable electronic devices.ACS Cent Sci2018;4:337-48 PMCID:PMC5879474

[96]

Uva A,Babi J.Bioderived and degradable polymers for transient electronics.2022;97:801-9

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/