Recent progress in soft electronics and robotics based on magnetic nanomaterials

Xiang Lin , Mengdi Han

Soft Science ›› 2023, Vol. 3 ›› Issue (2) : 14

PDF
Soft Science ›› 2023, Vol. 3 ›› Issue (2) :14 DOI: 10.20517/ss.2023.05
Review Article

Recent progress in soft electronics and robotics based on magnetic nanomaterials

Author information +
History +
PDF

Abstract

Recent advancements in soft electronics and robotics have expanded the possibilities beyond the capabilities of traditional rigid devices, indicating promise for a range of applications in electronic skins, wireless biomedical devices, and others. Magnetic materials exploited in these soft systems can further broaden the modalities in sensing and actuation. These magnetic materials, when constructed in the forms of nanoparticles, nanomembranes, or other types of nanostructures, exhibit some unique characteristics, such as the magnetoresistance effect and size-dependent coercivity. Soft electronics and robotics employing such magnetic nanomaterials offer a variety of functions, including the detection of the intensity and direction of magnetic fields, measurement of various types of mechanical deformations, manipulation and transport at small scales, and multimodal complex locomotion in a controllable fashion. Despite recent advancements in soft electronics and robotics, challenges remain in developing advanced materials and manufacturing schemes to improve performance metrics and facilitate integration with other devices. This review article aims to summarize the progress made in soft electronics and robotics based on magnetic nanomaterials, with an emphasis on introducing material and device performance. The discussions focus on soft electronics and robotics based on magnetic nanomembranes/nanostructures and magnetic composites. As a concluding remark, this article summarizes the current status of the field and discusses opportunities that underpin future progress.

Keywords

Soft electronic / soft robotics / magnetic nanomaterials

Cite this article

Download citation ▾
Xiang Lin, Mengdi Han. Recent progress in soft electronics and robotics based on magnetic nanomaterials. Soft Science, 2023, 3(2): 14 DOI:10.20517/ss.2023.05

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhou M,Xia Z.Miniaturized soft centrifugal pumps with magnetic levitation for fluid handling.Sci Adv2021;7:eabi7203 PMCID:PMC8550243

[2]

Kim DC,Lee W,Kim DH.Material-based approaches for the fabrication of stretchable electronics.Adv Mater2020;32:e1902743

[3]

Rus D.Design, fabrication and control of soft robots.Nature2015;521:467-75

[4]

Wang C,Huang Z.Materials and structures toward soft electronics.Adv Mater2018;30:e1801368

[5]

Jung D,Shim HJ.Highly conductive and elastic nanomembrane for skin electronics.Science2021;373:1022-6

[6]

Zhao G,Su Y.Laser-scribed conductive, photoactive transition metal oxide on soft elastomers for Janus on-skin electronics and soft actuators.Sci Adv2022;8:eabp9734 PMCID:PMC9216520

[7]

Wang B,Xie Z.Flexible and stretchable metal oxide nanofiber networks for multimodal and monolithically integrated wearable electronics.Nat Commun2020;11:2405 PMCID:PMC7229221

[8]

Rogers JA,Huang Y.Materials and mechanics for stretchable electronics.Science2010;327:1603-7

[9]

Kim DH,Amsden JJ.Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics.Nat Mater2010;9:511-7 PMCID:PMC3034223

[10]

Song YM,Malyarchuk V.Digital cameras with designs inspired by the arthropod eye.Nature2013;497:95-9

[11]

Guo CF,Wang G.Fatigue-free, superstretchable, transparent, and biocompatible metal electrodes.Proc Natl Acad Sci U S A2015;112:12332-7 PMCID:PMC4603472

[12]

Cianchetti M,Menciassi A.Biomedical applications of soft robotics.Nat Rev Mater2018;3:143-53

[13]

Maeder-york P,Boggs E.Biologically inspired soft robot for thumb rehabilitation1.J Med Devices2014;8:020933

[14]

Kwon K,Deng Y.An on-skin platform for wireless monitoring of flow rate, cumulative loss and temperature of sweat in real time.Nat Electron2021;4:302-12

[15]

