PDF
Abstract
The development of devices that can be mechanically deformed in geometrical layouts, such as flexible/stretchable devices, is important for various applications. Conventional flexible/stretchable devices have been demonstrated using two-dimensional (2D) geometry, resulting in dimensional constraints on device operations and functionality limitations. Accordingly, expanding the dimensions in which such devices can operate and acquiring unique functionality that is difficult to implement in 2D planar structures remain challenging. As a solution, the development of a flexible/stretchable device embedding a three-dimensional (3D) structure fabricated through the precise control of a 2D structure or direct construction has been attracting significant attention. Because of a significant amount of effort, several 3D material systems with distinctive engineering properties, including electrical, optical, thermal, and mechanical properties, which are difficult to occur in nature or to obtain in usual 2D material systems, have been demonstrated. Furthermore, 3D advanced material systems with flexibility and stretchability can provide additional options for developing devices with various form factors. In this review, novel fabrication methods and unprecedented physical properties of flexible/stretchable 3D material systems are reviewed through multiple application cases. In addition, we summarized the latest advances and trends in innovative applications implemented through the introduction of advanced 3D systems in various fields, including microelectromechanical systems, optoelectronics, energy devices, biomedical devices, sensors, actuators, metamaterials, and microfluidic systems.
Keywords
Flexible
/
stretchable
/
three-dimensional (3D)
/
soft electronics
Cite this article
Download citation ▾
Jang Hwan Kim, Su Eon Lee, Bong Hoon Kim.
Applications of flexible and stretchable three-dimensional structures for soft electronics.
Soft Science, 2023, 3(2): 16 DOI:10.20517/ss.2023.07
| [1] |
Aheleroff S,Lu Y.IoT-enabled smart appliances under industry 4.0: a case study.Adv Eng Inform2020;43:101043
|
| [2] |
Wang XX,Cao MS.Assembling nano-microarchitecture for electromagnetic absorbers and smart devices.Adv Mater2020;32:e2002112
|
| [3] |
Bayoumy K,Elshafeey A.Smart wearable devices in cardiovascular care: where we are and how to move forward.Nat Rev Cardiol2021;18:581-99 PMCID:PMC7931503
|
| [4] |
Gao M,Jiang L.Power generation for wearable systems.Energy Environ Sci2021;14:2114-57
|
| [5] |
Ahn S,Maleski K.A 2D titanium carbide MXene flexible electrode for high-efficiency light-emitting diodes.Adv Mater2020;32:e2000919
|
| [6] |
Mackanic DG,Huang Z,Bao Z.Stretchable electrochemical energy storage devices.Chem Soc Rev2020;49:4466-95
|
| [7] |
Lim K,Lee T.Engineering electrodes and metal halide perovskite materials for flexible/stretchable perovskite solar cells and light-emitting diodes.Energy Environ Sci2021;14:2009-35
|
| [8] |
Qi D,Tian G,Huang Y.Stretchable electronics based on PDMS substrates.Adv Mater2021;33:e2003155
|
| [9] |
Wu J,Ding L.A lightweight, ultrathin aramid-based flexible sensor using a combined inkjet printing and buckling strategy.Chem Eng J2021;421:129830
|
| [10] |
Kadumudi FB,Pierchala MK.The manufacture of unbreakable bionics via multifunctional and self-healing silk-graphene hydrogels.Adv Mater2021;33:e2100047
|
| [11] |
Xue Z,Rogers JA,Huang Y.Mechanically-guided structural designs in stretchable inorganic electronics.Adv Mater2020;32:e1902254
|
| [12] |
Chen Y,Carmichael TB.Patterned, flexible, and stretchable silver nanowire/polymer composite films as transparent conductive electrodes.ACS Appl Mater Interf2019;11:31210-9
|
| [13] |
Li M,Wang ZK.Perovskite grains embraced in a soft fullerene network make highly efficient flexible solar cells with superior mechanical stability.Adv Mater2019;31:e1901519
|
| [14] |
Chen X,Zeng G.Realizing ultrahigh mechanical flexibility and > 15% efficiency of flexible organic solar cells via a “welding” flexible transparent electrode.Adv Mater2020;32:e1908478
|
| [15] |
Kou Y,Luo J.An intrinsically flexible phase change film for wearable thermal managements.Energy Stor Mater2021;34:508-14
|
| [16] |
Li WD,Jia J.Recent advances in multiresponsive flexible sensors towards E-skin: a delicate design for versatile sensing.Small2022;18:e2103734
|
| [17] |
Hu Y.Progress in textile-based triboelectric nanogenerators for smart fabrics.Nano Energy2019;56:16-24
|
| [18] |
Mo X,Li W.Piezoelectrets for wearable energy harvesters and sensors.Nano Energy2019;65:104033
|
| [19] |
Lessing J,Walker SB,Lewis JA.Inkjet printing of conductive inks with high lateral resolution on omniphobic “R(F) paper” for paper-based electronics and MEMS.Adv Mater2014;26:4677-82
