Portable green energy out of the blue: hydrogel-based energy conversion devices

Chang Liu , Sijia Wang , Shien-Ping Feng , Nicholas X. Fang

Soft Science ›› 2023, Vol. 3 ›› Issue (1) : 10

PDF
Soft Science ›› 2023, Vol. 3 ›› Issue (1) :10 DOI: 10.20517/ss.2022.32
Review Article

Portable green energy out of the blue: hydrogel-based energy conversion devices

Author information +
History +
PDF

Abstract

To alleviate the escalating global demands for electricity with a low carbon footprint, we can resort to a green energy source that is conveyed by tiny temperature or moisture gradients. A tremendous source of low-grade energy scatters around us and remains unutilized, which is why thermoelectric and hydrovoltaic devices were invented. Our review focuses on a growing trend of implementing hydrogel-based ionic thermoelectric systems and hydrovoltaic devices as they hold the promise of electric outputs that are several times higher than conventional solid-state inorganic counterparts. This is due to the molecular-level tailorable features of hydrogel polymers and their interactions with water and other functional additives, which provide an ideal platform for low-grade heat and water energy harvesting from fundamental and practical perspectives. This review is divided into three sections. We present working principles, engineering concepts, state-of-art designs, and urgent challenges for hydrogel-based (i) ionic thermoelectric systems; (ii) hydrovoltaic devices; and (iii) their hybrids.

Keywords

Low-grade heat / ionic thermoelectric / hydrovoltaic energy / hydrogel / power generation

Cite this article

Download citation ▾
Chang Liu, Sijia Wang, Shien-Ping Feng, Nicholas X. Fang. Portable green energy out of the blue: hydrogel-based energy conversion devices. Soft Science, 2023, 3(1): 10 DOI:10.20517/ss.2022.32

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Conti J. Annual energy outlook 2013 with projections to 2040. technical report DOE/EIA-0383. Washington, DC, USA: The U.S. Energy Information Administration, 2013.

[2]

Bai J,Cheng H.Moist-electric generation.Nanoscale2019;11:23083-91

[3]

Quickenden TI.A review of power generation in aqueous thermogalvanic cells.J Electrochem Soc1995;142:3985-94

[4]

Wichterle O.Hydrophilic gels for biological use.Nature1960;185:117-8

[5]

Guo Y,Fang Z,Zhao F.Hydrogels and hydrogel-derived materials for energy and water sustainability.Chem Rev2020;120:7642-707

[6]

Wang H,He T.Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1,000 V output.Nat Nanotechnol2021;16:811-9

[7]

Li T,Lacey SD.Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting.Nat Mater2019;18:608-13

[8]

Liu C,Wang S,Fang NX.Ion regulation in double-network hydrogel module with ultrahigh thermopower for low-grade heat harvesting.Nano Energy2022;92:106738

[9]

Liu C,Wang X.Hydrovoltaic energy harvesting from moisture flow using an ionic polymer-hydrogel-carbon composite.Energy Environ Sci2022;15:2489-98

[10]

Meng FL,Ding T,Ong WL.Modular deformable steam electricity cogeneration system with photothermal, water, and electrochemical tunable multilayers.Adv Funct Mater2020;30:2002867

[11]

Li L,Bai Y.Enhancing hydrovoltaic power generation through heat conduction effects.Nat Commun2022;13:1043 PMCID:PMC8873497

[12]

Forman C,Pardemann R.Estimating the global waste heat potential.Renew Sustain Energy Rev2016;57:1568-79

[13]

Bell LE.Cooling, heating, generating power, and recovering waste heat with thermoelectric systems.Science2008;321:1457-61

[14]

He J.Advances in thermoelectric materials research: looking back and moving forward.Science2017;357:eaak9997

[15]

Cheng C,Yu J.Review of liquid-based systems to recover low-grade waste heat for electrical energy generation.Energy Fuels2021;35:161-75

[16]

Yu B,Cong H.Thermosensitive crystallization-boosted liquid thermocells for low-grade heat harvesting.Science2020;370:342-6

[17]

Zhao D,Khan ZU.Ionic thermoelectric supercapacitors.Energy Environ Sci2016;9:1450-7

[18]

Han CG,Li Q.Giant thermopower of ionic gelatin near room temperature.Science2020;368:1091-8

[19]

Burrows B.Discharge behavior of redox thermogalvanic cells.J Electrochem Soc1976;123:154-9

[20]

Quickenden T.Thermogalvanic conversion of heat to electricity.Solar Energy1986;36:63-72