Wen DL,Liu X,Zhang XR.Wearable multi-sensing double-chain thermoelectric generator.Microsyst Nanoeng2020;6:68 PMCID:PMC8433441

[16]

Shin S.Time-dependent motion of 3D-printed soft thermal actuators for switch application in electric circuits.Additive Manufacturing2021;39:101893

[17]

Shin S,So H.Structural effects of 3D printing resolution on the gauge factor of microcrack-based strain gauges for health care monitoring.Microsyst Nanoeng2022;8:12 PMCID:PMC8791987

[18]

Kim DH,Ma R.Epidermal electronics.Science2011;333:838-43

[19]

Park SI,Shin G.Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics.Nat Biotechnol2015;33:1280-6 PMCID:PMC4880021

[20]

Guo Y,Wang Y.All-fiber hybrid piezoelectric-enhanced triboelectric nanogenerator for wearable gesture monitoring.Nano Energy2018;48:152-60

[21]

Trimmer B.Soft robots.Curr Biol2013;23:R639-41

[22]

Wang H,Beccai L.Toward perceptive soft robots: progress and challenges.Adv Sci (Weinh)2018;5:1800541 PMCID:PMC6145216

[23]

Breger JC,Xiao R.Self-folding thermo-magnetically responsive soft microgrippers.ACS Appl Mater Interfaces2015;7:3398-405 PMCID:PMC4326779

[24]

Fusco S,Kennedy S.An integrated microrobotic platform for on-demand, targeted therapeutic interventions.Adv Mater2014;26:952-7

[25]

Eristoff S,Sanchez-Botero L,Yirmibeşoğlu OD.Soft actuators made of discrete grains.Adv Mater2022;34:e2109617

[26]

Heiden A,Lehner L.3D printing of resilient biogels for omnidirectional and exteroceptive soft actuators.Sci Robot2022;7:eabk2119

[27]

Jang KI,Chung HU.Self-assembled three dimensional network designs for soft electronics.Nat Commun2017;8:15894 PMCID:PMC5482057

[28]

Rich SI,Majidi C.Untethered soft robotics.Nat Electron2018;1:102-12

[29]

Zhao H,Wu C.Mechanically guided hierarchical assembly of 3D mesostructures.Adv Mater2022;34:e2109416

[30]

Service RF.Technology. Electronic textiles charge ahead.Science2003;301:909-11

[31]

Weng W,He S,Peng H.Smart electronic textiles.Angew Chem Int Ed Engl2016;55:6140-69

[32]

Wang X,Zhang H,Pan C.Recent progress in electronic skin.Adv Sci (Weinh)2015;2:1500169 PMCID:PMC5115318

[33]

Liu X.The more and less of electronic-skin sensors.Science2020;370:910-1

[34]

Feiner R,Fleischer S.Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function.Nat Mater2016;15:679-85 PMCID:PMC4900449

[35]

Sitti M.Miniature soft robots — road to the clinic.Nat Rev Mater2018;3:74-5

[36]

Horvath MA,Rytkin E.An intracardiac soft robotic device for augmentation of blood ejection from the failing right ventricle.Ann Biomed Eng2017;45:2222-33 PMCID:PMC5937685

[37]

Han M,Aras K.Catheter-integrated soft multilayer electronic arrays for multiplexed sensing and actuation during cardiac surgery.Nat Biomed Eng2020;4:997-1009 PMCID:PMC8021456

[38]

Kim Y,Liu S.Ferromagnetic soft continuum robots.Sci Robot2019;4:eaax7329

[39]

Zhao C,Huangfu J,Yu G.Research progress in anisotropic magnetoresistance.Rare Met2013;32:213-24

[40]

Heidari H.Electronic skins with a global attraction.Nat Electron2018;1:578-9

[41]

Bermúdez GS, Fuchs H, Bischoff L, Fassbender J, Makarov D. Electronic-skin compasses for geomagnetic field-driven artificial magnetoreception and interactive electronics.Nat Electron2018;1:589-95

[42]

Fujiwara K,Kanno A.Magnetocardiography and magnetoencephalography measurements at room temperature using tunnel magneto-resistance sensors.Appl Phys Express2018;11:023001