|
| [20] |
Yu KJ,Han M.Inorganic semiconducting materials for flexible and stretchable electronics.NPJ Flex Electron2017;1
|
| [21] |
Chung HU,Lee JY.Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care.Science2019;363 PMCID:PMC6510306
|
| [22] |
Rogers JA,Feng X.Flexible hybrid electronics.Adv Mater2020;32:e1905590
|
| [23] |
Xie Z,Huang Y.Flexible and stretchable antennas for biointegrated electronics.Adv Mater2020;32:e1902767
|
| [24] |
Kamat AM,Jayawardhana B.Biomimetic soft polymer microstructures and piezoresistive graphene MEMS sensors using sacrificial metal 3D printing.ACS Appl Mater Interf2021;13:1094-104 PMCID:PMC7812595
|
| [25] |
Xu R.Flexible and controllable metadevice using self-assembly MEMS actuator.Nano Lett2021;21:3205-10
|
| [26] |
Yang Q,Xue Y.Ecoresorbable and bioresorbable microelectromechanical systems.Nat Electron2022;5:526-38
|
| [27] |
Zheng X,Krushynska AO,Kottapalli AGP.3D printed graphene piezoresistive microelectromechanical system sensors to explain the ultrasensitive wake tracking of wavy seal whiskers.Adv Funct Mater2022;32:2207274
|
| [28] |
Kim RH,Xiao J.Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics.Nat Mater2010;9:929-37
|
| [29] |
Kim RH,Song YM.Flexible vertical light emitting diodes.Small2012;8:3123-8
|
| [30] |
McCall JG,Shin G.Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics.Nat Protoc2013;8:2413-28 PMCID:PMC4005292
|
| [31] |
Park G,Kim K.Immunologic and tissue biocompatibility of flexible/stretchable electronics and optoelectronics.Adv Healthc Mater2014;3:515-25
|
| [32] |
Kim TH,Kim S.Fully Stretchable optoelectronic sensors based on colloidal quantum dots for sensing photoplethysmographic signals.ACS Nano2017;11:5992-6003
|
| [33] |
Seo HK,Lee J.Efficient flexible organic/inorganic hybrid perovskite light-emitting diodes based on graphene anode.Adv Mater2017;29:1605587
|
| [34] |
Shin G,Al-Hasani R.Flexible near-field wireless optoelectronics as subdermal implants for broad applications in optogenetics.Neuron2017;93:509-521.e3 PMCID:PMC5377903
|
| [35] |
Jung HH,Nie S.Thin metallic heat sink for interfacial thermal management in biointegrated optoelectronic devices.Adv Mater Technol2018;3:1800159
|
| [36] |
Song E,Li R.Flexible electronic/optoelectronic microsystems with scalable designs for chronic biointegration.Proc Natl Acad Sci U S A2019;116:15398-406 PMCID:PMC6681732
|
| [37] |
Lee H,Yokota T,Park S.Stretchable organic optoelectronic devices: design of materials, structures, and applications.Mater Sci Eng R Rep2021;146:100631
|
| [38] |
Zhou H,Lee HD.Overcoming the limitations of MXene electrodes for solution-processed optoelectronic devices.Adv Mater2022;34:e2206377
|
| [39] |
Fukuda K,Zschieschang U.A 4 V operation, flexible braille display using organic transistors, carbon nanotube actuators, and organic static random-access memory.Adv Funct Mater2011;21:4019-27
|
| [40] |
Kim DH,Keum H.Thin, flexible sensors and actuators as “instrumented” surgical sutures for targeted wound monitoring and therapy.Small2012;8:3263-8
|
| [41] |
Rogers JA.Materials science. A clear advance in soft actuators.Science2013;341:968-9
|
| [42] |
Webb RC,Bastien P.Thermal transport characteristics of human skin measured in vivo using ultrathin conformal arrays of thermal sensors and actuators.PLoS One2015;10:e0118131 PMCID:PMC4319855
|
| [43] |
Yu C,Erickson EM,Rogers JA.Oxygen reduction reaction induced pH-responsive chemo-mechanical hydrogel actuators.Soft Matter2015;11:7953-9
|
| [44] |
Wehner M,Fitzgerald DJ.An integrated design and fabrication strategy for entirely soft, autonomous robots.Nature2016;536:451-5
|
| [45] |
Ling Y,Li X.Laser-induced graphene for electrothermally controlled, mechanically guided, 3D assembly and human-soft actuators interaction.Adv Mater2020;32:e1908475
|
| [46] |
Pang W,Wu J.A soft microrobot with highly deformable 3D actuators for climbing and transitioning complex surfaces.Proc Natl Acad Sci U S A2022;119:e2215028119 PMCID:PMC9894190
|
| [47] |
Jeong JW,Shin G.Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics.Cell2015;162:662-74 PMCID:PMC4525768
|
| [48] |
Choi J,Reeder JT.Soft, skin-integrated multifunctional microfluidic systems for accurate colorimetric analysis of sweat biomarkers and temperature.ACS Sens2019;4:379-88
|
| [49] |
Reeder JT,Xue Y.Waterproof, electronics-enabled, epidermal microfluidic devices for sweat collection, biomarker analysis, and thermography in aquatic settings.Sci Adv2019;5:eaau6356 PMCID:PMC6357724
|
| [50] |
Baker LB,Barnes KA.Skin-interfaced microfluidic system with personalized sweating rate and sweat chloride analytics for sports science applications.Sci Adv2020;6 PMCID:PMC7732194
