Challenges and progress of chemical modification in piezoelectric composites and their applications

Weiwei Zhang , Yanhu Zhang , Xiaodong Yan , Ying Hong , Zhengbao Yang

Soft Science ›› 2023, Vol. 3 ›› Issue (2) : 19

PDF
Soft Science ›› 2023, Vol. 3 ›› Issue (2) :19 DOI: 10.20517/ss.2022.33
Review Article

Challenges and progress of chemical modification in piezoelectric composites and their applications

Author information +
History +
PDF

Abstract

Piezoelectric materials directly convert energy between electrical and mechanical domains, and have been widely employed in electronic devices as sensors and energy harvesters. Recent research endeavors are mainly devoted to dealing with problems such as high stiffness, brittleness, toxicity, poor durability, and low piezoelectric coefficients. Among developed strategies, chemical modification captures much attention. However, the exact physical properties and direct experimental evidence of chemical modification remain elusive or controversial thus far. In this review, we discuss the recently developed piezoelectric modification strategies for piezoelectric composites and assess the effect of different chemical modification approaches on piezoelectric properties. Moreover, we outline existing challenges and new applications of piezoelectric composites.

Keywords

Piezoelectric materials / composite / sensor / energy harvesting / transducer / flexible electronics

Cite this article

Download citation ▾
Weiwei Zhang, Yanhu Zhang, Xiaodong Yan, Ying Hong, Zhengbao Yang. Challenges and progress of chemical modification in piezoelectric composites and their applications. Soft Science, 2023, 3(2): 19 DOI:10.20517/ss.2022.33

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang Y.Review of chemical modification on potassium sodium niobate lead-free piezoelectrics.J Mater Chem C2019;7:4284-303

[2]

Mokhtari F,Shamshirsaz M.Electrospinning/electrospray of polyvinylidene fluoride (PVDF): piezoelectric nanofibers.J Text Inst2016;107:1037

[3]

Damjanovic D.Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics.Rep Prog Phys1998;61:1267-324

[4]

Newnham R,Cross L.Connectivity and piezoelectric-pyroelectric composites.Mat Res Bull1978;13:525-36

[5]

Chandra P.A landau primer for ferroelectrics. Physics of ferroelectrics. Berlin: Springer Berlin Heidelberg; 2007. pp. 69-116.

[6]

Deng W,Libanori A,Yang W.Piezoelectric nanogenerators for personalized healthcare.Chem Soc Rev2022;51:3380-435

[7]

Tian G,Yang T.Insight into interfacial polarization for enhancing piezoelectricity in ferroelectric nanocomposites.Small2023;19:e2207947

[8]

Yousry YM,Mohamed AM,Chen S.Theoretical model and outstanding performance from constructive piezoelectric and triboelectric mechanism in electrospun PVDF fiber film.Adv Funct Mater2020;30:1910592

[9]

Wu J,Zhu J.Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries.Chem Rev2015;115:2559-95

[10]

Du H,Luo F,Qu S.An approach to further improve piezoelectric properties of (K0.5Na0.5)NbO3-based lead-free ceramics.Appl Phys Lett2007;91:202907

[11]

Aksel E.Advances in lead-free piezoelectric materials for sensors and actuators.Sensors2010;10:1935-54 PMCID:PMC3264460

[12]

Lv X,Zhu J,Zhang X.A new method to improve the electrical properties of KNN-based ceramics: Tailoring phase fraction.J Eur Ceram Soc2018;38:85-94

[13]

Kong Z,Zheng P.Enhanced electromechanical properties of CaZrO3-modified (K0.5Na0.5)NbO3-based lead-free ceramics.Ceram Int2017;43:7237-42

[14]

Lei C.Lead-free piezoelectric ceramics derived from the K0.5Na0.5NbO3-AgNbO3 solid solution system.Appl Phys Lett2008;93:042901

[15]

Huan Y,Song J.High-performance piezoelectric composite nanogenerator based on Ag/(K,Na)NbO3 heterostructure.Nano Energy2018;50:62-9

