A comprehensive survey of ionic polymer metal composite transducers: preparation, performance optimization and applications

Gangqiang Tang , Dong Mei , Xin Zhao , Chun Zhao , Lijie Li , Yanjie Wang

Soft Science ›› 2023, Vol. 3 ›› Issue (1) : 9

PDF
Soft Science ›› 2023, Vol. 3 ›› Issue (1) :9 DOI: 10.20517/ss.2023.01
Review Article

A comprehensive survey of ionic polymer metal composite transducers: preparation, performance optimization and applications

Author information +
History +
PDF

Abstract

Ionic polymer metal composite (IPMC) transducers, as one of the typical electroactive polymers with excellent electromechanical coupling properties, have tremendous potential to achieve high-performance actuators and sensors for flexible electronic and soft robotics. In this survey, after briefly describing the energy conversion mechanism of IPMC, we divided the history of IPMC into three stages based on the published papers, and then introduced the preparation technologies of IPMC in detail, which mainly include the selection of ionomer membrane and formation of electrodes. From the point of view of optimization, we summarized and analyzed the performance improvement methods of IPMC and the problems when it is used as actuators and sensors, respectively. The latest and typical applications of IPMC are widely presented as actuators and sensors, such as actuation in robots, grippers, medical and wearable devices, underwater perception and energy harvesting. Moreover, the challenges and opportunities of IPMC were envisioned for future prosperity. This survey will provide an overall general outline for the categorization, mechanism, precursors, and preparation methods of IPMC, which is helpful in facilitating the rapid development and application of IPMC.

Keywords

IPMC / development / preparation / performance / optimization / applications

Cite this article

Download citation ▾
Gangqiang Tang, Dong Mei, Xin Zhao, Chun Zhao, Lijie Li, Yanjie Wang. A comprehensive survey of ionic polymer metal composite transducers: preparation, performance optimization and applications. Soft Science, 2023, 3(1): 9 DOI:10.20517/ss.2023.01

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yin Y.Introduction: smart materials.Chem Rev2022;122:4885-6

[2]

Su M.Printable Smart materials and devices: strategies and applications.Chem Rev2022;122:5144-64

[3]

Xu F.Photoresponsive supramolecular polymers: from light-controlled small molecules to smart materials.Adv Mater2023;35:e2204413

[4]

Yang P,Zhang Z,Wang Z.Stimuli-responsive polydopamine-based smart materials.Chem Soc Rev2021;50:8319-43

[5]

Laschi C.Smarter materials for smarter robots.Sci Robot2021;6:eabh4443

[6]

Lu C,Chen X.High-performance silicon nanocomposite based ionic actuators.J Mater Chem A2020;8:9228-38

[7]

Mishra AK,Pan W.Autonomic perspiration in 3D-printed hydrogel actuators.Sci Robot2020;5:eaaz3918

[8]

Tang Y,Wang T,Hu W.Wireless miniature magnetic phase-change soft actuators.Adv Mater2022;34:e2204185 PMCID:PMC7613683

[9]

Xu C,Lum GZ.Small-scale magnetic actuators with optimal six degrees-of-freedom.Adv Mater2021;33:e2100170

[10]

Hu Y,Yan Q.Self-locomotive soft actuator based on asymmetric microstructural Ti3C2Tx mxene film driven by natural sunlight fluctuation.ACS Nano2021;15:5294-306

[11]

Hu Y,Huang M.Light-driven self-oscillating actuators with phototactic locomotion based on black phosphorus heterostructure.Angew Chem Int Ed2021;60:20511-7

[12]

Xue B,Li Y.Stretchable and self-healable hydrogel artificial skin.Natl Sci Rev2022;9:nwab147 PMCID:PMC9375542

[13]

Li X,Li D,Huang K.Bioinspired multi-stimuli responsive actuators with synergistic color- and morphing-change abilities.Adv Sci2021;8:e2101295 PMCID:PMC8373155

[14]

Piotrowska R,Wang H.Mechanistic insights of evaporation-induced actuation in supramolecular crystals.Nat Mater2021;20:403-9

[15]

Zhao Z,Yang Y.Actuation and locomotion driven by moisture in paper made with natural pollen.Proc Natl Acad Sci USA2020;117:8711-8 PMCID:PMC7183180

[16]

Shin B,Lee M.Hygrobot: a self-locomotive ratcheted actuator powered by environmental humidity.Sci Robot2018;3:eaar2629

[17]

Dong Y,Xia N.Multi-stimuli-response programmable soft actuators with site-specific and anisotropic deformation behavior.Nano Energy2021;88:106254

[18]

Gu G,Xu H.A soft neuroprosthetic hand providing simultaneous myoelectric control and tactile feedback.Nat Biomed Eng2021;