[43]

Wang M,Peng L.Measurement of triaxial magnetocardiography using high sensitivity tunnel magnetoresistance sensor.IEEE Sensors J2019;19:9610-5

[44]

Caruso L,Lewis CM.In vivo magnetic recording of neuronal activity.Neuron2017;95:1283-1291.e4 PMCID:PMC5744593

[45]

Bermúdez GS, Makarov D. Magnetosensitive e-skins for interactive devices.Adv Funct Mater2021;31:2007788

[46]

Ge J,Drack M.A bimodal soft electronic skin for tactile and touchless interaction in real time.Nat Commun2019;10:4405 PMCID:PMC6764954

[47]

Melzer M,Calvimontes A.Stretchable magnetoelectronics.Nano Lett2011;11:2522-6

[48]

Stuchly M.Interaction of low-frequency electric and magnetic fields with the human body.Proc IEEE2000;88:643-64

[49]

Tenforde T.Biological interactions of extremely-low-frequency electric and magnetic fields.Chem Interf Electrochem1991;320:1-17

[50]

Schenck JF.Physical interactions of static magnetic fields with living tissues.Prog Biophys Mol Biol2005;87:185-204

[51]

Zhang L,Dong L,Bell D.Artificial bacterial flagella: Fabrication and magnetic control.Appl Phys Lett2009;94:064107

[52]

Luo Z,Hrabec A.Chirally coupled nanomagnets.Science2019;363:1435-9

[53]

Cui J,Luo Z.Nanomagnetic encoding of shape-morphing micromachines.Nature2019;575:164-8

[54]

Li C,Yuan H.Fast and programmable locomotion of hydrogel-metal hybrids under light and magnetic fields.Sci Robot2020;5:eabb9822

[55]

Wu Y,Yang Y,Wei Y.Locally controllable magnetic soft actuators with reprogrammable contraction-derived motions.Sci Adv2022;8:eabo6021 PMCID:PMC9232107

[56]

Cho KW,Hong YJ.Soft bioelectronics based on nanomaterials.Chem Rev2022;122:5068-143

[57]

Choi S,Ghaffari R,Kim DH.Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials.Adv Mater2016;28:4203-18

[58]

Kim Y.Magnetic soft materials and robots.Chem Rev2022;122:5317-64 PMCID:PMC9211764

[59]

Gibertini M,Morpurgo AF.Magnetic 2D materials and heterostructures.Nat Nanotechnol2019;14:408-19

[60]

Wu S,Ze Q,Zhao R.Multifunctional magnetic soft composites: a review.Multifunct Mater2020;3:042003 PMCID:PMC7610551

[61]

Murzin D,Levada K.Ultrasensitive magnetic field sensors for biomedical applications.Sensors (Basel)2020;20:1569 PMCID:PMC7146409

[62]

Lin G,Schmidt OG.Magnetic sensing platform technologies for biomedical applications.Lab Chip2017;17:1884-912

[63]

Fagaly RL.Superconducting quantum interference device instruments and applications.Rev Sci Instrum2006;77:101101

[64]

Vasyukov D,Embon L.A scanning superconducting quantum interference device with single electron spin sensitivity.Nat Nanotechnol2013;8:639-44

[65]

Alexandrov EB.Recent progress in optically pumped magnetometers.Physica Scripta2003;T105:27

[66]

Tierney TM,Mellor S.Optically pumped magnetometers: From quantum origins to multi-channel magnetoencephalography.Neuroimage2019;199:598-608 PMCID:PMC6988110

[67]

Binasch G,Saurenbach F.Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange.Phys Rev B Condens Matter1989;39:4828-30

[68]

Baibich MN,Fert A.Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices.Phys Rev Lett1988;61:2472-5

[69]

Thompson SM.The discovery, development and future of GMR: The Nobel Prize 2007.J Phys D: Appl Phys2008;41:093001

[70]

Berkowitz AE,Carey MJ.Giant magnetoresistance in heterogeneous Cu-Co alloys.Phys Rev Lett1992;68:3745-8

[71]

Tsymbal E.Perspectives of giant magnetoresistance.Solid State Phys2001. pp. 113-237

