Stretchable synaptic transistors based on the field effect for flexible neuromorphic electronics

Xiumei Wang , Longqi Qi , Huihuang Yang , Yuan Rao , Huipeng Chen

Soft Science ›› 2023, Vol. 3 ›› Issue (2) : 15

PDF
Soft Science ›› 2023, Vol. 3 ›› Issue (2) :15 DOI: 10.20517/ss.2023.06
Perspective

Stretchable synaptic transistors based on the field effect for flexible neuromorphic electronics

Author information +
History +
PDF

Abstract

Using flexible neuromorphic electronics that emulate biological neuronal systems is an innovative approach for facilitating the implementation of next-generation artificial intelligence devices, including wearable computers, soft robotics devices, and neuroprosthetics. Stretchable synaptic transistors based on field-effect transistors (FETs), which have functions and structures resembling those of biological synapses, are promising technological devices in flexible neuromorphic electronics owing to their high flexibility, excellent biocompatibility, and easy processability. However, obtaining stretchable synaptic FETs with various synaptic characteristics and good stretching stabilities is challenging. Significant efforts to produce stretchable synaptic FETs have been undertaken, and remarkable advances in materials, fabrication processes, and applications have been achieved. From this perspective, we discuss the requirements for neuromorphic devices in flexible neuromorphic electronics and the advantages of stretchable synaptic FETs. Moreover, representative methods used to implement stretchable synaptic transistors, including the structural design and development of intrinsically stretchable devices, are introduced. Additionally, the application of stretchable synaptic transistors in artificial sensory systems such as light, tactile, and multisensory artificial nervous systems is also discussed. Finally, we highlight the possible challenges in implementing and using stretchable synaptic transistors, propose solutions to overcome the current limitations of these devices, and suggest future research directions.

Keywords

Flexible neuromorphic electronics / stretchable synaptic transistors / field-effect transistors / artificial sensory systems

Cite this article

Download citation ▾
Xiumei Wang, Longqi Qi, Huihuang Yang, Yuan Rao, Huipeng Chen. Stretchable synaptic transistors based on the field effect for flexible neuromorphic electronics. Soft Science, 2023, 3(2): 15 DOI:10.20517/ss.2023.06

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Raeis-hosseini N,Lee J.Flexible artificial synaptic devices based on collagen from fish protein with spike-timing-dependent plasticity.Adv Funct Mater2018;28:1800553

[2]

Sarkar D,Wang W.Mimicking biological synaptic functionality with an indium phosphide synaptic device on silicon for scalable neuromorphic computing.ACS Nano2018;12:1656-63

[3]

Hu M,Li C.Memristor-based analog computation and neural network classification with a dot product engine.Adv Mater2018;30:1705914

[4]

Park HL,Kim N,Go GT.Flexible neuromorphic electronics for computing, soft robotics, and neuroprosthetics.Adv Mater2020;32:e1903558

[5]

Shim H,Ershad F.Stretchable elastic synaptic transistors for neurologically integrated soft engineering systems.Sci Adv2019;5:eaax4961 PMCID:PMC6788872

[6]

Calahorro F.The presynaptic machinery at the synapse of C. elegans.Invert Neurosci2018;18:4 PMCID:PMC5851683

[7]

Zidan MA,Lu WD.The future of electronics based on memristive systems.Nat Electron2018;1:22-9

[8]

Mesulam MM.From sensation to cognition.Brain1998;121:1013-52

[9]

Doetsch GS.Patterns in the brain. Neuronal population coding in the somatosensory system.Physiol Behav2000;69:187-201

[10]

Yang M,Tang Q.Stretchable and conformable synapse memristors for wearable and implantable electronics.Nanoscale2018;10:18135-44

[11]

van de Burgt Y,Fuller EJ.A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing.Nat Mater2017;16:414-8

[12]

Chen J,Zheng D.Highly stretchable organic electrochemical transistors with strain-resistant performance.Nat Mater2022;21:564-71

[13]

Nguyen TD,Lee Y.Stretchable and stable electrolyte-gated organic electrochemical transistor synapse with a nafion membrane for enhanced synaptic properties.Adv Eng Mater2022;24:2100918