[19]

Yao Y,Xu Y.Fabrication and characterization of auxetic shape memory composite foams.Compos Part B Eng2018;152:1-7

[20]

Li G,Zhou F.Self-powered soft robot in the Mariana Trench.Nature2021;591:66-71

[21]

Wang Y,Chen H,Zhang H.Bio-inspired shape-memory structural color hydrogel film.Sci Bull2022;67:512-9

[22]

Shi Y,Plamthottam R.A processable, high-performance dielectric elastomer and multilayering process.Science2022;377:228-32

[23]

Ma S,Liang Y,Tian W.High-performance ionic-polymer-metal composite: toward large-deformation fast-response artificial muscles.Adv Funct Mater2020;30:1908508

[24]

Jo C,Oh I,Asaka K.Recent advances in ionic polymer-metal composite actuators and their modeling and applications.Prog Polym Sci2013;38:1037-66

[25]

Shahinpoor M.Conceptual design, kinematics and dynamics of swimming robotic structures using ionic polymeric gel muscles.Smart Mater Struct1992;1:91-4

[26]

Bhandari B,Ahn S.A review on IPMC material as actuators and sensors: fabrications, characteristics and applications.Int J Precis Eng Manuf2012;13:141-63

[27]

He X,Luo B,Bian C.Fundamentals and applications of ion migration induced polymer sensor detecting bending, pressure and shear force.IEEE Instrum Meas Mag2019;22:13-23

[28]

Wang J,Zhu Z,He Q.The effects of dimensions on the deformation sensing performance of ionic polymer-metal composites.Sensors2019;19:2104 PMCID:PMC6539605

[29]

Tiwari R.The state of understanding of ionic polymer metal composite architecture: a review.Smart Mater Struct2011;20:083001

[30]

Lee JH,Nam J.Water uptake and migration effects of electroactive ion-exchange polymer metal composite (IPMC) actuator.Sensor Actuat A Phys2005;118:98-106

[31]

Wang Y,Chen H.Effects of preparation steps on the physical parameters and electromechanical properties of IPMC actuators.Smart Mater Struct2014;23:125015

[32]

Wang Y,Zhao C.Experimental investigation on the physical parameters of ionic polymer metal composites sensors for humidity perception.Sensor Actuat B Chem2021;345:130421

[33]

Yılmaz OC,Gurses BO.The effect of gold electrode thicknesses on electromechanical performance of Nafion-based Ionic Polymer Metal Composite actuators.Compos Part B Eng2019;165:747-53

[34]

Wang Y,Zhu Y,Chen H.Formation and characterization of dendritic interfacial electrodes inside an ionomer.ACS Appl Mater Interfaces2017;9:30258-62

[35]

Wang Y,Hao M.Rapid preparation of a Nafion/Ag NW composite film and its humidity sensing effect.RSC Adv2020;10:27447-55 PMCID:PMC9055578

[36]

Wang Y,Li B.Voltage-heating responsive and patternable solvatochromism display utilizing nickel complex-Nafion film composites.Adv Mech Eng2022;14:168781322211164

[37]

Hofmann DW,D’Aguanno B.Investigation of water structure in nafion membranes by infrared spectroscopy and molecular dynamics simulation.J Phys Chem B2009;113:632-9

[38]

Zhu Z,Kruusamäe K,Asaka K.The effect of ambient humidity on the electrical response of ion-migration-based polymer sensor with various cations.Smart Mater Struct2016;25:055024

[39]

Zhu Z,Takagi K,Chang L.Effects of cation on electrical responses of ionic polymer-metal composite sensors at various ambient humidities.J Appl Phys2016;120:084906

[40]

Schmidt-Rohr K.Parallel cylindrical water nanochannels in Nafion fuel-cell membranes.Nat Mater2008;7:75-83

[41]

Nemat-nasser S.Comparative experimental study of ionic polymer-metal composites with different backbone ionomers and in various cation forms.J Appl Phys2003;93:5255-67

[42]

Lee J.Anion effects in imidazolium ionic liquids on the performance of IPMCs.Sensor Actuat B Chem2009;137:539-46

[43]

Bar-Cohen Y. Electroactive Polymer (EAP) actuators as artificial muscles: reality, potential, and challenges. 2001. Available from: https://spie.org/publications/book/547465?SSO=1 [Last accessed on 16 March 2022]

[44]

Wang HS,Park HW,Park JH.Ionic polymer-metal composite actuators driven by methylammonium formate for high-voltage and long-term operation.J Ind Eng Chem2021;96:194-201

[45]

Wang J,Taya M.A Flemion-based actuator with ionic liquid as solvent.Smart Mater Struct2007;16:S214-9

[46]