[72]

Naoe M,Nakagawa S.Preparation of Ni–Fe/Cu multilayers with low coercivity and GMR effect by ion beam sputtering.J Appl Phys1994;75:6525-7

[73]

Wang L,Zhu Y.Electric field-tunable giant magnetoresistance (GMR) sensor with enhanced linear range.ACS Appl Mater Interfaces2020;12:8855-61

[74]

Parkin SSP.P. Roche KPR, Takao Suzuki TS. Giant magnetoresistance in antiferromagnetic Co/Cu multilayers grown on Kapton.Jpn J Appl Phys1992;31:L1246

[75]

Melzer M,Makarov D.Stretchable spin valves on elastomer membranes by predetermined periodic fracture and random wrinkling.Adv Mater2012;24:6468-72

[76]

Makarov D,Karnaushenko D.Shapeable magnetoelectronics.Appl Phys Rev2016;3:011101

[77]

Melzer M,Makarov D.Imperceptible magnetoelectronics.Nat Commun2015;6:6080 PMCID:PMC4354162

[78]

Hua Q,Liu H.Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing.Nat Commun2018;9:244 PMCID:PMC5770430

[79]

Karnaushenko D,Yan C,Schmidt OG.Printable giant magnetoresistive devices.Adv Mater2012;24:4518-22

[80]

Ha M,Kosub T.Printable and stretchable giant magnetoresistive sensors for highly compliant and skin-conformal electronics.Adv Mater2021;33:e2005521

[81]

Kondo M,Karnaushenko D.Imperceptible magnetic sensor matrix system integrated with organic driver and amplifier circuits.Sci Adv2020;6:eaay6094 PMCID:PMC6976294

[82]

Cañón Bermúdez GS, Makarov D. Geometrically curved magnetic field sensors for interactive electronics. In: Makarov D, Sheka DD, editors. Curvilinear micromagnetism. Cham: Springer International Publishing; 2022. pp. 375-401.

[83]

Becker C,Kang T.Self-assembly of highly sensitive 3D magnetic field vector angular encoders.Sci Adv2019;5:eaay7459 PMCID:PMC6989305

[84]

Melzer M,Lin G,Makarov D.Direct transfer of magnetic sensor devices to elastomeric supports for stretchable electronics.Adv Mater2015;27:1333-8 PMCID:PMC5093710

[85]

Swastika P, Antarnusa G, Suharyadi E, Kato T, Iwata S. Biomolecule detection using wheatstone bridge giant magnetoresistance (GMR) sensors based on CoFeB spin-valve thin film.J Phys : Conf Ser2018;1011:012060

[86]

Cañón Bermúdez GS,Karnaushenko D.Magnetosensitive e-skins with directional perception for augmented reality.Sci Adv2018;4:eaao2623 PMCID:PMC5777399

[87]

Becker C,Karnaushenko DD.A new dimension for magnetosensitive e-skins: active matrix integrated micro-origami sensor arrays.Nat Commun2022;13:2121 PMCID:PMC9018910

[88]

Maury P,Marty L,Mondoly P.Three-dimensional mapping in the electrophysiological laboratory.Arch Cardiovasc Dis2018;111:456-64

[89]

Rivkin B,Singh B.Electronically integrated microcatheters based on self-assembling polymer films.Sci Adv2021;7:eabl5408 PMCID:PMC8682992

[90]

Wang Z,Li M.Highly Sensitive flexible magnetic sensor based on anisotropic magnetoresistance effect.Adv Mater2016;28:9370-7

[91]

Oliveros Mata ES,Ha M.Printable anisotropic magnetoresistance sensors for highly compliant electronics.Appl Phys A2021;127

[92]

Guo Y,Wang SX.Multilayer anisotropic magnetoresistive angle sensor.Sens Actuator A Phys2017;263:159-65

[93]

Rittinger J,Jogschies L,Rissing L.Impact of different polyimide-based substrates on the soft magnetic properties of NiFe thin films.Proc Spie2015;9517.