[14]

Huang W,Zhang Y.Intrinsically stretchable carbon nanotube synaptic transistors with associative learning ability and mechanical deformation response.Carbon2022;189:386-94

[15]

Molina-Lopez F,Kraft U.Inkjet-printed stretchable and low voltage synaptic transistor array.Nat Commun2019;10:2676 PMCID:PMC6582140

[16]

Li J,Wang Q.Highly stretchable MoS2-based transistors with opto-synaptic functionalities.Adv Elect Materials2022;8:2200238

[17]

Shim H,Jang JG.Fully rubbery synaptic transistors made out of all-organic materials for elastic neurological electronic skin.Nano Res2022;15:758-64

[18]

Xu F,Zhao X.Intrinsically stretchable photonic synaptic transistors for retina-like visual image systems.J Mater Chem C2022;10:10586-94

[19]

Lee Y,Xu W.Stretchable organic optoelectronic sensorimotor synapse.Sci Adv2018;4:eaat7387 PMCID:PMC6251720

[20]

Wang Y,Zhang Y.Stretchable temperature-responsive multimodal neuromorphic electronic skin with spontaneous synaptic plasticity recovery.ACS Nano2022;16:8283-93

[21]

Liu L,Ni Y.Stretchable neuromorphic transistor that combines multisensing and information processing for epidermal gesture recognition.ACS Nano2022;16:2282-91

[22]

Shim H,Patel S.An elastic and reconfigurable synaptic transistor based on a stretchable bilayer semiconductor.Nat Electron2022;5:660-71

[23]

Wang X,Li E.Stretchable synaptic transistors with tunable synaptic behavior.Nano Energy2020;75:104952

[24]

Wang X,Liu Y.Stretchable vertical organic transistors and their applications in neurologically systems.Nano Energy2021;90:106497

[25]

Wang H,Tang Q,Tong Y.Flexible, conformal organic synaptic transistors on elastomer for biomedical applications.Adv Funct Mater2019;29:1901107

[26]

Guo L,Cheng G,Ding J.Synaptic behaviors mimicked in indium-zinc-oxide transistors gated by high-proton-conducting graphene oxide-based composite solid electrolytes.J Mater Chem C2016;4:9762-70

[27]

Wang Z,Nagai M,Yi M.Nanoionics-enabled memristive devices: strategies and materials for neuromorphic applications.Adv Electron Mater2017;3:1600510

[28]

Kuzum D,Wong HS.Synaptic electronics: materials, devices and applications.Nanotechnology2013;24:382001

[29]

Kim Y,Xu W.A bioinspired flexible organic artificial afferent nerve.Science2018;360:998-1003

[30]

He Y,Nie S,Wan Q.Electric-double-layer transistors for synaptic devices and neuromorphic systems.J Mater Chem C2018;6:5336-52

[31]

Merolla PA,Alvarez-Icaza R.A million spiking-neuron integrated circuit with a scalable communication network and interface.Science2014;345:668-73

[32]

Burr GW,Sebastian A.Neuromorphic computing using non-volatile memory.Adv Phys2017;2:89-124

[33]

Liao X,Yang C.MilkyWay-2 supercomputer: system and application.Front Comput Sci2014;8:345-56

[34]

Sun J,Wan Q.Organic synaptic devices for neuromorphic systems.J Phys D Appl Phys2018;51:314004

[35]

Wan CJ,Liu YH.Proton-conducting graphene oxide-coupled neuron transistors for brain-inspired cognitive systems.Adv Mater2016;28:3557-63

[36]

Ho VM,Martin KC.The cell biology of synaptic plasticity.Science2011;334:623-8 PMCID:PMC3286636

[37]

Jayathilaka WADM,Qin Y.Significance of nanomaterials in wearables: a review on wearable actuators and sensors.Adv Mater2019;31:e1805921

[38]

Mehrali M,Akbari M.Blending electronics with the human body: a pathway toward a cybernetic future.Adv Sci2018;5:1700931 PMCID:PMC6193179

[39]