Safari M,Baker RT.The enhancement effect of lithium ions on actuation performance of ionic liquid-based IPMC soft actuators.Polymer2015;76:140-9

[47]

Zhu Z,Asaka K.Comparative experimental investigation on the actuation mechanisms of ionic polymer-metal composites with different backbones and water contents.J Appl Phys2014;115:124903

[48]

Sunda AP.Atomistic simulations of structure and dynamics of hydrated Aciplex polymer electrolyte membrane.Soft Matter2012;8:10827

[49]

Tamagawa H,Sugiyama T.Bending direction of Ag-plated IPMC containing immobile anions and/or cations.Compos Sci Technol2008;68:3412-7

[50]

Lee J,Hong SM.High-strain air-working soft transducers produced from nanostructured block copolymer ionomer/silicate/ionic liquid nanocomposite membranes.J Mater Chem C2013;1:3784

[51]

Lee J,Kang Y.Styrenic block copolymer/sulfonated graphene oxide composite membranes for highly bendable ionic polymer actuators with large ion concentration gradient.Compos Sci Technol2018;163:63-70

[52]

Khan A, Jain RK, Naushad M. Development of sulfonated poly(vinyl alcohol)/polpyrrole based ionic polymer metal composite (IPMC) actuator and its characterization.Smart Mater Struct2015;24:095003

[53]

Khan A,Jain RK.Easy, operable ionic polymer metal composite actuator based on a platinum-coated sulfonated poly(vinyl alcohol)-polyaniline composite membrane.J Appl Polym Sci2016;133

[54]

Luqman M,Anis A,Hamidi A.platinum-coated silicotungstic acid-sulfonated polyvinyl alcohol-polyaniline based hybrid ionic polymer metal composite membrane for bending actuation applications.Sci Rep2022;12:4467 PMCID:PMC8927104

[55]

Mehraeen S,Cebeci ,Alkan Gürsel S.Polyvinylidene fluoride grafted poly(styrene sulfonic acid) as ionic polymer-metal composite actuator.Sensor Actuat A Phys2018;279:157-67

[56]

Guo D,Huang J.Hydrophilic poly(vinylidene fluoride) film with enhanced inner channels for both water- and ionic liquid-driven ion-exchange polymer metal composite actuators.ACS Appl Mater Interfaces2019;11:2386-97

[57]

Xue Z,Duan X,Xie X.Ionic polymer-metal composite actuators obtained from sulfonated poly(ether ether sulfone) ion-exchange membranes.Compos Part A Appl Sci2016;81:13-21

[58]

Guo D,Li Y.Polymer actuators of fluorene derivatives with enhanced inner channels and mechanical performance.Sensor Actuat B Chem2018;255:791-9

[59]

Khan A,Jain RK.Thorium (IV) phosphate-polyaniline composite-based hydrophilic membranes for bending actuator application.Polym Eng Sci2017;57:258-67

[60]

Tas S,Sukas OS.Ion-selective ionic polymer metal composite (IPMC) actuator based on crown ether containing sulfonated poly(arylene ether ketone).Macromol Mater Eng2017;302:1600381

[61]

Luqman M,Anis A,Alam MA.A convenient and simple ionic polymer-metal composite (IPMC) actuator based on a platinum-coated sulfonated poly(ether ether ketone)-polyaniline composite membrane.Polymers2022;14:668 PMCID:PMC8879763

[62]

Luqman M,Shaikh HM,Alam MA.Development of a soft robotic bending actuator based on a novel sulfonated polyvinyl chloride-phosphotungstic acid ionic polymer-metal composite (IPMC) membrane.Membranes2022;12:651 PMCID:PMC9322641

[63]

Luqman M,Shaikh HM,Alam MA.Synthesis, Characterization and fabrication of copper nanoparticles embedded non-perfluorintaed kraton based ionic polymer metal composite (IPMC) actuator.Actuators2022;11:183

[64]

Lee J,Kim J.Novel sulfonated styrenic pentablock copolymer/silicate nanocomposite membranes with controlled ion channels and their IPMC transducers.Sensor Actuat B Chem2012;162:369-76

[65]

He C,Zhang J.Preparation and modification technology analysis of ionic polymer-metal composites (IPMCs).Int J Mol Sci2022;23:3522 PMCID:PMC8998928

[66]

Gudarzi M,Wang Q.Fabrication and transient responses of highly flexible and humidity-insensitive ionic polymer-metal composites in different sensory modes.J Intell Mater Syst Struct2019;30:1653-66

[67]

Fu R,Lu C.Large-Scale fabrication of high-performance ionic polymer-metal composite flexible sensors by in situ plasma etching and magnetron sputtering.ACS Omega2018;3:9146-54 PMCID:PMC6644406