|
| [51] |
Luan H,Liu TL.Complex 3D microfluidic architectures formed by mechanically guided compressive buckling.Sci Adv2021;7:eabj3686 PMCID:PMC8528415
|
| [52] |
Baker LB,Barnes KA.Skin-interfaced microfluidic system with machine learning-enabled image processing of sweat biomarkers in remote settings.Adv. Mater Technol2022;7:2200249
|
| [53] |
Kim J,Luan H.A skin-interfaced, miniaturized microfluidic analysis and delivery system for colorimetric measurements of nutrients in sweat and supply of vitamins through the skin.Adv Sci2022;9:e2103331 PMCID:PMC8805554
|
| [54] |
Wu Y,Vázquez-Guardado A.Wireless multi-lateral optofluidic microsystems for real-time programmable optogenetics and photopharmacology.Nat Commun2022;13:5571 PMCID:PMC9500026
|
| [55] |
Bai K,Xue Z.Geometrically reconfigurable 3D mesostructures and electromagnetic devices through a rational bottom-up design strategy.Sci Adv2020;6:eabb7417
|
| [56] |
Chen S,Du H.Electromechanically reconfigurable optical nano-kirigami.Nat Commun2021;12:1299 PMCID:PMC7910307
|
| [57] |
Fan X,Chen S,Zhao Z.3D flexible frequency selective surface with stable electromagnetic transmission properties.Adv. Mater Technol2022;7:2101316
|
| [58] |
Sun Y,Jiang H,Rogers JA.Controlled buckling of semiconductor nanoribbons for stretchable electronics.Nat Nanotechnol2006;1:201-7
|
| [59] |
Yu C,Yuan P.Electronically programmable, reversible shape change in two- and three-dimensional hydrogel structures (Adv. Mater. 11/2013).Adv Mater2013;25:1540-1540
|
| [60] |
McCracken JM,Badea A.Deterministic integration of biological and soft materials onto 3D microscale cellular frameworks.Adv Biosyst2017;1:1700068 PMCID:PMC5850936
|
| [61] |
Zhang Y,Yan Z.Printing, folding and assembly methods for forming 3D mesostructures in advanced materials.Nat Rev Mater2017;2
|
| [62] |
Kim BH,Yu Y.Mechanically guided post-assembly of 3D electronic systems.Adv Funct Mater2018;28:1803149
|
| [63] |
Cheng X.Micro/nanoscale 3D assembly by rolling, folding, curving, and buckling approaches.Adv Mater2019;31:e1901895
|
| [64] |
Li S,Rogers JA,Huang Y.Mechanics of buckled serpentine structures formed via mechanics-guided, deterministic three-dimensional assembly.J Mech Phys Solids2019;125:736-48
|
| [65] |
Nan K,Ning X.Soft three-dimensional microscale vibratory platforms for characterization of nano-thin polymer films.ACS Nano2019;13:449-57
|
| [66] |
Lim S,Zhao S.Assembly of foldable 3D microstructures using graphene hinges.Adv Mater2020;32:e2001303
|
| [67] |
Zhao H,Han M.Nanofabrication approaches for functional three-dimensional architectures.Nano Today2020;30:100825
|
| [68] |
Park Y,Lee G.Materials chemistry of neural interface technologies and recent advances in three-dimensional systems.Chem Rev2022;122:5277-316
|
| [69] |
Yoon HJ,Kim JT.Biodegradable, three-dimensional colorimetric fliers for environmental monitoring.Sci Adv2022;8:eade3201 PMCID:PMC9788784
|
| [70] |
Zhang Y,Fu H.Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable electronics with high areal coverage.Soft Matter2013;9:8062-70 PMCID:PMC4189820
|
| [71] |
Xu S,Jang KI.Materials science. Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling.Science2015;347:154-9
|
| [72] |
Huang S,Guo CF.A highly stretchable and fatigue-free transparent electrode based on an in-plane buckled au nanotrough network.Adv Electron Mater2017;3:1600534
|
| [73] |
Ning X,Yu X.Three-dimensional multiscale, multistable, and geometrically diverse microstructures with tunable vibrational dynamics assembled by compressive buckling.Adv Funct Mater2017;27:1605914 PMCID:PMC5813837
|
| [74] |
Li H,Zhu F.Viscoelastic characteristics of mechanically assembled three-dimensional structures formed by compressive buckling.J Appl Mech2018;85:121002
|
| [75] |
Wang H,Li H.Vibration of mechanically-assembled 3D microstructures formed by compressive buckling.J Mech Phys Solids2018;112:187-208 PMCID:PMC5918305
|
| [76] |
Ahn BY,Hansen CJ,Dunand DC.Printed origami structures.Adv Mater2010;22:2251-4
|
| [77] |
Shi Y,Nan K.Plasticity-induced origami for assembly of three dimensional metallic structures guided by compressive buckling.Extreme Mech Lett2017;11:105-10
|
| [78] |
Li C,Han M.Synergistic photoactuation of bilayered spiropyran hydrogels for predictable origami-like shape change.Matter2021;4:1377-90
|
| [79] |
Lamoureux A,Shlian M,Shtein M.Dynamic kirigami structures for integrated solar tracking.Nat Commun2015;6:8092 PMCID:PMC4569711
|
| [80] |
Neville RM,Pirrera A.Shape morphing kirigami mechanical metamaterials.Sci Rep2016;6:31067 PMCID:PMC4974615
|
| [81] |
Humood M,Han M.Fabrication and deformation of 3D multilayered kirigami microstructures.Small2018;14:e1703852