Shanechi MM,Moorman HG,Dangi S.Rapid control and feedback rates enhance neuroprosthetic control.Nat Commun2017;8:13825 PMCID:PMC5227098

[40]

Gulati T,Wong CC.Reactivation of emergent task-related ensembles during slow-wave sleep after neuroprosthetic learning.Nat Neurosci2014;17:1107-13 PMCID:PMC5568667

[41]

Lacour SP,Guck J.Materials and technologies for soft implantable neuroprostheses.Nat Rev Mater2016;1

[42]

Wood H.Achieving complex control of a neuroprosthetic arm.Nat Rev Neurol2013;9:62-62

[43]

Abbas Y,Sokolov AS,Ku B.Compliance-free, digital set and analog reset synaptic characteristics of sub-tantalum oxide based neuromorphic device.Sci Rep2018;8:1228 PMCID:PMC5775433

[44]

Wang Z,Savel'ev SE.Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing.Nat Mater2017;16:101-8

[45]

Kim S,Sheridan P,Choi S.Experimental demonstration of a second-order memristor and its ability to biorealistically implement synaptic plasticity.Nano Lett2015;15:2203-11

[46]

Yu R,Gao C.Programmable ferroelectric bionic vision hardware with selective attention for high-precision image classification.Nat Commun2022;13:7019 PMCID:PMC9669032

[47]

John RA,Kulkarni MR.Flexible ionic-electronic hybrid oxide synaptic TFTs with programmable dynamic plasticity for brain-inspired neuromorphic computing.Small2017;13:1701193

[48]

Zhang X,Yu R.Programmable neuronal-synaptic transistors based on 2D MXene for a high-efficiency neuromorphic hardware network.Matter2022;5:3023-40

[49]

Sangwan VK,Bergeron H.Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide.Nature2018;554:500-4

[50]

Prezioso M,Hoskins BD,Likharev KK.Training and operation of an integrated neuromorphic network based on metal-oxide memristors.Nature2015;521:61-4

[51]

Xu W,Min SY,Lee TW.Simple, inexpensive, and rapid approach to fabricate cross-shaped memristors using an inorganic-nanowire-digital-alignment technique and a one-step reduction process.Adv Mater2016;28:527-32

[52]

Nishitani Y,Ueda M,Fujii E.Three-terminal ferroelectric synapse device with concurrent learning function for artificial neural networks.J Appl Phys2012;111:124108

[53]

Sun J,Choi Y.Optoelectronic synapse based on IGZO-alkylated graphene oxide hybrid structure.Adv Funct Mater2018;28:1804397

[54]

Dai S,Wang Y.Recent advances in transistor-based artificial synapses.Adv Funct Mater2019;29:1903700

[55]

Chen Y,Gong J.Artificial synapses based on nanomaterials.Nanotechnology2019;30:012001

[56]

John RA,Chien NA.Synergistic gating of electro-iono-photoactive 2D chalcogenide neuristors: coexistence of hebbian and homeostatic synaptic metaplasticity.Adv Mater2018;30:e1800220

[57]

Jiang J,Xie D.2D electric-double-layer phototransistor for photoelectronic and spatiotemporal hybrid neuromorphic integration.Nanoscale2019;11:1360-9

[58]

Wang J,Kong L,Gao Y.Deep-ultraviolet-triggered neuromorphic functions in In-Zn-O phototransistors.Appl Phys Lett2018;113:151101

[59]

Kaneko Y,Ueda M.Ferroelectric artificial synapses for recognition of a multishaded image.IEEE Trans Electron Devices2014;61:2827-33

[60]

Liu YH,Feng P,Wan Q.Freestanding artificial synapses based on laterally proton-coupled transistors on chitosan membranes.Adv Mater2015;27:5599-604

[61]

Pereda AE.Electrical synapses and their functional interactions with chemical synapses.Nat Rev Neurosci2014;15:250-63 PMCID:PMC4091911

[62]

Li X,Zhang J,Hu M.Flexible artificial synapses based on field effect transistors: from materials, mechanics towards applications.Adv Intell Syst2022;4:2200015

[63]