[94]

Quynh LK,Anh CV.Design optimization of an anisotropic magnetoresistance sensor for detection of magnetic nanoparticles.Journal of Elec Materi2019;48:997-1004

[95]

Chiolerio A,Celasco E,Spizzo F.Magnetoresistance anisotropy in a hexagonal lattice of Co antidots obtained by thermal evaporation.J Mag Magn Mater2010;322:1409-12

[96]

Rijks TG,de Jong MJ.Semiclassical calculations of the anisotropic magnetoresistance of NiFe-based thin films, wires, and multilayers.Phys Rev B Condens Matter1995;51:283-91

[97]

Popovic RS,Schott C In Bridging the gap between AMR,and Hall magnetic sensors.Proceedings (Cat. No.02TH8595), 12-15 May 2002; 2002; pp 55-58 vol.1.

[98]

Michelena MD,Arruego I,Mateos JAD.Magnetic giant magnetoresistance commercial off the shelf for space applications.J Appl Phys2008;103:07E912

[99]

Grissom CB.Magnetic Field Effects in Biology: A Survey of Possible Mechanisms with Emphasis on Radical-Pair Recombination.Chem Rev1995;95:3-24

[100]

Djayaprawira DD,Nagai M.230% room-temperature magnetoresistance in CoFeB∕MgO∕CoFeB magnetic tunnel junctions.Appl Phys Lett2005;86:092502

[101]

Ikeda S,Ashizawa Y.Tunnel magnetoresistance of 604% at 300K by suppression of Ta diffusion in CoFeB∕MgO∕CoFeB pseudo-spin-valves annealed at high temperature.Appl Phys Lett2008;93:082508

[102]

Carlson A,Huang Y,Rogers JA.Transfer printing techniques for materials assembly and micro/nanodevice fabrication.Adv Mater2012;24:5284-318

[103]

Chung H,Kim H.Fabrication of releasable single-crystal silicon-metal oxide field-effect devices and their deterministic assembly on foreign substrates.Adv Funct Mater2011;21:3029-36

[104]

Loong LM,Qiu X.Flexible mgo barrier magnetic tunnel junctions.Adv Mater2016;28:4983-90

[105]

Ota S,Matsumoto H.CoFeB/MgO-based magnetic tunnel junction directly formed on a flexible substrate.Appl Phys Express2019;12:053001

[106]

Ota S,Sekitani T,Chiba D.Flexible CoFeB/MgO-based magnetic tunnel junctions annealed at high temperature (≥ 350 °C).Appl Phys Lett2019;115:202401

[107]

Saito K,Ota S,Ando A.CoFeB/MgO-based magnetic tunnel junctions for film-type strain gauge.Appl Phys Lett2022;120:072407

[108]

Ribeiro P,Bernardino A.Highly sensitive bio-inspired sensor for fine surface exploration and characterization.Ieee Int Conf Robot2020. 625-631.

[109]

Ye C,Tao Y.High-density large-scale tmr sensor array for magnetic field imaging.IEEE Trans Instrum Meas2019;68:2594-601

[110]

Amaral J,Costa T.Integration of TMR sensors in silicon microneedles for magnetic measurements of neurons.IEEE Trans Magn2013;49:3512-5

[111]

Wang SX,Li G.Towards a magnetic microarray for sensitive diagnostics.J Magn Magn Mater2005;293:731-6

[112]

Li D,Gao Z,Yu X.Recent progress of skin-integrated electronics for intelligent sensing.Light: Advanced Manufacturing2021;2:4

[113]

Chen JY,Coey JM,Wang JP.High performance MgO-barrier magnetic tunnel junctions for flexible and wearable spintronic applications.Sci Rep2017;7:42001 PMCID:PMC5288802

[114]

Chow TS.The effect of particle shape on the mechanical properties of filled polymers.J Mater Sci1980;15:1873-88

[115]

Varga Z,Zrínyi M.Magnetic field sensitive functional elastomers with tuneable elastic modulus.Polymer2006;47:227-33

[116]

Diguet G,Nakano M,Cavaillé J.Magnetic particle chains embedded in elastic polymer matrix under pure transverse shear and energy conversion.J Magn Magn Mater2019;481:39-49

[117]