[21]

Mua Y.Power conversion efficiency, electrode separation, and overpotential in the ferricyanide/ferrocyanide thermogalvanic cell.J Electrochem Soc1996;143:2558-64

[22]

Gao C,Yang Y.Thermally regenerative electrochemical cycle for low-grade heat harvesting.ACS Energy Lett2017;2:2326-34

[23]

Ding Y,Ramirez-meyers K.Simultaneous energy harvesting and storage via solar-driven regenerative electrochemical cycles.Energy Environ Sci2019;12:3370-9

[24]

Yang Y,Ghasemi H.Membrane-free battery for harvesting low-grade thermal energy.Nano Lett2014;14:6578-83

[25]

Liu Y,Sim S,Lee SW.Lithium manganese oxide in an aqueous electrochemical system for low-grade thermal energy harvesting.Chem Mater2019;31:4379-84

[26]

Cheng C,Tan P.Insights into the thermopower of thermally regenerative electrochemical cycle for low grade heat harvesting.ACS Energy Lett2021;6:329-36

[27]

Sales BB,Porada S,Buisman CJN.Extraction of energy from small thermal differences near room temperature using capacitive membrane technology.Environ Sci Technol Lett2014;1:356-60

[28]

Lee SW,Lee HW.An electrochemical system for efficiently harvesting low-grade heat energy.Nat Commun2014;5:3942

[29]

Zhu X,Gorski CA.A thermally-regenerative ammonia-based flow battery for electrical energy recovery from waste heat.ChemSusChem2016;9:873-9

[30]

Zhang F,Yang W.A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power.Energy Environ Sci2015;8:343-9

[31]

Cheng C,Wu Y.Thermally regenerative CO2-induced pH-gradient cell for waste-to-energy conversion.ACS Energy Lett2021;6:3221-7

[32]

Cheng C,Wu Y.pH-sensitive thermally regenerative cell (pH-TRC) with circulating hydrogen for long discharging time and high-power output.Chem Eng J2022;449:137772

[33]

Wang X,Liu C.Direct thermal charging cell for converting low-grade heat to electricity.Nat Commun2019;10:4151 PMCID:PMC6742635

[34]

Mu K,Wang X.Direct thermal charging cell using nickel hexacyanoferrate (ΙΙ) anode for green recycling of low-grade heat.ACS Energy Lett2022;7:1146-53

[35]

Bard AJ. Electrochemical methods: fundamentals and applications, 2nd ed. New York: John Wiley & Sons; 2001. pp. 12-4. Available from: https://www.wiley.com/en-us/Electrochemical+Methods%3A+Fundamentals+and+Applications%2C+2nd+Edition-p-9780471043720 [Last accessed on 21 March 2023]

[36]

Ishay JS,Rave E,Bergman DJ.Natural thermoelectric heat pump in social wasps.Phys Rev Lett2003;90:218102

[37]

Brown BR,Russo C.Thermoelectricity in natural and synthetic hydrogels.Phys Rev E Stat Nonlin Soft Matter Phys2004;70:031917

[38]

Siddique ARM,Heyst BV.A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges.Renew Sustain Energy Rev2017;73:730-44

[39]

Yang P,Chen Q.Wearable thermocells based on gel electrolytes for the utilization of body heat.Angew Chem Int Ed2016;55:12050-3

[40]

Fang Y,He H.Stretchable and transparent ionogels with high thermoelectric properties.Adv Funct Mater2020;30:2004699

[41]

Lei Z,Wu P.Double-network thermocells with extraordinary toughness and boosted power density for continuous heat harvesting.Joule2021;5:2211-22

[42]

Akbar ZA,Jang S.Intrinsically self-healable, stretchable thermoelectric materials with a large ionic Seebeck effect.Energy Environ Sci2020;13:2915-23

[43]

Hu R,Haram N.Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell.Nano Lett2010;10:838-46

[44]

Abraham TJ,Pringle JM.Seebeck coefficients in ionic liquids--prospects for thermo-electrochemical cells.Chem Commun2011;47:6260-2

[45]

Liu C,Chang YH.The study of electrical conductivity and diffusion behavior of water-based and ferro/ferricyanide-electrolyte-based alumina nanofluids.J Colloid Interface Sci2016;469:17-24

[46]

Poletayev AD,Chueh WC.Continuous electrochemical heat engines.Energy Environ Sci2018;11:2964-71

[47]