[16]

Lee S,Kim H.Dielectric and piezoelectric properties of 0.95(Na0.5K0.5)NbO3-0.05CaTiO3 ceramics with Ag2O contents.Electron Mater Lett2012;8:577-80

[17]

Wu J,Wang Y,Yu P.Effects of K content on the dielectric, piezoelectric, and ferroelectric properties of 0.95(KxNa1-x)NbO3−0.05LiSbO3 lead-free ceramics.J Appl Phys2008;103:024102

[18]

Zhao Y,Liu R,Zhou H.Enhanced dielectric and piezoelectric properties in Li/Sb-modified (Na,K)NbO3 ceramics by optimizing sintering temperature.Ceram Int2013;39:425-9

[19]

Zuo R,Lv D.Antimony tuned rhombohedral-orthorhombic phase transition and enhanced piezoelectric properties in sodium potassium niobate: antimony tuned rhombohedral-orthorhombic phase transition.J Am Ceram Soc2010;93:2783-7

[20]

Chang Y,Ma D,Wang Z.Phase transitional behavior, microstructure, and electrical properties in Ta-modified [(K0.458Na0.542)0.96Li0.04] NbO3 lead-free piezoelectric ceramics.J Appl Phys2008;104:024109

[21]

Fu J,Xu Z.High piezoelectric activity in (Na,K)NbO3 based lead-free piezoelectric ceramics: contribution of nanodomains.Appl Phys Lett2011;99:062901

[22]

Wu J,Cheng X.New potassium-sodium niobate lead-free piezoceramic: giant-d33 vs. sintering temperature.J Appl Phys2014;115:114104

[23]

Zheng T,Xiao D.Giant d33 in nonstoichiometric (K,Na)NbO3 -based lead-free ceramics.Scripta Materialia2015;94:25-7

[24]

Zhang B,Cheng X.Lead-free piezoelectrics based on potassium-sodium niobate with giant d33.ACS Appl Mater Interf2013;5:7718-25

[25]

Jiang L,Xing J.Phase structure and enhanced piezoelectric properties in (1-x)(K0.48Na0.52)(Nb0.95Sb0.05)O3-x(Bi0.5Na0.42Li0.08)0.9Sr0.1ZrO3 lead-free piezoelectric ceramics.Ceram Int2017;43:2100-6

[26]

Zheng T,Xiao D,Wang X.Composition-driven phase boundary and piezoelectricity in potassium-sodium niobate-based ceramics.ACS Appl Mater Interf2015;7:20332-41

[27]

Pi Z,Wen C,Wu D.Flexible piezoelectric nanogenerator made of poly(vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE) thin film.Nano Energy2014;7:33-41

[28]

Wan C.Multiscale-structuring of polyvinylidene fluoride for energy harvesting: the impact of molecular-, micro- and macro-structure.J Mater Chem A2017;5:3091-128

[29]

Liu Y.Ferroelectric polymers exhibiting negative longitudinal piezoelectric coefficient: progress and prospects.Adv Sci2020;7:1902468 PMCID:PMC7080546

[30]

Soulestin T,Dos Santos FD.Vinylidene fluoride- and trifluoroethylene-containing fluorinated electroactive copolymers. How does chemistry impact properties?.Prog Polym Sci2017;72:16-60

[31]

Wegener M,Gerhard-multhaupt R.Piezoelectric polyethylene terephthalate (PETP) foams - specifically designed and prepared ferroelectret films.Adv Eng Mater2005;7:1128-31

[32]

Zhang Z,Zhu L.Unified understanding of ferroelectricity in n-nylons: is the polar crystalline structure a prerequisite?.Macromolecules2016;49:3070-82

[33]

Novikov GK.Electret effect in polyolefins joined by x-ray radiation of an electric gas barrier discharge.Russ Phys J2011;53:1113-7

[34]

Ribeiro C,Correia DM.Electroactive poly(vinylidene fluoride)-based structures for advanced applications.Nat Protoc2018;13:681-704