Diguet G,Nakano M,Cavaillé J.Optimization of magneto-rheological elastomers for energy harvesting applications.Smart Mater Struct2020;29:075017

[118]

Zhou Y,Xu J.Giant magnetoelastic effect in soft systems for bioelectronics.Nat Mater2021;20:1670-6

[119]

Zhao X,Zhou Y.Giant magnetoelastic effect enabled stretchable sensor for self-powered biomonitoring.ACS Nano2022;16:6013-22

[120]

Li Y,Yang J.Origami NdFeB flexible magnetic membranes with enhanced magnetism and programmable sequences of polarities.Adv Funct Mater2019;29:1904977

[121]

Zhao Y,Zhang X.Fully flexible electromagnetic vibration sensors with annular field confinement origami magnetic membranes.Adv Funct Mater2020;30:2001553

[122]

Yan Y,Yang Z.Soft magnetic skin for super-resolution tactile sensing with force self-decoupling.Sci Robot2021;6:eabc8801

[123]

Hellebrekers T,Majidi C.Soft Magnetic skin for continuous deformation sensing. Adv Intell Syst 2019;1:1900025.

[124]

Wang H,Kow J.Design methodology for magnetic field-based soft tri-axis tactile sensors.Sensors (Basel)2016;16:1356 PMCID:PMC5038634

[125]

Tomo TP,Schmitz A.A new silicone structure for uskin—a soft, distributed, digital 3-axis skin sensor and its integration on the humanoid robot icub.IEEE Robot Autom Lett2018;3:2584-91

[126]

Theilade UA.Surface microstructure replication in injection molding.Int J Adv Manuf Technol2007;33:157-66

[127]

Isaacoff BP.Progress in top-down control of bottom-up assembly.Nano Lett2017;17:6508-10

[128]

Alfadhel A.Magnetic nanocomposite cilia tactile sensor.Adv Mater2015;27:7888-92

[129]

Zhang X,Li Y,Huang X.Magnetically levitated flexible vibration sensors with surficial micropyramid arrays for magnetism enhancement.ACS Appl Mater Interfaces2022;14:37916-25

[130]

Câmara Santa Clara Gomes T, Abreu Araujo F, Piraux L. Making flexible spin caloritronic devices with interconnected nanowire networks.Sci Adv2019;5:eaav2782 PMCID:PMC6397025

[131]

Bharti B,Rubinstein M.Nanocapillarity-mediated magnetic assembly of nanoparticles into ultraflexible filaments and reconfigurable networks.Nat Mater2015;14:1104-9 PMCID:PMC4816044

[132]

Fan X,Xu J,Chen L.Study on HAZ of nanosecond UV laser cutting multilayer ferrite ceramic composite flakes for electromagnetic shielding.J Mater Sci: Mater Electron2022;33:24354-66

[133]

Jin Q,Jackson JA,Gracias DH.Untethered single cell grippers for active biopsy.Nano Lett2020;20:5383-90 PMCID:PMC7405256

[134]

Reddy AN,Sahu DK.Miniature compliant grippers with vision-based force sensing.IEEE Trans Robot2010;26:867-77

[135]

Gultepe E,Kadam S.Biopsy with thermally-responsive untethered microtools.Adv Mater2013;25:514-9 PMCID:PMC3832625

[136]

Cecchi R,Capata R.Development of micro-grippers for tissue and cell manipulation with direct morphological comparison.Micromachines2015;6:1710-28

[137]

Liu W,Wang F.An in-pipe wireless swimming microrobot driven by giant magnetostrictive thin film.Sens Actuator A Phys2010;160:101-8

[138]

Chen XZ,Shamsudhin N.Hybrid magnetoelectric nanowires for nanorobotic applications: fabrication, magnetoelectric coupling, and magnetically assisted in vitro targeted drug delivery.Adv Mater2017;29:1605458

[139]

Hristoforou E.Magnetostriction and magnetostrictive materials for sensing applications.J Magn Magn Mater2007;316:372-8

[140]

Olabi A.Design and application of magnetostrictive materials.2008;29:469-83

[141]

Atulasimha J.A review of magnetostrictive iron–gallium alloys.Smart Mater Struct2011;20:043001

[142]

Spizzo F,Del Bianco L,Pugno NM.Magnetostrictive and Electroconductive Stress‐Sensitive Functional Spider Silk.Adv Funct Materials2022;32:2207382

[143]

Chakraverty S.Coercivity of magnetic nanoparticles: a stochastic model.J Phys : Condens Matter2007;19:216201

[144]

Skomski R,Nanomagnetic Models.In Advanced Magnetic Nanostructures, Sellmyer D, Skomski R, Eds. Springer US: Boston, MA, 2006. pp 41-90.