[68]

Esmaeli E,Rastegar H,Kolahdouz Z.Humidity sensor based on the ionic polymer metal composite.Sensor Actuat B Chem2017;247:498-504

[69]

Mousavi MSS,Hasani M,Manteghi F.Fabrication of ionic polymer metal composite for bio-actuation application: sputtering and electroless plating methods.Mater Res Express2019;6:035312

[70]

Kodaira A,Horiuchi T,Nabae H.IPMC monolithic thin film robots fabricated through a multi-layer casting process.IEEE Robot Autom Lett2019;4:1335-42

[71]

Chung C,Hong Y,Lin C.A novel fabrication of ionic polymer-metal composites (IPMC) actuator with silver nano-powders.Sensor Actuat B Chem2006;117:367-75

[72]

Khan A,Jain RK.Fabrication of a silver nano powder embedded kraton polymer actuator and its characterization.RSC Adv2015;5:91564-73

[73]

Zhao C,Tang G.Biological hair-inspired AgNWs@Au-Embedded nafion electrodes with high stability for self-powered ionic flexible sensors.ACS Appl Mater Interfaces2022;14:46023-31

[74]

Shahinpoor M.Novel ionic polymer-metal composites equipped with physically loaded particulate electrodes as biomimetic sensors, actuators and artificial muscles.Sensor Actuat A Phys2002;96:125-32

[75]

Li J,Song L.Superfast-response and ultrahigh-power-density electromechanical actuators based on hierarchal carbon nanotube electrodes and chitosan.Nano Lett2011;11:4636-41

[76]

Ru J,Zhu Z.Controllable and durable ionic electroactive polymer actuator based on nanoporous carbon nanotube film electrode.Smart Mater Struct2019;28:085032

[77]

Akle BJ,Leo DJ,Mcgrath JE.Direct assembly process: a novel fabrication technique for large strain ionic polymer transducers.J Mater Sci2007;42:7031-41

[78]

Palmre V,Mäeorg U.Nanoporous carbon-based electrodes for high strain ionomeric bending actuators.Smart Mater Struct2009;18:095028

[79]

Zhu Z,He Q,Hu Q.Ionic polymer pressure sensor with gradient shape based on ion migration.J Appl Phys2019;125:024901

[80]

Takenaka H,Kawami Y.Solid polymer electrolyte water electrolysis.Int J Hydrog Energy1982;7:397-403

[81]

Millet P,Durand R.Preparation of solid polymer electrolyte composites: investigation of the precipitation process.J Appl Electrochem1995;25

[82]

Byun JM,Kim KJ.Formation of a gold nanoparticle layer for the electrodes of ionic polymer-metal composites by electroless deposition process.Appl Surf Sci2019;470:8-12

[83]

Yang L,Zhang X.Electroless copper deposition and interface characteristics of ionic electroactive polymer.J Mater Res Technol2021;11:849-56

[84]

Chung RJ,Chen LC.Preparation of gradually componential metal electrode on solution-casted Nafion membrane.Biomol Eng2007;24:434-7

[85]

Onishi K,Asaka K,Oguro K.Morphology of electrodes and bending response of the polymer electrolyte actuator.Electrochim Acta2001;46:737-43

[86]

Chang L,Zhu Z.Manufacturing process and electrode properties of palladium-electroded ionic polymer-metal composite.Smart Mater Struct2012;21:065018

[87]

Kim KJ.Ionic polymer metal composites: II. manufacturing techniques.Smart Mater Struct2003;12:65-79

[88]

Jung K,Choi H.Investigations on actuation characteristics of IPMC artificial muscle actuator.Sensor Actuat A Phys2003;107:183-92

[89]

Kobayashi T.Deformation behaviors of ionic-polymer-metal composite actuator with palladium electrodes for various solvents, temperatures, and frequencies.Smart Mater Struct2012;21:105031

[90]

Aureli M.Effect of electrode surface roughness on the electrical impedance of ionic polymer-metal composites.Smart Mater Struct2012;21:105030

[91]

Jin N,Bian K,Xiong K.Performance of ionic polymer-metal composite (IPMC) with different surface roughening methods.Front Mech Eng China2009;4:430-5

[92]

Wang Y,Liu J,Chen H.Effects of surface roughening of nafion 117 on the mechanical and physicochemical properties of ionic polymer-metal composite (IPMC) actuators.Smart Mater Struct2016;25:085012

[93]

Liu Y,Hu Y.Rough interface in IPMC: modeling and its influence analysis.Smart Mater Struct2018;27:075055

[94]

Chang L,Zhu Z,Chen H.Effects of surface roughening on the mass transport and mechanical properties of ionic polymer-metal composite.J Appl Phys2014;115:244901