[35]

Li Z,Cheng Z.Electromechanical properties of poly(vinylidene-fluoride-chlorotrifluoroethylene) copolymer.Appl Phys Lett2006;88:062904

[36]

Koyama D.Electric power generation using vibration of a polyurea piezoelectric thin film.Appl Acoust2010;71:439-45

[37]

David G,Tonnar J,Lacroix-Desmazes P.Use of iodocompounds in radical polymerization.Chem Rev2006;106:3936-62

[38]

Liu Y,Zhang B.Ferroelectric polymers exhibiting behaviour reminiscent of a morphotropic phase boundary.Nature2018;562:96-100

[39]

Yu YJ.Energy barriers for dipole moment flipping in PVDF-related ferroelectric polymers.J Chem Phys2016;144:014901

[40]

Lu Y,Zhang Q.Microstructures and dielectric properties of the ferroelectric fluoropolymers synthesized via reductive dechlorination of poly(vinylidene fluoride-co-chlorotrifluoroethylene)s.Macromolecules2006;39:6962-8

[41]

Han Z,Chen X,Wang Q.Enhanced piezoelectricity in poly(vinylidene fluoride-co-trifluoroethylene-co-chlorotrifluoroethylene) random terpolymers with mixed ferroelectric phases.Macromolecules2022;55:2703-13

[42]

Liu F,Liu Y,Li K.Progress in the production and modification of PVDF membranes.J Membr Sci2011;375:1-27

[43]

Lin J,Sodano HA.Thermally stable poly(vinylidene fluoride) for high-performance printable piezoelectric devices.ACS Appl Mater Interf2020;12:21871-82

[44]

Wang Y,Liu K,Yuan C.Effect of dehydrofluorination reaction on structure and properties of PVDF electrospun fibers.RSC Adv2021;11:30734-43 PMCID:PMC9041349

[45]

Liang T,Wang D,Dang Z.Dielectric properties of chemical dehydrofluorinated poly(vinylidene fluoride).J Adv Phys2015;4:380-3

[46]

Chen X,Qian X.Relaxor ferroelectric polymer exhibits ultrahigh electromechanical coupling at low electric field.Science2022;375:1418-22

[47]

Skinner D,Cross L.Flexible composite transducers.Mat Res Bull1978;13:599-607

[48]

Yang Y,Song X.Biomimetic anisotropic reinforcement architectures by electrically assisted nanocomposite 3D printing.Adv Mater2017;29:1605750 PMCID:PMC7032659

[49]

Jo W,Acosta M.Giant electric-field-induced strains in lead-free ceramics for actuator applications-status and perspective.J Electroceram2012;29:71-93

[50]

Tian G,Xiong D.Dielectric micro-capacitance for enhancing piezoelectricity via aligning MXene sheets in composites.Cell Rep Phys Sci2022;3:100814

[51]

Kaczmarek H,Klimiec E,Bajer D.Advances in the study of piezoelectric polymers.Russ Chem Rev2019;88:749-74

[52]

Xie L,Jiang C,Zhao X.Properties and applications of flexible poly(vinylidene fluoride)-based piezoelectric materials.Crystals2021;11:644

[53]

Cao X,Sun J,Sun Q.Piezoelectric nanogenerators derived self-powered sensors for multifunctional applications and artificial intelligence.Adv Funct Mater2021;31:2102983

[54]

Wang Z,Hu R.An approach combining additive manufacturing and dielectrophoresis for 3D-structured flexible lead-free piezoelectric composites for electromechanical energy conversion.J Mater Chem A2021;9:26767-76

[55]

Bairagi S.Effects of surface modification on electrical properties of KNN nanorod-incorporated PVDF composites.J Mater Sci2019;54:11462-84

[56]

Bairagi S.Flexible lead-free PVDF/SM-KNN electrospun nanocomposite based piezoelectric materials: significant enhancement of energy harvesting efficiency of the nanogenerator.Energy2020;198:117385

[57]