Kim JH,Palem RR,Lee HH.Iron (II/III) perchlorate electrolytes for electrochemically harvesting low-grade thermal energy.Sci Rep2019;9:8706 PMCID:PMC6582052

[48]

Buckingham MA,Aldous L.The thermoelectrochemistry of the aqueous iron(ii)/iron(iii) redox couple: significance of the anion and pH in thermogalvanic thermal-to-electrical energy conversion.Sustain Energy Fuels2018;2:2717-26

[49]

Taheri A,Pozo-gonzalo C.Application of a water-soluble cobalt redox couple in free-standing cellulose films for thermal energy harvesting.Electrochim Acta2019;297:669-75

[50]

Zhou H,Kimizuka N.Supramolecular thermo-electrochemical cells: enhanced thermoelectric performance by host-guest complexation and salt-induced crystallization.J Am Chem Soc2016;138:10502-7

[51]

Li X,Feng S.Broadband light management with thermochromic hydrogel microparticles for smart windows.Joule2019;3:290-302

[52]

Duan J,Liu K.P-N conversion in thermogalvanic cells induced by thermo-sensitive nanogels for body heat harvesting.Nano Energy2019;57:473-9

[53]

Han Y,Hu R.High-thermopower polarized electrolytes enabled by methylcellulose for low-grade heat harvesting.Sci Adv2022;8:eabl5318 PMCID:PMC8856612

[54]

Im H,Lee JS,Kang TJ.Flexible thermocells for utilization of body heat.Nano Res2014;7:443-52

[55]

Wang Z,Tang Z.Hydrogel electrolytes for flexible aqueous energy storage devices.Adv Funct Mater2018;28:1804560

[56]

Jin L,Macfarlane DR.Redox-active quasi-solid-state electrolytes for thermal energy harvesting.ACS Energy Lett2016;1:654-8

[57]

Ding T,Wang X.All-soft and stretchable thermogalvanic gel fabric for antideformity body heat harvesting wearable.Adv Energy Mater2021;11:2102219

[58]

Wang XQ,Lu W.Macromolecule conformational shaping for extreme mechanical programming of polymorphic hydrogel fibers.Nat Commun2022;13:3369 PMCID:PMC9188594

[59]

Liu Z,Le Q.Giant thermoelectric properties of ionogels with cationic doping.Adv Energy Mater2022;12:2200858.

[60]

Agar JN,Lin JL.Single-ion heat of transport in electrolyte solutions: a hydrodynamic theory.J Phys Chem1989;93:2079-82

[61]

Eastman ED.Thermodynamics of non-isothermal systems.J Am Chem Soc1926;48:1482-93

[62]

Würger A.Thermal non-equilibrium transport in colloids.Rep Prog Phys2010;73:126601

[63]

Guthrie G,Schomaker V.Theory of the thermal diffusion of electrolytes in a clusius column.J Chem Phys1949;17:310-3

[64]

Eastman ED.Theory of the soret effect.J Am Chem Soc1928;50:283-91

[65]

Marcus Y.Effect of ions on the structure of water: structure making and breaking.Chem Rev2009;109:1346-70

[66]

Kim SL,Yu C.Thermoelectric effects in solid-state polyelectrolytes.Org Electron2018;54:231-6

[67]

Wang H,Khan ZU.Ionic thermoelectric figure of merit for charging of supercapacitors.Adv Electron Mater2017;3:1700013

[68]

Kim SL,Yu C.Thermally chargeable solid-state supercapacitor.Adv Energy Mater2016;6:1600546

[69]

Li L,Yang X.Sustainable and flexible hydrovoltaic power generator for wearable sensing electronics.Nano Energy2020;72:104663

[70]

Pu S,Chen K.Thermogalvanic hydrogel for synchronous evaporative cooling and low-grade heat energy harvesting.Nano Lett2020;20:3791-7

[71]

Zhao D,Willfahrt A.Polymer gels with tunable ionic Seebeck coefficient for ultra-sensitive printed thermopiles.Nat Commun2019;10:1093 PMCID:PMC6403253

[72]

Kim B,Kim E.Chloride transport in conductive polymer films for an n-type thermoelectric platform.Energy Environ Sci2020;13:859-67

[73]

Chen Q,Xiao S.Giant thermopower of hydrogen ion enhanced by a strong hydrogen bond system.ACS Appl Mater Interfaces2022;14:19304-14

[74]

Haras M.Thermoelectricity for IoT - a review.Nano Energy2018;54:461-76

[75]