[95]

Shahinpoor M.The effect of surface-electrode resistance on the performance of ionic polymer-metal composite (IPMC) artificial muscles.Smart Mater Struct2000;9:543-51

[96]

Punning A,Aabloo A.Surface resistance experiments with IPMC sensors and actuators.Sensor Actuat A Phys2007;133:200-9

[97]

Zhu Z,Chang L,Chen H.Physical interpretation of deformation evolvement with water content of ionic polymer-metal composite actuator.J Appl Phys2013;114:184902

[98]

Wang Y,Wang Y,Li D.Effect of dehydration on the mechanical and physicochemical properties of gold- and palladium -ionomeric polymer-metal composite (IPMC) actuators.Electrochim Acta2014;129:450-8

[99]

Ansaf B,Jaksic NI.Influence of humidity and actuation time on electromechanical characteristics of ionic polymer-metal composite actuators.Procedia Manufacturing2018;17:960-7

[100]

M, Kim, KJ. Experimental study of ionic polymer-metal composites in various cation forms: actuation behavior.Sci Eng Compos Mater2002;10:423-36

[101]

Oh C,Kim H.Effects of membrane thickness on the performance of ionic polymer-metal composite actuators.RSC Adv2019;9:14621-6 PMCID:PMC9064164

[102]

Almomani A,Hong W.Influence of temperature on the electromechanical properties of ionic liquid-doped ionic polymer-metal composite actuators.Polymers2017;9:358 PMCID:PMC6418685

[103]

Moeinkhah H,Jeon J.How does clamping pressure influence actuation performance of soft ionic polymer-metal composites?.Smart Mater Struct2013;22:025014

[104]

Chang L,Niu Q.High-performance ionic polymer-metal composite actuators fabricated with microneedle roughening.Smart Mater Struct2019;28:015007

[105]

Liang Y,Lin Z,Ren L.High specific surface area pd/pt electrode-based ionic polymer-metal composite for high-performance biomimetic actuation.ACS Sustain Chem Eng2022;10:2645-52

[106]

Jung SY,Park S.Replacement of surface roughening using polyvinyl alcohol coating in the fabrication of nafion-based ionic polymer metal composite (IPMC) actuators.J Polym Res2016;23

[107]

Ru J,Zhu Z.Fabrication and characterization of a novel smart-polymer actuator with nanodispersed CNT/Pd composite interfacial electrodes.Polymers2022;14:3494 PMCID:PMC9459883

[108]

Tian A,Li J,Feng B.Interface electrode and enhanced actuation performance of SiO2-GO/PFSA-based IPMC soft actuators.Smart Mater Struct2022;31:035017

[109]

Zhao D,Wang Y.Improved manufacturing technology for producing porous Nafion for high-performance ionic polymer-metal composite actuators.Smart Mater Struct2016;25:075043

[110]

Lee KS,Cha SW.Performance enhancement of an ionic polymer metal composite actuator using a microcellular foaming process.Smart Mater Struct2010;19:065029

[111]

Zhao D,Wang T,Chang L.Performance enhancement of ionic polymer-metal composite actuators with polyethylene oxide.Polymers2021;14:80 PMCID:PMC8747705

[112]

Naji L,Moaven S.Fabrication of SGO/Nafion-based IPMC soft actuators with sea anemone-like Pt electrodes and enhanced actuation performance.Carbon2016;100:243-57

[113]

Bian K,Tai G,Xiong K.Enhanced actuation response of nafion-based ionic polymer metal composites by doping BaTiO3 nanoparticles.J Phys Chem C2016;120:12377-84

[114]

Zhang M,Zhang X,Li M.Fabrication of a multilayered SGO/macroporous Nafion-based IPMC with enhanced actuation performance.Sensor Actuat B Chem2022;356:131319

[115]

Zhang X,Li M,Zhang C.Enhanced performance of IPMC actuator based on macroporous multilayer MCNTs/Nafion polymer.Sensor Actuat A Phys2022;339:113489

[116]

Guo D,Wang X.PEDOT coating enhanced electromechanical performances and prolonged stable working time of IPMC actuator.Sensor Actuat B Chem2020;305:127488

[117]

Lei H,Tan X.Encapsulation of ionic polymer-metal composite (IPMC) sensors with thick parylene: Fabrication process and characterization results.Sensor Actuat A Phys2014;217:1-12

[118]

Peng W,Gao J,Chen Y.Fabrication and performance of ionic polymer-metal composites for biomimetic applications.Sensor Actuat A Phys2019;299:111613

[119]

Wang F,Ma L.Facile and effective repair of Pt/Nafion IPMC actuator by dip-coating of PVP@AgNPs.Nanotechnology2021;32:385502