|
| [82] |
Zheng M,Liu Z.Kirigami-inspired multiscale patterning of metallic structures via predefined nanotrench templates.Microsyst Nanoeng2019;5:54 PMCID:PMC6885514
|
| [83] |
Bashandeh K,Lee J.The effect of defects on the cyclic behavior of polymeric 3D kirigami structures.Extreme Mech Lett2020;36:100650
|
| [84] |
Guo X,Li J.Designing mechanical metamaterials with kirigami-inspired, hierarchical constructions for giant positive and negative thermal expansion.Adv Mater2021;33:e2004919
|
| [85] |
Dogan E,Cecen B.3D printing metamaterials towards tissue engineering.Appl Mater Today2020;20:100752 PMCID:PMC7446732
|
| [86] |
Xiong Z,Hao S.3D-printing damage-tolerant architected metallic materials with shape recoverability via special deformation design of constituent material.ACS Appl Mater Interf2021;13:39915-24
|
| [87] |
Okutani C,Miyazako H.3D printed spring-type electronics with liquid metals for highly stretchable conductors and inductive strain/pressure sensors.Adv Mater Technol2022;7:2101657
|
| [88] |
Yoon J,Semichaevsky AV.Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides.Nat Commun2011;2:343
|
| [89] |
Guo CF,Sun T.Deformation-induced cold-welding for self-healing of super-durable flexible transparent electrodes.Nano Energy2014;8:110-7
|
| [90] |
Dagdeviren C,Tuzman OL.Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation.Extreme Mech Lett2016;9:269-81
|
| [91] |
Hong S,Do K.Stretchable electrode based on laterally combed carbon nanotubes for wearable energy harvesting and storage devices.Adv Funct Mater2017;27:1704353
|
| [92] |
Nan K,Li K.Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices.Sci Adv2018;4:eaau5849 PMCID:PMC6214638
|
| [93] |
Liu R,Li A.An efficient ultra-flexible photo-charging system integrating organic photovoltaics and supercapacitors.Adv Energy Mater2020;10:2000523
|
| [94] |
Sheng H,Liang J.Recent advances of energy solutions for implantable bioelectronics.Adv Healthc Mater2021;10:e2100199
|
| [95] |
Jiang F,Lv J.Stretchable, breathable, and stable lead-free perovskite/polymer nanofiber composite for hybrid triboelectric and piezoelectric energy harvesting.Adv Mater2022;34:e2200042
|
| [96] |
Fang H,Gloschat C.Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac electrophysiology.Nat Biomed Eng2017;1:0038 PMCID:PMC5552067
|
| [97] |
Bai W,Ma Y.Flexible transient optical waveguides and surface-wave biosensors constructed from monocrystalline silicon.Adv Mater2018;30:e1801584
|
| [98] |
Wang C,Hu H.Monitoring of the central blood pressure waveform via a conformal ultrasonic device.Nat Biomed Eng2018;2:687-95 PMCID:PMC6428206
|
| [99] |
Yu X,Ning X.Needle-shaped ultrathin piezoelectric microsystem for guided tissue targeting via mechanical sensing.Nat Biomed Eng2018;2:165-72
|
| [100] |
Bandodkar AJ,Huang I.Sweat-activated biocompatible batteries for epidermal electronic and microfluidic systems.Nat Electron2020;3:554-62
|
| [101] |
Kim S,Reeder JT.Soft, skin-interfaced microfluidic systems with integrated immunoassays, fluorometric sensors, and impedance measurement capabilities.Proc Natl Acad Sci U S A2020;117:27906-15 PMCID:PMC7668081
|
| [102] |
Choi J,Deng Y.Skin-interfaced microfluidic systems that combine hard and soft materials for demanding applications in sweat capture and analysis.Adv Healthc Mater2021;10:e2000722
|
| [103] |
Liang Q,Rogers JA.Advanced materials and devices for medical applications.APL Materials2021;9:090401
|
| [104] |
Ryu H,Rogers JA.Bioresorbable metals for biomedical applications: from mechanical components to electronic devices.Adv Healthc Mater2021;10:e2002236
|
| [105] |
Yang Q,Yin RT.Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices and soft biological tissues.Nat Mater2021;20:1559-70 PMCID:PMC8551016
|
| [106] |
Nguyen TK,Truong TA.Integrated, transparent silicon carbide electronics and sensors for radio frequency biomedical therapy.ACS Nano2022;16:10890-903 PMCID:PMC9332346
|
| [107] |
Tian L,Webb RC.Flexible and stretchable 3ω sensors for thermal characterization of human skin.Adv Funct Mater2017;27:1701282
|
| [108] |
Guo X,Ou D.Controlled mechanical assembly of complex 3D mesostructures and strain sensors by tensile buckling.NPJ Flex Electron2018;2
|
| [109] |
Kim SB,Raj MS.Soft, skin-interfaced microfluidic systems with wireless, battery-free electronics for digital, real-time tracking of sweat loss and electrolyte composition.Small2018;14:e1802876
|
| [110] |
Bandodkar AJ,Choi J.Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat.Sci Adv2019;5:eaav3294 PMCID:PMC6357758
|
| [111] |
Bai N,Wang Q.Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity.Nat Commun2020;11:209 PMCID:PMC6954251