Su YP,Coster HG.Incorporation of barium titanate nanoparticles in piezoelectric PVDF membrane.J Membr Sci2021;640:119861

[58]

Cui H,Yao D.Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response.Nat Mater2019;18:234-41

[59]

Wu J,Chi M,Zhang P.Effect of surface modification of ferroelectric ceramic component on the properties of PZT-type/epoxy piezoelectric composite with spiral structure.J Alloy Compd2020;820:153362

[60]

Li J,Xia K,Li D.Enhanced piezoelectric output of the PVDF-TrFE/ZnO flexible piezoelectric nanogenerator by surface modification.Appl Surf Sci2019;463:626-34

[61]

Xing C,You J,Cao X.Impact of ionic liquid-modified multiwalled carbon nanotubes on the crystallization behavior of poly(vinylidene fluoride).J Phys Chem B2012;116:8312-20

[62]

Mandal A.Ionic liquid integrated multiwalled carbon nanotube in a poly(vinylidene fluoride) matrix: formation of a piezoelectric β-polymorph with significant reinforcement and conductivity improvement.ACS Appl Mater Interf2013;5:747-60

[63]

Chen J,Zheng X,Lam K.Enhancement in electroactive crystalline phase and dielectric performance of novel PEG-graphene/PVDF composites.Appl Surf Sci2018;448:320-30

[64]

Pongampai S,Pinpru N.Triboelectric-piezoelectric hybrid nanogenerator based on BaTiO3-nanorods/chitosan enhanced output performance with self-charge-pumping system.Compos Part B Eng2021;208:108602

[65]

Petroff CA,Šponer J.Intrinsically polar piezoelectric self-assembled oligopeptide monolayers.Adv Mater2021;33:e2007486

[66]

Huang X.Core-shell structured high-k polymer nanocomposites for energy storage and dielectric applications.Adv Mater2015;27:546-54

[67]

Ramasamy M, Rahaman A, Kim B. Effect of phenyl-isocyanate functionalized graphene oxide on the crystalline phases, mechanical and piezoelectric properties of electrospun PVDF nanofibers.Ceram Int2021;47:11010-21

[68]

Begum S,Ahmed I.Investigation of morphology, crystallinity, thermal stability, piezoelectricity and conductivity of PVDF nanocomposites reinforced with epoxy functionalized MWCNTs.Compos Sci Technol2021;211:108841

[69]

Park H,Lu JP.Effects of sidewall functionalization on conducting properties of single wall carbon nanotubes.Nano Lett2006;6:916-9

[70]

Punetha VD,Yoo HJ.Functionalization of carbon nanomaterials for advanced polymer nanocomposites: a comparison study between CNT and graphene.Prog Polym Sci2017;67:1-47

[71]

Shi K,Zou H.Interface induced performance enhancement in flexible BaTiO3/PVDF-TrFE based piezoelectric nanogenerators.Nano Energy2021;80:105515

[72]

Wang L,Lian W.Flexible layered cotton cellulose-based nanofibrous membranes for piezoelectric energy harvesting and self-powered sensing.Carbohydr Polym2022;275:118740

[73]

Mahadeva SK,Stoeber B.Piezoelectric paper fabricated via nanostructured barium titanate functionalization of wood cellulose fibers.ACS Appl Mater Interf2014;6:7547-53

[74]

Zhang G,Ma M.Uniformly assembled vanadium doped ZnO microflowers/ bacterial cellulose hybrid paper for flexible piezoelectric nanogenerators and self-powered sensors.Nano Energy2018;52:501-9

[75]

Lee M,Wang S.A hybrid piezoelectric structure for wearable nanogenerators.Adv Mater2012;24:1759-64

[76]

Hu P,Zhao C,Niu J.Double-layer structured PVDF nanocomposite film designed for flexible nanogenerator exhibiting enhanced piezoelectric output and mechanical property.Compos Sci Technol2018;168:327-35

[77]