[120]

He Z,Wang Z.An antifatigue liquid metal composite electrode ionic polymer-metal composite artificial muscle with excellent electromechanical properties.ACS Appl Mater Interfaces2022;14:14630-9

[121]

Park JH,Song DS.Highly enhanced force generation of ionic polymer-metal composite actuators via thickness manipulation.ACS Appl Mater Interfaces2015;7:16659-67

[122]

Wang HS,Song DS,Jho JY.High-performance electroactive polymer actuators based on ultrathick ionic polymer-metal composites with nanodispersed metal electrodes.ACS Appl Mater Interfaces2017;9:21998-2005

[123]

Swarrup J, Ganguli R, Madras G. Studies to improve the actuation capability of low-frequency IPMC actuators for underwater robotic applications.ISSS J Micro Smart Syst2019;8:41-7

[124]

Bian C,Bai W.Highly efficient structure design of bending stacking actuators based on IPMC with large output force.Smart Mater Struct2021;30:075033

[125]

Lee JW,Lee JY.Ionic polymer-metal composite actuators based on triple-layered polyelectrolytes composed of individually functionalized layers.ACS Appl Mater Interfaces2014;6:1266-71

[126]

Boldini A,Cha Y.Enhancing the deformation range of ionic polymer metal composites through electrostatic actuation.Appl Phys Lett2018;112:261903

[127]

Ru J,Wang Y.A moisture and electric coupling stimulated ionic polymer-metal composite actuator with controllable deformation behavior.Smart Mater Struct2018;27:02LT01

[128]

Lu C,Hu Y.A molecular-regulation strategy towards low-voltage driven, multi degree of freedom IPMC catheters.Chem Commun2018;54:8733-6

[129]

Xu B,Zhang Z,Wu X.Improving the torsion performance of IPMC by changing the electrode separation.Sci Rep2021;11:7639 PMCID:PMC8027434

[130]

Song DS,Rhee K,Jho JY.Fabrication and characterization of an ionic polymer-metal composite bending sensor.Macromol Res2017;25:1205-11

[131]

Dominik I,Kaszuba F.Ionic polymer-metal composite displacement sensors.Sensor Actuat A Phys2016;240:10-6

[132]

Brunetto P,Giannone P,Strazzeri S.Characterization of the temperature and humidity influence on ionic polymer-metal composites as sensors.IEEE Trans Instrum Meas2011;60:2951-9

[133]

Zhu Z,Kruusamäe K,Asaka K.Influence of ambient humidity on the voltage response of ionic polymer-metal composite sensor.J Phys Chem B2016;120:3215-25

[134]

Gudarzi M,Wang Q.Bending mode ionic polymer-metal composite (IPMC) pressure sensors.Measurement2017;103:250-7

[135]

Gudarzi M.Compression and shear mode ionic polymer-metal composite (IPMC) pressure sensors.Sensor Actuat A Phys2017;260:99-111

[136]

Wang Y,Zhao C.The effects of contact area on pressure sensing of ionic polymer metal composite sensor with a soft substrate.Smart Mater Struct2022;31:065013

[137]

Beigi F,Manteghi F.Doped nafion-layered double hydroxide nanoparticles as a modified ionic polymer metal composite sheet for a high-responsive humidity sensor.Appl Clay Sci2018;166:131-6

[138]

Palmre V,Pugal D.Improving electromechanical output of IPMC by high surface area Pd-Pt electrodes and tailored ionomer membrane thickness.Int J Smart Nano Mat2014;5:99-113

[139]

Hong W,Montazami R.Electrochemical and morphological studies of ionic polymer metal composites as stress sensors.Measurement2017;95:128-34

[140]

Chang L,Hu J,Wang Y.Hierarchical structure fabrication of ipmc strain sensor with high sensitivity.Front Mater2021;8:748687

[141]

He Q,Stalbaum T.Mechanoelectric transduction of ionic polymer-graphene composite sensor with ionic liquid as electrolyte.Sensor Actuat A Phys2019;286:68-77

[142]

Panwar V,Anoop G.Electronic-ionic polymer composite for high output voltage generation.Compos Part B Eng2022;232:109601

[143]

Qaviandam Z,Safaie J.A New Approach to improve IPMC performance for sensing dynamic deflection: sensor biasing.IEEE Sensors J2020;20:8614-22

[144]

Tang G,Hao M.A novel strategy to enhance the generating power of ionic polymer metal composites through magnetoelectricity.Smart Mater Struct2021;30:065013

[145]

Histed R,Hussain OA.Ionic polymer metal composite compression sensors with 3D-structured interfaces.Smart Mater Struct2021;30:125027

[146]