|
| [112] |
Fu M,Jin Y,Huang S.A highly sensitive, reliable, and high-temperature-resistant flexible pressure sensor based on ceramic nanofibers.Adv Sci2020;7:2000258 PMCID:PMC7507114
|
| [113] |
Ryu D,Price JT.Comprehensive pregnancy monitoring with a network of wireless, soft, and flexible sensors in high- and low-resource health settings.Proc Natl Acad Sci U S A2021;118 PMCID:PMC8157941
|
| [114] |
Zhao H,Wang H.Compliant 3D frameworks instrumented with strain sensors for characterization of millimeter-scale engineered muscle tissues.Proc Natl Acad Sci U S A2021;118 PMCID:PMC8126769
|
| [115] |
Bai N,Xue Y.Graded interlocks for iontronic pressure sensors with high sensitivity and high linearity over a broad range.ACS Nano2022;16:4338-47
|
| [116] |
Zhao C,Tang G.Ionic flexible sensors: mechanisms, materials, structures, and applications.Adv Funct Mater2022;32:2110417
|
| [117] |
Chanda D,Gupta S.Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing.Nat Nanotechnol2011;6:402-7
|
| [118] |
Silverberg JL,McLeod L.Applied origami. Using origami design principles to fold reprogrammable mechanical metamaterials.Science2014;345:647-50
|
| [119] |
Eidini M.Unraveling metamaterial properties in zigzag-base folded sheets.Sci Adv2015;1:e1500224 PMCID:PMC4643767
|
| [120] |
Zhang H,Fang D.Hierarchical mechanical metamaterials built with scalable tristable elements for ternary logic operation and amplitude modulation.Sci Adv2021;7 PMCID:PMC7904272
|
| [121] |
Zhang KP,Qiu B.3D printed embedded metamaterials.Small2021;17:e2103262
|
| [122] |
Valentine AD,Boley JW.Hybrid 3D printing of soft electronics.Adv Mater2017;29:1703817
|
| [123] |
Lin R,Mao X,Liu R.Hybrid 3D printing all-in-one heterogenous rigidity assemblies for soft electronics.Adv Mater Technol2019;4:1900614
|
| [124] |
Goh GL,Chong TH.3D printing of multilayered and multimaterial electronics: a review.Adv Electron Mater2021;7:2100445
|
| [125] |
Aditya Khatokar J,Sudhir Bale A.A study on improved methods in micro-electromechanical systems technology.Mater Today Proc2021;43:3784-90
|
| [126] |
Hassanin H,Sareh P.Microadditive manufacturing technologies of 3D microelectromechanical systems.Adv Eng Mater2021;23:2100422
|
| [127] |
Martyniuk M,Putrino G.Optical microelectromechanical systems technologies for spectrally adaptive sensing and imaging.Adv Funct Mater2022;32:2103153
|
| [128] |
Chircov C.Microelectromechanical systems (MEMS) for biomedical applications.Micromachines2022;13:164 PMCID:PMC8875460
|
| [129] |
Ren Z,Ma Y,Dong B.Leveraging of MEMS technologies for optical metamaterials applications.Adv Optical Mater2020;8:1900653
|
| [130] |
Koene I,Kuosmanen P.Internet of things based monitoring of large rotor vibration with a microelectromechanical systems accelerometer.IEEE Access2019;7:92210-9
|
| [131] |
Gao L,Zhang H.Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures.ACS Nano2015;9:5968-75
|
| [132] |
Liu Y,Lin Q.Guided formation of 3D helical mesostructures by mechanical buckling: analytical modeling and experimental validation.Adv Funct Mater2016;26:2909-18 PMCID:PMC4972031
|
| [133] |
Nan K,Yan Z.Engineered elastomer substrates for guided assembly of complex 3D mesostructures by spatially nonuniform compressive buckling.Adv Funct Mater2017;27:1604281 PMCID:PMC5621772
|
| [134] |
Shi Y,Cheng X.An analytic model of two-level compressive buckling with applications in the assembly of free-standing 3D mesostructures.Soft Matter2018;14:8828-37
|
| [135] |
Zhao H,Han M.Buckling and twisting of advanced materials into morphable 3D mesostructures.Proc Natl Acad Sci U S A2019;116:13239-48 PMCID:PMC6613082
|
| [136] |
Zhang Y,Nan K.A mechanically driven form of kirigami as a route to 3D mesostructures in micro/nanomembranes.Proc Natl Acad Sci U S A2015;112:11757-64 PMCID:PMC4586832
|
| [137] |
Rafsanjani A.Buckling-induced kirigami.Phys Rev Lett2017;118:084301
|
| [138] |
Ning X,Zhang Y.Assembly of advanced materials into 3D functional structures by methods inspired by origami and kirigami: a review.Adv Mater Interf2018;5:1800284
|
| [139] |
Abdullah AM,Braun PV,Hsia KJ.Kirigami-inspired self-assembly of 3D structures.Adv Funct Mater2020;30:1909888
|
| [140] |
Bashandeh K,Wu Q.Mechanics and deformation of shape memory polymer kirigami microstructures.Extreme Mech Lett2020;39:100831
|
| [141] |
Yan Z,Wang J.Controlled mechanical buckling for origami-inspired construction of 3D microstructures in advanced materials.Adv Funct Mater2016;26:2629-39
|
| [142] |
Chung HU,Hourlier-Fargette A.Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units.Nat Med2020;26:418-29 PMCID:PMC7315772
|
| [143] |
Fu H,Bai W.Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics.Nat Mater2018;17:268-76 PMCID:PMC5877475