Ni Y,Xu W.Recent Process of flexible transistor-structured memory.Small2021;17:e1905332

[64]

Yang JC,Kwon SY,Bao Z.Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics.Adv Mater2019;31:e1904765

[65]

Park HL,Lim D.Retina-inspired carbon nitride-based photonic synapses for selective detection of UV light.Adv Mater2020;32:e1906899

[66]

Bu X,Shang D,Lv H.Ion-gated transistor: an enabler for sensing and computing integration.Advanced Intelligent Systems2020;2:2000156

[67]

Jin T,Wang Y.Flexible neuromorphic electronics based on low-dimensional materials.Sci China Mater2022;65:2154-9

[68]

Cao G,Chen J.2D material based synaptic devices for neuromorphic computing.Adv Funct Mater2021;31:2005443

[69]

Lee G,Ren F,Lee GH.Artificial neuron and synapse devices based on 2D materials.Small2021;17:e2100640

[70]

Zhang C,Chen S.Recent progress on 2D materials-based artificial synapses.Crit Rev Solid State Mater2022;47:665-90

[71]

Liu Y,Gao C.Self-powered high-sensitivity all-in-one vertical tribo-transistor device for multi-sensing-memory-computing.Nat Commun2022;13:7917 PMCID:PMC9789038

[72]

Wu X,Liu Y.Artificial multisensory integration nervous system with haptic and iconic perception behaviors.Nano Energy2021;85:106000

[73]

Quiroga RQ,Kreiman G,Fried I.Invariant visual representation by single neurons in the human brain.Nature2005;435:1102-7

[74]

Wang G,Kong W.Simulation of retinal ganglion cell response using fast independent component analysis.Cogn Neurodyn2018;12:615-24 PMCID:PMC6233330

[75]

Jiang Y,Liu B.Rational design of silicon structures for optically controlled multiscale biointerfaces.Nat Biomed Eng2018;2:508-21 PMCID:PMC6430241

[76]

Chen S,Chen D.An artificial flexible visual memory system based on an UV-motivated memristor.Adv Mater2018;30:1705400

[77]

Wang H,Ni Z.A ferroelectric/electrochemical modulated organic synapse for ultraflexible, artificial visual-perception system.Adv Mater2018;30:e1803961

[78]

Huang X,Liu G.Short-wave infrared synaptic phototransistor with ambient light adaptability for flexible artificial night visual system.Adv Funct Materials2023;33:2208836

[79]

Jiang C,Yang L,Wei H.A flexible artificial sensory nerve enabled by nanoparticle-assembled synaptic devices for neuromorphic tactile recognition (Adv.Sci.24/2022).Adv Sci2022;9:e2106124 PMCID:PMC9404384

[80]

Shan L,Liu Y.Artificial tactile sensing system with photoelectric output for high accuracy haptic texture recognition and parallel information processing.Nano Lett2022;22:7275-83

[81]

Wan H,Lo LW,Sepúlveda N.Flexible carbon nanotube synaptic transistor for neurological electronic skin applications.ACS Nano2020;14:10402-12

[82]

Florence TJ.Neuroscience: hot on the trail of temperature processing.Nature2015;519:296-7

[83]

Frank DD,Kearney PJ,Gallio M.Temperature representation in the Drosophila brain.Nature2015;519:358-61 PMCID:PMC4554763

[84]

Beauchamp MS.See me, hear me, touch me: multisensory integration in lateral occipital-temporal cortex.Curr Opin Neurobiol2005;15:145-53

[85]

Yu J,Gao G.Bioinspired mechano-photonic artificial synapse based on graphene/MoS2 heterostructure.Sci Adv2021;7 PMCID:PMC7968845

[86]

Tan H,Tao Q,van Dijken S.Bioinspired multisensory neural network with crossmodal integration and recognition.Nat Commun2021;12:1120 PMCID:PMC7893014

[87]

Shim H,Thukral A.Artificial neuromorphic cognitive skins based on distributed biaxially stretchable elastomeric synaptic transistors.Proc Natl Acad Sci U S A2022;119:e2204852119 PMCID:PMC9191775

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/