Yi X,Chen Z.Cooperative Collision Avoidance Control of servo/IPMC driven robotic fish with back-relaxation effect.IEEE Robot Autom Lett2021;6:1816-23

[147]

Sunkara V,Yi X,Chen Z.Cooperative optimal collision avoidance laws for a hybrid-tailed robotic fish.IEEE Trans Contr Syst Technol2020;28:1569-78

[148]

Shen Q,Stalbaum T.Basic design of a biomimetic underwater soft robot with switchable swimming modes and programmable artificial muscles.Smart Mater Struct2020;29:035038

[149]

Li H,Yue Y,He Q.Motion control of capsule-like underwater robot utilizing the swing properties of ionic polymer metal composite actuators.J Bionic Eng2020;17:281-9

[150]

Wang S.Modeling of two-dimensionally maneuverable jellyfish-inspired robot enabled by multiple soft actuators.IEEE/ASME Trans Mechatron2022;27:1998-2006

[151]

Sun Q,Li H.A miniature robotic turtle with target tracking and wireless charging systems based on IPMCs.IEEE Access2020;8:187156-64

[152]

Nguyen KT,Park J.Terrestrial walking robot with 2DoF ionic polymer-metal composite (IPMC) legs.IEEE/ASME Trans Mechatron2015;20:2962-72

[153]

Li J,Sun Y,Wang H.The development of a venus flytrap inspired soft robot driven by IPMC.J Bionic Eng2023;20:406-15

[154]

Guo DJ,Cheng Y.Reverse adhesion of a gecko-inspired synthetic adhesive switched by an ion-exchange polymer-metal composite actuator.ACS Appl Mater Interfaces2015;7:5480-7 PMCID:PMC4868498

[155]

Ishiki A,Kodaira A.PF-IPMC: paper/fabric assisted IPMC actuators for 3D crafts.IEEE Robot Autom Lett2020;5:4035-41

[156]

Ford S,Lumia R.Single active finger IPMC microgripper.Smart Mater Struct2015;24:025015

[157]

Jain R,Majumder S.Design and control of an IPMC artificial muscle finger for micro gripper using EMG signal.Mechatronics2013;23:381-94

[158]

Jain RK,Majumder S.Biomimetic behavior of IPMC using EMG signal for micro robot.Mech Based Des Struct2014;42:398-417

[159]

Gonzalez C.An IPMC microgripper with integrated actuator and sensing for constant finger-tip displacement.Smart Mater Struct2015;24:055011

[160]

Cheong HR,Leow PL,Chee PS.Wireless-powered electroactive soft microgripper.Smart Mater Struct2018;27:055014

[161]

Jain RK,Inamuddin .Design and development of non-perfluorinated ionic polymer metal composite-based flexible link manipulator for robotics assembly.Polym Compos2019;40:2582-93

[162]

Jain RK,Majumder S.Two IPMC fingers based micro gripper for handling.Int J Adv Robot Syst2011;8:13

[163]

Abbas Kashmery H. Polyvinylidene fluoride/sulfonated graphene oxide blend membrane coated with polypyrrole/platinum electrode for ionic polymer metal composite actuator applications.Sci Rep2019;9:9877 PMCID:PMC6614476

[164]

Yang D,Ni Y.Ionic polymer-metal composites actuator driven by the pulse current signal of triboelectric nanogenerator.Nano Energy2019;66:104139

[165]

Chattaraj R,Bhattacharya S,Chatterjee D.Development of two jaw compliant gripper based on hyper-redundant approximation of IPMC actuators.Sensor Actuat A Phys2016;251:207-18

[166]

Feng G.Fabrication and characterization of arbitrary shaped μIPMC transducers for accurately controlled biomedical applications.Sensor Actuat A Phys2008;143:34-40

[167]

Aw K,Mcdaid A.An IPMC actuated robotic surgery end effector with force sensing.Int J Smart Nano Mat2013;4:246-56

[168]

Mcdaid A,Aw K.A compliant surgical robotic instrument with integrated IPMC sensing and actuation.Int J Smart Nano Mat2012;3:188-203

[169]

Ruiz S,Palmre V,Yim W.A cylindrical ionic polymer-metal composite-based robotic catheter platform: modeling, design and control.Smart Mater Struct2015;24:015007

[170]

He Q,Xu X,Yin G.The square rod-shaped ionic polymer-metal composite and its application in interventional surgical guide device.Int J Smart Nano Mat2020;11:159-72

[171]

Wang Y,Zhu D.Active tube-shaped actuator with embedded square rod-shaped ionic polymer-metal composites for robotic-assisted manipulation.Appl Bionics Biomech2018;2018:4031705 PMCID:PMC5889904

[172]