|
| [144] |
Zhang L,Weisbecker H.3D morphable systems via deterministic microfolding for vibrational sensing, robotic implants, and reconfigurable telecommunication.Sci Adv2022;8:eade0838 PMCID:PMC9770994
|
| [145] |
Chen Z,He Y.Soft, bistable actuators for reconfigurable 3D electronics.ACS Appl Mater Interf2021;13:41968-77
|
| [146] |
Humood M,Shi Y.Fabrication and mechanical cycling of polymer microscale architectures for 3D MEMS sensors.Adv Eng Mater2019;21:1801254
|
| [147] |
Liu F,Song H.High performance, tunable electrically small antennas through mechanically guided 3D assembly.Small2019;15:e1804055
|
| [148] |
Sim K,Li Y,Yu C.Curvy surface conformal ultra-thin transfer printed Si optoelectronic penetrating microprobe arrays.NPJ Flex Electron2018;2
|
| [149] |
Ko HC,Song J.A hemispherical electronic eye camera based on compressible silicon optoelectronics.Nature2008;454:748-53
|
| [150] |
Lee SW,Park SW.3D motion tracking display enabled by magneto-interactive electroluminescence.Nat Commun2020;11:6072 PMCID:PMC7695719
|
| [151] |
Rao Z,Li Z.Curvy, shape-adaptive imagers based on printed optoelectronic pixels with a kirigami design.Nat Electron2021;4:513-21
|
| [152] |
Mawlong LPL.3D-structured photodetectors based on 2D transition-metal dichalcogenide.Small Struct2022;3:2100149
|
| [153] |
Kim J,Araki H.Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin.Sci Adv2016;2:e1600418 PMCID:PMC4972468
|
| [154] |
Kang S,Wang HS.Self-powered flexible full-color display via dielectric-tuned hybrimer triboelectric nanogenerators.ACS Energy Lett2021;6:4097-107
|
| [155] |
Lee Y,Hu L,Ahn J.Morphable 3D structure for stretchable display.Mater Today2022;53:51-7
|
| [156] |
Yong K,Hsieh EY,Aluru NR.Kirigami-inspired strain-insensitive sensors based on atomically-thin materials.Mater Today2020;34:58-65
|
| [157] |
Wang X,Ye J.Freestanding 3D mesostructures, functional devices, and shape-programmable systems based on mechanically induced assembly with shape memory polymers.Adv Mater2019;31:e1805615
|
| [158] |
Lee W,Lee Y.Two-dimensional materials in functional three-dimensional architectures with applications in photodetection and imaging.Nat Commun2018;9:1417 PMCID:PMC5897379
|
| [159] |
Kim DC,Kim J.Three-dimensional foldable quantum dot light-emitting diodes.Nat Electron2021;4:671-80
|
| [160] |
Li Y,Yu K.Remotely controlled, reversible, on-demand assembly and reconfiguration of 3D mesostructures via liquid crystal elastomer platforms.ACS Appl Mater Interf2021;13:8929-39
|
| [161] |
Park Y,Kwon K.Transformable, freestanding 3D mesostructures based on transient materials and mechanical interlocking.Adv Funct Mater2019;29:1903181
|
| [162] |
Azani M,Torres T.Benefits, problems, and solutions of silver nanowire transparent conductive electrodes in indium tin oxide (ITO)‐free flexible solar cells.Adv Energy Mater2020;10:2002536
|
| [163] |
Heo S,Song YM.Determining the effectiveness of radiative cooler-integrated solar cells.Adv Energy Mater2022;12:2103258
|
| [164] |
Huang S,Najafabadi HS,Ren Z.A highly flexible semi-tubular carbon film for stable lithium metal anodes in high-performance batteries.Nano Energy2017;38:504-9
|
| [165] |
Lee MH,Jung SK.A biodegradable secondary battery and its biodegradation mechanism for eco-friendly energy-storage systems.Adv Mater2021;33:e2004902
|
| [166] |
Huang I,Arafa HM.High performance dual-electrolyte magnesium-iodine batteries that can harmlessly resorb in the environment or in the body.Energy Environ Sci2022;15:4095-108
|
| [167] |
Jinno H,Xu X.Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications.Nat Energy2017;2:780-5
|
| [168] |
Lu L,Meacham K.Biodegradable monocrystalline silicon photovoltaic microcells as power supplies for transient biomedical implants.Adv Energy Mater2018;8:1703035
|
| [169] |
Chu H,Lee Y,Ahn J.Conformal, graphene-based triboelectric nanogenerator for self-powered wearable electronics.Nano Energy2016;27:298-305
|
| [170] |
Tao K,Yang Y.Origami-inspired electret-based triboelectric generator for biomechanical and ocean wave energy harvesting.Nano Energy2020;67:104197
|
| [171] |
Gong X,Zhi C.Stretchable energy storage devices: from materials and structural design to device assembly.Adv Energy Mater2021;11:2003308
|
| [172] |
Han M,Yang Y.Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants.Nat Electron2019;2:26-35
|
| [173] |
Kim YG,Hwang B,Song JH.Improved performance of stretchable piezoelectric energy harvester based on stress rearrangement.Sci Rep2022;12:19149
|
| [174] |
Yang C,Xia H.3D printed template-assisted assembly of additive-free Ti3C2Tx MXene microlattices with customized structures toward high areal capacitance.ACS Nano2022;16:2699-710