Cheng H,Fan Z.Flexible quasi-solid state ionogels with remarkable seebeck coefficient and high thermoelectric properties.Adv Energy Mater2019;9:1901085

[76]

Stephens GL,Wild M.An update on Earth’s energy balance in light of the latest global observations.Nat Geosci2012;5:691-6

[77]

Yin J,Fang S.Hydrovoltaic energy on the way.Joule2020;4:1852-5

[78]

Zhang Z,Yin J.Emerging hydrovoltaic technology.Nat Nanotechnol2018;13:1109-19

[79]

Huang Y,Yang C,Li C.All-region-applicable, continuous power supply of graphene oxide composite.Energy Environ Sci2019;12:1848-56

[80]

Cheng H,Zhao F.Spontaneous power source in ambient air of a well-directionally reduced graphene oxide bulk.Energy Environ Sci2018;11:2839-45

[81]

Huang Y,Yang C.Interface-mediated hygroelectric generator with an output voltage approaching 1.5 volts.Nat Commun2018;9:4166 PMCID:PMC6177432

[82]

Yin J,Yu J,Zhou J.Generating electricity by moving a droplet of ionic liquid along graphene.Nat Nanotechnol2014;9:378-83

[83]

Yin J,Li X.Waving potential in graphene.Nat Commun2014;5:3582

[84]

Cai H,Guo W.Synergistic effect of substrate and ion-containing water in graphene based hydrovoltaic generators.Nano Energy2021;84:105939

[85]

Xue G,Ding T.Water-evaporation-induced electricity with nanostructured carbon materials.Nat Nanotechnol2017;12:317-21

[86]

Li J,Ding T,Duan J.Surface functional modification boosts the output of an evaporation-driven water flow nanogenerator.Nano Energy2019;58:797-802

[87]

Liu K,Li J.Thermal-electric nanogenerator based on the electrokinetic effect in porous carbon film.Adv Energy Mater2018;8:1702481

[88]

Zhao F,Zhang Z,Qu L.Direct power generation from a graphene oxide film under moisture.Adv Mater2015;27:4351-7

[89]

Yang C,Cheng H,Qu L.Rollable, stretchable, and reconfigurable graphene hygroelectric generators.Adv Mater2019;31:e1805705

[90]

Xu T,Huang Y.An efficient polymer moist-electric generator.Energy Environ Sci2019;12:972-8

[91]

Yang S,Chen W.Ionic hydrogel for efficient and scalable moisture-electric generation.Adv Mater2022;34:2200693

[92]

Xue J,Hu C.Vapor-activated power generation on conductive polymer.Adv Funct Mater2016;26:8784-92

[93]

Pope M. Electronic processes in organic crystals and polymers. Oxford UK: Oxford University Press, 1999.

[94]

Ochi S,Mizusaki J.Investigation of proton diffusion in Nafion®117 membrane by electrical conductivity and NMR.Solid State Ion2009;180:580-4

[95]

Liu X,Ward JE.Power generation from ambient humidity using protein nanowires.Nature2020;578:550-4

[96]

Gouveia RF.Electrostatic charging of hydrophilic particles due to water adsorption.J Am Chem Soc2009;131:11381-6

[97]

Zhang Y,Yu ZG.An asymmetric hygroscopic structure for moisture-driven hygro-ionic electricity generation and storage.Adv Mater2022;34:e2201228

[98]

Zhang Y,Qu H.Self-sustained programmable hygro-electronic interfaces for humidity-regulated hierarchical information encryption and display.Adv Mater2022;2208081

[99]

Luo Z,Fan S.A moisture induced self-charging device for energy harvesting and storage.Nano Energy2019;60:371-6

[100]

Li M,Yang W.Biological nanofibrous generator for electricity harvest from moist air flow.Adv Funct Mater2019;29:1901798

[101]

Das SS,Bandopadhyay A,Chakraborty S.Electrical power generation from wet textile mediated by spontaneous nanoscale evaporation.Nano Lett2019;19:7191-200

[102]

Xiao K,Antonietti M.Ion transport in nanofluidic devices for energy harvesting.Joule2019;3:2364-80

[103]

Zhou S,Strømme M.Solar-driven ionic power generation via a film of nanocellulose @ conductive metal-organic framework.Energy Environ Sci2021;14:900-5

[104]

Zhang Y,Chakraborty A.Colossal thermo-hydro-electrochemical voltage generation for self-sustainable operation of electronics.Nat Commun2021;12:5269 PMCID:PMC8421453

AI Summary AI Mindmap
PDF

81

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/