Yoon WJ,Seibel EJ.Analysis of electro-active polymer bending: A component in a low cost ultrathin scanning endoscope.Sensor Actuat A Phys2007;133:506-17

[173]

Feng GH.Micromachined optical fiber enclosed 4-electrode IPMC actuator with multidirectional control ability for biomedical application.Biomed Microdevices2011;13:169-77

[174]

Nam DNC.Design of an IPMC diaphragm for micropump application.Sensor Actuat A Phys2012;187:174-82

[175]

Nguyen TT,Nguyen VK,Park S.Design, fabrication, and experimental characterization of a flap valve IPMC micropump with a flexibly supported diaphragm.Sensor Actuat A Phys2008;141:640-8

[176]

Santos J,Branco PC.Ionic polymer-metal composite material as a diaphragm for micropump devices.Sensor Actuat A Phys2010;161:225-33

[177]

Wang J,Lu CZ.A compact ionic polymer-metal composite (IPMC) actuated valveless pump for drug delivery.IEEE/ASME Trans Mechatron2017;22:196-205

[178]

Wang Y,Wang J. Design and fabrication of an IPMC actuated micro-pump with inner petal-shaped diaphragm. In 3rd International Conference on Advanced Robotics and Mechatronics (ICARM) 2018. pp. 667-72. Available from: https://ieeexplore.ieee.org/document/8610829 [Last accessed on 16 March 2022]

[179]

Sideris EA,Hunt A.An ionic polymer metal composite (IPMC)-driven linear peristaltic microfluidic pump.IEEE Robot Autom Lett2020;5:6788-95

[180]

Cheong HR,Khaw MK,Chee PS.Wirelessly activated device with an integrated ionic polymer metal composite (IPMC) cantilever valve for targeted drug delivery.Lab Chip2018;18:3207-15

[181]

Horiuchi T,Fujikado T,Asaka K.Voltage-controlled accommodating IOL system using an ion polymer metal composite actuator.Opt Express2016;24:23280-8

[182]

Feng G.Investigation of tactile bump array actuated with ionic polymer-metal composite cantilever beams for refreshable braille display application.Sensor Actuat A Phys2018;275:137-47

[183]

Lee JH,Lim EH.Artificial intelligence-assisted throat sensor using ionic polymer-metal composite (IPMC) material.Polymers2021;13:3041 PMCID:PMC8473105

[184]

Chattaraj R,Khan S.Soft wearable ionic polymer sensors for palpatory pulse-rate extraction.Sensor Actuat A Phys2018;270:65-71

[185]

Annabestani M,Nejad SK.NAFAS: non-rigid air flow active sensor, a cost-effective, wearable, and ubiquitous respiratory bio-sensor.IEEE Sensors J2021;21:9530-7

[186]

Ming Y,Fu RP.IPMC sensor integrated smart glove for pulse diagnosis, braille recognition, and human-computer interaction.Adv Mater Technol2018;3:1800257

[187]

Bonomo C,Fortuna L,Graziani S.A tactile sensor for biomedical applications based on IPMCs.IEEE Sensors J2008;8:1486-93

[188]

Brunetto P,Giannone P,Pagano F.A resonant vibrating tactile probe for biomedical applications based on IPMC.IEEE Trans Instrum Meas2010;59:1453-62

[189]

Sharif MA.A pressure difference sensor inspired by fish canal lateral line.Bioinspir Biomim2019;14:055003

[190]

Jiang Y,Yang Z.Underwater source localization using an artificial lateral line system with pressure and flow velocity sensor fusion.IEEE/ASME Trans Mechatron2022;27:245-55

[191]

Shen Q,Kim KJ.A biomimetic underwater vehicle actuated by waves with ionic polymer-metal composite soft sensors.Bioinspir Biomim2015;10:055007

[192]

Pasquale GD,Pollicino A.A vortex-shedding flowmeter based on IPMCs.Smart Mater Struct2016;25:015011

[193]

Cha Y,Walcott H,Porfiri M.Energy harvesting from the tail beating of a carangiform swimmer using ionic polymer-metal composites.Bioinspir Biomim2013;8:036003

[194]

Cellini F,Peterson SD.Underwater energy harvesting from a turbine hosting ionic polymer metal composites.Smart Mater Struct2014;23:085023

[195]

Patel SN.Manufacturing, characterization and experimental investigation of the IPMC shoe energy harvester.J Braz Soc Mech Sci Eng2022;44

[196]

Vinh ND.Ocean-based electricity generating system utilizing the electrochemical conversion of wave energy by ionic polymer-metal composites.Electrochem Commun2017;75:64-8

[197]

Duy V.A study of the movement, structural stability, and electrical performance for harvesting ocean kinetic energy based on IPMC material.Processes2020;8:641

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/