|
| [175] |
Xia X,Yang H.Electrochemically reconfigurable architected materials.Nature2019;573:205-13
|
| [176] |
Guo Z,Zhu W.Kirigami-based stretchable, deformable, ultralight thin-film thermoelectric generator for bodynet application.Adv Energy Mater2022;12:2102993
|
| [177] |
Miao L,Ren Z.3D temporary-magnetized soft robotic structures for enhanced energy harvesting.Adv Mater2021;33:e2102691
|
| [178] |
Ling Y,Xu Z.Mechanically assembled, three-dimensional hierarchical structures of cellular graphene with programmed geometries and outstanding electromechanical properties.ACS Nano2018;12:12456-63
|
| [179] |
Pan Y,Li C,Shum HC.Plant-inspired TransfOrigami microfluidics.Sci Adv2022;8:eabo1719 PMCID:PMC9067916
|
| [180] |
Sim K,Zhang Y.An epicardial bioelectronic patch made from soft rubbery materials and capable of spatiotemporal mapping of electrophysiological activity.Nat Electron2020;3:775-84
|
| [181] |
Sempionatto JR,Yin L.An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers.Nat Biomed Eng2021;5:737-48
|
| [182] |
Bai W,Fu R.Bioresorbable photonic devices for the spectroscopic characterization of physiological status and neural activity.Nat Biomed Eng2019;3:644-54
|
| [183] |
Zhang Y,Gutruf P.Battery-free, fully implantable optofluidic cuff system for wireless optogenetic and pharmacological neuromodulation of peripheral nerves.Sci Adv2019;5:eaaw5296 PMCID:PMC6611690
|
| [184] |
Won SM,Gutruf P.Wireless and battery-free technologies for neuroengineering.Nat Biomed Eng2023;7:405-23 PMCID:PMC8423863
|
| [185] |
Wang X,Luan H.Three-dimensional electronic scaffolds for monitoring and regulation of multifunctional hybrid tissues.Extreme Mech Lett2020;35:100634
|
| [186] |
Song E,Bai W.Miniaturized electromechanical devices for the characterization of the biomechanics of deep tissue.Nat Biomed Eng2021;5:759-71
|
| [187] |
Wang C,Lin M.Continuous monitoring of deep-tissue haemodynamics with stretchable ultrasonic phased arrays.Nat Biomed Eng2021;5:749-58
|
| [188] |
Han M,Aras K.Catheter-integrated soft multilayer electronic arrays for multiplexed sensing and actuation during cardiac surgery.Nat Biomed Eng2020;4:997-1009 PMCID:PMC8021456
|
| [189] |
Park Y,Rogers JA.Three dimensional bioelectronic interfaces to small-scale biological systems.Curr Opin Biotechnol2021;72:1-7
|
| [190] |
Zhao J,Guo X,Rogers JA.Theoretical modeling of tunable vibrations of three-dimensional serpentine structures for simultaneous measurement of adherent cell mass and modulus.MRS Bulletin2021;46:107-14
|
| [191] |
Skylar-Scott MA,Nam LL.Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels.Sci Adv2019;5:eaaw2459 PMCID:PMC6731072
|
| [192] |
Xue Z,Xu S.Assembly of complex 3D structures and electronics on curved surfaces.Sci Adv2022;8:eabm6922 PMCID:PMC9365271
|
| [193] |
Gu Y,Kim N.Three-dimensional transistor arrays for intra- and inter-cellular recording.Nat Nanotechnol2022;17:292-300 PMCID:PMC8994210
|
| [194] |
Chen Z,Xu Y.Compressive buckling fabrication of 3D cell-laden microstructures.Adv Sci2021;8:e2101027 PMCID:PMC8425919
|
| [195] |
Yan D,Zhang H.Soft three-dimensional network materials with rational bio-mimetic designs.Nat Commun2020;11:1180 PMCID:PMC7055264
|
| [196] |
Park Y,Ryu H.Three-dimensional, multifunctional neural interfaces for cortical spheroids and engineered assembloids.Sci Adv2021;7 PMCID:PMC7968849
|
| [197] |
Huang Q,Romero JC.Shell microelectrode arrays (MEAs) for brain organoids.Sci Adv2022;8:eabq5031 PMCID:PMC9385157
|
| [198] |
Lou Z,Jiang K.Programmable three-dimensional advanced materials based on nanostructures as building blocks for flexible sensors.Nano Today2019;26:176-98
|
| [199] |
Zhang F,Xue Z.Recent progress in three-dimensional flexible physical sensors.Int J Smart Nano Mater2022;13:17-41
|
| [200] |
Wu S,Yu Y.Strategies for designing stretchable strain sensors and conductors.Adv Mater Technol2020;5:1900908
|
| [201] |
Kim BH,Kim JT.Three-dimensional electronic microfliers inspired by wind-dispersed seeds.Nature2021;597:503-10
|
| [202] |
Goh GL,Yong WY. 3D printing of microfluidic sensor for soft robots: a preliminary study in design and fabrication. Available from: https://dr.ntu.edu.sg/handle/10356/84409 [Last accessed on 9 May 2023]
|
| [203] |
Truby RL,Grosskopf AK.Soft somatosensitive actuators via embedded 3D printing.Adv Mater2018;30:e1706383
|
| [204] |
Peng S,Lin J.Tailored and highly stretchable sensor prepared by crosslinking an enhanced 3D printed UV-curable sacrificial mold.Adv Funct Mater2021;31:2008729
|
| [205] |
Won SM,Kim BH.Multimodal sensing with a three-dimensional piezoresistive structure.ACS Nano2019;13:10972-9
|
| [206] |