Bairagi S.Poly (vinylidine fluoride) (PVDF)/Potassium Sodium Niobate (KNN) nanorods based flexible nanocomposite film: influence of KNN concentration in the performance of nanogenerator.Org Electron2020;78:105547

[78]

Kang HB,Pyun JC,Kang C.(Na,K)NbO3 nanoparticle-embedded piezoelectric nanofiber composites for flexible nanogenerators.Compos Sci Technol2015;111:1-8

[79]

Chen H,Liu C.Investigation of PVDF-TrFE composite with nanofillers for sensitivity improvement.Sensor Actuat A-Phys2016;245:135-9

[80]

Nguyen VS,Vincent B.Influence of cluster size and surface functionalization of ZnO nanoparticles on the morphology, thermomechanical and piezoelectric properties of P(VDF-TrFE) nanocomposite films.Appl Surf Sci2013;279:204-11

[81]

Huang L,Wang F.Piezoelectric property of PVDF/graphene composite films using 1H, 1H, 2H, 2H-Perfluorooctyltriethoxysilane as a modifying agent.J Alloy Compd2016;688:885-92

[82]

Guan X,Gong J.Hierarchically architected polydopamine modified BaTiO3@P(VDF-TrFE) nanocomposite fiber mats for flexible piezoelectric nanogenerators and self-powered sensors.Nano Energy2020;70:104516

[83]

Yao D,Hensleigh R.Achieving the upper bound of piezoelectric response in tunable, wearable 3D printed nanocomposites.Adv Funct Mater2019;29:1903866

[84]

Hong Y,Lin W.Highly anisotropic and flexible piezoceramic kirigami for preventing joint disorders.Sci Adv2021;7 PMCID:PMC7954449

[85]

Bowen CR,Weaver PM.Piezoelectric and ferroelectric materials and structures for energy harvesting applications.Energy Environ Sci2014;7:25-44

[86]

Yang Z,Zu J.High-performance piezoelectric energy harvesters and their applications.Joule2018;2:642-97

[87]

Yang Z.Toward harvesting vibration energy from multiple directions by a nonlinear compressive-mode piezoelectric transducer.IEEE/ASME Trans Mechatron2016;21:1787-91

[88]

Hong Y,Wang B.A wood-templated unidirectional piezoceramic composite for transmuscular ultrasonic wireless power transfer.Energy Environ Sci2021;14:6574-85

[89]

Lee EJ,Kim S,Choi Y.High-performance piezoelectric nanogenerators based on chemically-reinforced composites.Energy Environ Sci2018;11:1425-30

[90]

Ramadan KS,Evoy S.A review of piezoelectric polymers as functional materials for electromechanical transducers.Smart Mater Struct2014;23:033001

[91]

Liu C,Li X,Zhou Q.Micromachined high frequency PMN-PT/epoxy 1-3 composite ultrasonic annular array.Ultrasonics2012;52:497-502 PMCID:PMC3774318

[92]

Kim KB,Ahn B,Barnard DJ.Fabrication and comparison of PMN-PT single crystal, PZT and PZT-based 1-3 composite ultrasonic transducers for NDE applications.Ultrasonics2010;50:790-7

[93]

Zhou Q,Wu D.Piezoelectric films for high frequency ultrasonic transducers in biomedical applications.Prog Mater Sci2011;56:139-74 PMCID:PMC3123890

[94]

Genchi GG,Marino A.P(VDF-TrFE)/BaTiO3 nanoparticle composite films mediate piezoelectric stimulation and promote differentiation of SH-SY5Y neuroblastoma cells.Adv Healthc Mater2016;5:1808-20

[95]

Jiang L,Chen R.Ultrasound-induced wireless energy harvesting for potential retinal electrical stimulation application.Adv Funct Mater2019;29:1902522

[96]

Ko W,Leu I,Lee AS.Use of 2-(6-mercaptohexyl) malonic acid to adjust the morphology and electret properties of cyclic olefin copolymer and its application to flexible loudspeakers.Smart Mater Struct2010;19:055007

AI Summary AI Mindmap
PDF

94

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/