[145]

Pishvar M,Altan MC.Magnet assisted composite manufacturing: A novel fabrication technique for high-quality composite laminates.Polym Compos2019;40:159-69

[146]

Wei X,Yang H,Long Y.Advances in 3D printing of magnetic materials: Fabrication, properties, and their applications.J Adv Ceram2022;11:665-701

[147]

Błyskun P,Łukaszewicz G,Zackiewicz P.Low-porosity soft magnetic mouldable composites.Materialia2022;26:101602

[148]

Ślusarek B.Hard and soft magnetic composites with modified magnetic properties.World J. Eng2011;8:87-92

[149]

Zhang J,Hu W,Davidson ZS.Liquid crystal elastomer-based magnetic composite films for reconfigurable shape-morphing soft miniature machines.Adv Mater2021;33:e2006191 PMCID:PMC7610459

[150]

Coey J.Magnetic materials.J. Alloys Compd2001;326:2-6

[151]

Kim J,Choi SE,Kim J.Programming magnetic anisotropy in polymeric microactuators.Nat Mater2011;10:747-52

[152]

Lum GZ,Dong X.Shape-programmable magnetic soft matter.Proc Natl Acad Sci U S A2016;113:E6007-15 PMCID:PMC5068264

[153]

Hu W,Mastrangeli M.Small-scale soft-bodied robot with multimodal locomotion.Nature2018;554:81-5

[154]

Dong Y,Xia N.Untethered small-scale magnetic soft robot with programmable magnetization and integrated multifunctional modules.Sci Adv2022;8:eabn8932 PMCID:PMC9217092

[155]

Cheng Y,Wang XQ.Direct-ink-write 3D printing of hydrogels into biomimetic soft robots.ACS Nano2019;13:13176-84

[156]

Xue Z,Xu S.Assembly of complex 3D structures and electronics on curved surfaces.Sci Adv2022;8:eabm6922 PMCID:PMC9365271

[157]

Cheng X.Micro/Nanoscale 3D assembly by rolling, folding, curving, and buckling approaches.Adv Mater2019;31:e1901895

[158]

Miao L,Ren Z.3D temporary-magnetized soft robotic structures for enhanced energy harvesting.Adv Mater2021;33:e2102691

[159]

Yang Q,Xue Y.Ecoresorbable and bioresorbable microelectromechanical systems.Nat Electron2022;5:526-38

[160]

Kim Y,Zhao R,Zhao X.Printing ferromagnetic domains for untethered fast-transforming soft materials.Nature2018;558:274-9

[161]

Ze Q,Nishikawa J.Soft robotic origami crawler.Sci Adv2022;8:eabm7834 PMCID:PMC8967224

[162]

Li Z,Wang L.Uncovering rotational multifunctionalities of coupled Kresling modular structures.Extreme Mech Lett2020;39:100795

[163]

Kaufmann J,Li S.Harnessing the multistability of kresling origami for reconfigurable articulation in soft robotic arms.Soft Robot2022;9:212-23

[164]

Alapan Y,Guzelhan SN,Sitti M.Reprogrammable shape morphing of magnetic soft machines.Sci Adv2020;6 PMCID:PMC7500935

[165]

Tang J.Reprogrammable shape transformation of magnetic soft robots enabled by magnetothermal effect.Appl Phys Lett2022;120:244101

[166]

Tang Z,Bo X.Magnetically controlled flexible micro-robots based on magnetic particle arrangement.Mater Adv2023;4:1314-25

[167]