Becker C,Karnaushenko DD.A new dimension for magnetosensitive e-skins: active matrix integrated micro-origami sensor arrays.Nat Commun2022;13:2121 PMCID:PMC9018910
|
| [207] |
Liu J,Xiong W,Li K.Self-healing kirigami assembly strategy for conformal electronics.Adv Funct Mater2022;32:2109214
|
| [208] |
Katiyar AK,Yun WS,Ahn JH.Breaking the absorption limit of Si toward SWIR wavelength range via strain engineering.Sci Adv2020;6:eabb0576 PMCID:PMC7439440
|
| [209] |
Cheng X,Bo R.An anti-fatigue design strategy for 3D ribbon-shaped flexible electronics.Adv Mater2021;33:e2102684
|
| [210] |
Wang Y,Fan S.Three-dimensional stretchable microelectronics by projection microstereolithography (PμSL).ACS Appl Mater Interf2021;13:8901-8
|
| [211] |
Zhalmuratova D.Reinforced gels and elastomers for biomedical and soft robotics applications.ACS Appl Polym Mater2020;2:1073-91
|
| [212] |
Skylar-Scott MA,Visser CW.Voxelated soft matter via multimaterial multinozzle 3D printing.Nature2019;575:330-5
|
| [213] |
Sun Y,Wu M.Origami-inspired folding assembly of dielectric elastomers for programmable soft robots.Microsyst Nanoeng2022;8:37 PMCID:PMC8971403
|
| [214] |
Patel DK,Luo Y.Highly dynamic bistable soft actuator for reconfigurable multimodal soft robots.Adv Mater Technol2023;8:2201259
|
| [215] |
Keneth E, Kamyshny A, Totaro M, Beccai L, Magdassi S. 3D printing materials for soft robotics.Adv Mater2021;33:e2003387
|
| [216] |
Tawk C.A review of 3D-printable soft pneumatic actuators and sensors: research challenges and opportunities.Adv Intell Syst2021;3:2000223
|
| [217] |
Ning X,Wang H.Mechanically active materials in three-dimensional mesostructures.Sci Adv2018;4:eaat8313 PMCID:PMC6140627
|
| [218] |
Xiang S,Yin H,Zhu M.Visible-light-driven isotropic hydrogels as anisotropic underwater actuators.Nano Energy2021;85:105965
|
| [219] |
Han M,Chen X.Submillimeter-scale multimaterial terrestrial robots.Sci Robot2022;7:eabn0602
|
| [220] |
Deng H,Xie Y,Yan Z.Laser reprogramming magnetic anisotropy in soft composites for reconfigurable 3D shaping.Nat Commun2020;11:6325 PMCID:PMC7730436
|
| [221] |
Zhu Y,Oldham KR.Elastically and plastically foldable electrothermal micro-origami for controllable and rapid shape morphing.Adv Funct Mater2020;30:2003741
|
| [222] |
Yi S,Chen Z.High-throughput fabrication of soft magneto-origami machines.Nat Commun2022;13:4177 PMCID:PMC9296529
|
| [223] |
Lin Z,Wei H.Folding at the microscale: enabling multifunctional 3D origami-architected metamaterials.Small2020;16:e2002229
|
| [224] |
Xiang X,Zhang S.The mechanical characteristics of graded Miura-ori metamaterials.Mater Des2021;211:110173
|
| [225] |
Kadic M,van Hecke M.3D metamaterials.Nat Rev Phys2019;1:198-210
|
| [226] |
Cheng L,Yang H.The twisting of dome-like metamaterial from brittle to ductile.Adv Sci2021;8:2002701
|
| [227] |
Pan R,Zhu W,Gu C.Asymmetrical chirality in 3D bended metasurface.Adv Funct Mater2021;31:2100689
|
| [228] |
Farzaneh A,Portela CM.Sequential metamaterials with alternating Poisson’s ratios.Nat Commun2022;13:1041 PMCID:PMC8873317
|
| [229] |
Zhong Q,Gao B,Gu Z.Advances of microfluidics in biomedical engineering.Adv Mater Technol2019;4:1800663
|
| [230] |
Nielsen JB,Almughamsi HM,Fish TR.Microfluidics: innovations in materials and their fabrication and functionalization.Anal Chem2020;92:150-68 PMCID:PMC7034066
|
| [231] |
Raj M K.PDMS microfluidics: a mini review.J Appl Polym Sci2020;137:48958
|
| [232] |
Fallahi H,Phan HP.Flexible microfluidics: fundamentals, recent developments, and applications.Micromachines2019;10:830 PMCID:PMC6953028
|
| [233] |
Mehta V.3D printed microfluidic devices: a review focused on four fundamental manufacturing approaches and implications on the field of healthcare.Bio-des Manuf2021;4:311-43
|
| [234] |
Weigel N,Thiele J.Flexible materials for high-resolution 3D printing of microfluidic devices with integrated droplet size regulation.ACS Appl Mater Interf2021;13:31086-101 PMCID:PMC8267847
|
| [235] |
Bertassoni LE,Manoharan V.Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs.Lab Chip2014;14:2202-11 PMCID:PMC4201051
|
| [236] |
Wu W,Lewis JA.Omnidirectional printing of 3D microvascular networks.Adv Mater2011;23:H178-83
|
| [237] |
Wang Z,Wu G.Shape-programmable three-dimensional microfluidic structures.ACS Appl Mater Interf2022;14:15599-607 PMCID:PMC9552124
|
| [238] |
Ng PF,Yang M.Fabrication of 3D PDMS microchannels of adjustable cross-sections via versatile gel templates.Polymers2019;11:64 PMCID:PMC6402007
|
| [239] |
Zhai Z,Jiang H.Mechanical metamaterials based on origami and kirigami.Applied Physics Reviews2021;8:041319
|
| [240] |
Truby RL.Printing soft matter in three dimensions.Nature2016;540:371-8
|