Schmauch MM,Evans BA,Tracy JB.Chained iron microparticles for directionally controlled actuation of soft robots.ACS Appl Mater Interfaces2017;9:11895-901

[168]

Bayaniahangar R,Zhang Z,Pearce JM.3-D printed soft magnetic helical coil actuators of iron oxide embedded polydimethylsiloxane.Sens Actuators B Chem2021;326:128781

[169]

Maria-Hormigos R,Pumera M.Soft magnetic microrobots for photoactive pollutant removal.Small Methods2023;7:e2201014

[170]

Tan R,Lu H.Nanofiber-based biodegradable millirobot with controllable anchoring and adaptive stepwise release functions.Matter2022;5:1277-95

[171]

Lu H,Yang Y.A bioinspired multilegged soft millirobot that functions in both dry and wet conditions.Nat Commun2018;9:3944 PMCID:PMC6158235

[172]

Li M,Sitti M.Cutting the cord: progress in untethered soft robotics and actuators.MRS Advances2019;4:2787-804

[173]

Sitti M.Pros and cons: magnetic versus optical microrobots.Adv Mater2020;32:e1906766

[174]

Li L,Hu Y.On-demand maneuver of millirobots with reprogrammable motility by a hard-magnetic coating.ACS Appl Mater Interfaces2022;14:52370-8

[175]

Zhao R,Yao H,Zhou G.Shape programmable magnetic pixel soft robot.Heliyon2022;8:e11415 PMCID:PMC9647483

[176]

Li H,Ko SY,Park S.Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery.Smart Mater Struct2016;25:027001

[177]

Goudu SR,Hu X,Hu W.Biodegradable untethered magnetic hydrogel milli‐grippers.Adv Funct Mater2020;30:2004975

[178]

Ze Q,Wu S.Magnetic shape memory polymers with integrated multifunctional shape manipulation.Adv Mater2020;32:e1906657

[179]

Zhao Y,Yan Y,Alsaid Y.Stimuli-responsive polymers for soft robotics.Annu Rev Control Robot Auton Syst2022;5:515-45

[180]

Zhang S,Jiang Q,Wu Z.Programmable and reprocessable multifunctional elastomeric sheets for soft origami robots.Sci Robot2021;6:eabd6107

[181]

Magdanz V,Simmchen J.IRONSperm: Sperm-templated soft magnetic microrobots.Sci Adv2020;6:eaba5855 PMCID:PMC7450605

[182]

Liu Z,Dong X,Hu W.Creating three-dimensional magnetic functional microdevices via molding-integrated direct laser writing.Nat Commun2022;13:2016 PMCID:PMC9019016

[183]

Ermolli M,Pozzi G,Clerici LA.Nickel, cobalt and chromium-induced cytotoxicity and intracellular accumulation in human hacat keratinocytes.Toxicology2001;159:23-31

[184]

X,Huang Y,Lu H.Mechanisms of cytotoxicity of nickel ions based on gene expression profiles.Biomaterials2009;30:141-8

[185]

Ahamed M.Toxic response of nickel nanoparticles in human lung epithelial A549 cells.Toxicol In Vitro2011;25:930-6

[186]

Magaye R,Bowman L.Genotoxicity and carcinogenicity of cobalt-, nickel- and copper-based nanoparticles.Exp Ther Med2012;4:551-61 PMCID:PMC3501377

[187]

Cabot A,Shevchenko E.Vacancy coalescence during oxidation of iron nanoparticles.J Am Chem Soc2007;129:10358-60

[188]

Sun YP,Cao J,Wang HP.Characterization of zero-valent iron nanoparticles.Adv Colloid Interface Sci2006;120:47-56

[189]

Kadiri VM,Holle AW.Biocompatible Magnetic Micro- and Nanodevices: Fabrication of FePt Nanopropellers and Cell Transfection.Adv Mater2020;32:e2001114

[190]

Rafsanjani A,Studart AR.Programming soft robots with flexible mechanical metamaterials.Sci Robot2019;4:eaav7874

[191]

Han M,Chen X.Submillimeter-scale multimaterial terrestrial robots.Sci Robot2022;7:eabn0602

AI Summary AI Mindmap
PDF

300

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/