Organic biodegradable piezoelectric materials and their potential applications as bioelectronics

Fanqi Dai , Qifan Geng , Tingyu Hua , Xing Sheng , Lan Yin

Soft Science ›› 2023, Vol. 3 ›› Issue (1) : 7

PDF
Soft Science ›› 2023, Vol. 3 ›› Issue (1) :7 DOI: 10.20517/ss.2022.30
Review Article

Organic biodegradable piezoelectric materials and their potential applications as bioelectronics

Author information +
History +
PDF

Abstract

Biodegradable piezoelectrics represent an intriguing category of electroactive materials combining the mechanical-electrical coupling characteristics with a unique biodegradable feature that eliminates unnecessary materials retention and minimize associated infection risks. Here, we review the piezoelectric properties of representative organic biodegradable piezoelectric materials including amino acids, peptides, proteins, synthetic polymers and polysaccharides. Strategies to promote the piezoelectric activity are summarized, and recent progress in the utilization of biodegradable piezoelectric materials for bioelectronics is discussed, with perspectives and challenges provided at the end to enlighten possible future directions.

Keywords

Organic piezoelectric materials / biodegradation / bioelectronics

Cite this article

Download citation ▾
Fanqi Dai, Qifan Geng, Tingyu Hua, Xing Sheng, Lan Yin. Organic biodegradable piezoelectric materials and their potential applications as bioelectronics. Soft Science, 2023, 3(1): 7 DOI:10.20517/ss.2022.30

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chorsi MT,Chorsi HT.Piezoelectric biomaterials for sensors and actuators.Adv Mater2019;31:e1802084

[2]

Li J,Yang F.Degradable piezoelectric biomaterials for wearable and implantable bioelectronics.Curr Opin Solid State Mater Sci2020;24:100806 PMCID:PMC7170261

[3]

Dagdeviren C,Su Y.Transient, biocompatible electronics and energy harvesters based on ZnO.Small2013;9:3398-404

[4]

Cung K,Nguyen TD.Biotemplated synthesis of PZT nanowires.Nano Lett2013;13:6197-202

[5]

Rödel J,Dittmer R,Kimura M.Transferring lead-free piezoelectric ceramics into application.J Eur Ceram Soc2015;35:1659-81

[6]

Jeong CK,Park KI.Virus-directed design of a flexible BaTiO3 nanogenerator.ACS Nano2013;7:11016-25

[7]

Okada K,Kameshima Y.Properties of TiO2 prepared by acid treatment of BaTiO3.Mater Res Bull2007;42:1921-9

[8]

Zhu P,Shi J.Piezocatalytic tumor therapy by ultrasound-triggered and BaTiO3-mediated piezoelectricity.Adv Mater2020;32:e2001976

[9]

Wang Y,Chen Z.Synthesis of cubic LiNbO3 nanoparticles and their application in vitro bioimaging.Appl Phys A2014;117:2121-6

[10]

Yu S,Tuan W,Wang S.Cytotoxicity and degradation behavior of potassium sodium niobate piezoelectric ceramics.Ceram Int2012;38:2845-50

[11]

Liu F,Liu Y,Li K.Progress in the production and modification of PVDF membranes.J Membr Sci2011;375:1-27

[12]

Bystrov VS,Bdikin IK,Pullar RC.Molecular modeling of the piezoelectric effect in the ferroelectric polymer poly(vinylidene fluoride) (PVDF).J Mol Model2013;19:3591-602

[13]

Beringer LT,Shih W,Habas R.An electrospun PVDF-TrFe fiber sensor platform for biological applications.Sens Actuators A Phys2015;222:293-300

[14]

Middleton JC.Synthetic biodegradable polymers as orthopedic devices.Biomaterials2000;21:2335-46

[15]

Feig VR,Bao Z.Biodegradable polymeric materials in degradable electronic devices.ACS Cent Sci2018;4:337-48 PMCID:PMC5879474

[16]

Tan MJ,Chee PL,Kai D.Biodegradable electronics: cornerstone for sustainable electronics and transient applications.J Mater Chem C2016;4:5531-58

[17]

Lemanov VV.Piezoelectric and pyroelectric properties of protein amino acids as basic materials of soft state physics.Ferroelectrics2000;238:775-82

[18]

Lemanov VV,Pankova GA.Piezoelectric properties of crystals of some protein aminoacids and their related compounds.Phys Solid State2002;44:1929-35

[19]

Perlovich GL,Bauer-brandl A.The polymorphism of glycine - thermochemical and structural aspects.J Therm Anal Calorim2001;66:699-715

[20]

Hu P,Huang Y.Bioferroelectric properties of glycine crystals.J Phys Chem Lett2019;10:1319-24

[21]

Guerin S,Chovan D.Control of piezoelectricity in amino acids by supramolecular packing.Nat Mater2018;17:180-6

[22]

Hamilton BD,Ward MD.Glycine polymorphism in nanoscale crystallization chambers.Cryst Growth Des2008;8:3368-75

[23]

Bishara H.Polymorphism and piezoelectricity of glycine nano-crystals grown inside alumina nano-pores.J Mater Sci2019;54:4619-25

[24]

Isakov D,Bdikin I.Production of polar β-glycine nanofibers with enhanced nonlinear optical and piezoelectric properties.Cryst Growth Des2011;11:4288-91

[25]

Hosseini ES,Shakthivel D.Glycine-chitosan-based flexible biodegradable piezoelectric pressure sensor.ACS Appl Mater Interfaces2020;12:9008-16 PMCID:PMC7146751

[26]

Yang F,Long Y.Wafer-scale heterostructured piezoelectric bio-organic thin films.Science2021;373:337-42 PMCID:PMC8516594

[27]

Guerin S,Haq EU.Racemic amino acid piezoelectric transducer.Phys Rev Lett2019;122:047701

[28]

Shrout TR.Lead-free piezoelectric ceramics: alternatives for PZT?.J Electroceram2007;19:113-26

[29]

Reches M.Casting metal nanowires within discrete self-assembled peptide nanotubes.Science2003;300:625-7

[30]

Yan X,Li J.Self-assembly and application of diphenylalanine-based nanostructures.Chem Soc Rev2010;39:1877-90

[31]

Kholkin A,Bdikin I,Rosenman G.Strong piezoelectricity in bioinspired peptide nanotubes.ACS Nano2010;4:610-4

[32]

Amdursky N,Schklovsky J,Rosenman G.Ferroelectric and related phenomena in biological and bioinspired nanostructures.Ferroelectrics2010;399:107-17

[33]

Vasilev S,Vasileva D,Shur VY.Piezoelectric properties of diphenylalanine microtubes prepared from the solution.J Phys Chem Solids2016;93:68-72

[34]

Tao Z,Ding S,Hu W.Diphenylalanine-based degradable piezoelectric nanogenerators enabled by polylactic acid polymer-assisted transfer.Nano Energy2021;88:106229

[35]

Anderson J,McCullagh M.Initial aggregation and ordering mechanism of diphenylalanine from microsecond all-atom molecular dynamics simulations.J Phys Chem B2018;122:12331-41

[36]

Nguyen V,Yang R.Epitaxial growth of vertically aligned piezoelectric diphenylalanine peptide microrods with uniform polarization.Nano Energy2015;17:323-9

[37]

Nguyen V,Jenkins K.Self-assembly of diphenylalanine peptide with controlled polarization for power generation.Nat Commun2016;7:13566 PMCID:PMC5120215

[38]

Maziati Akmal MH,Hisham F.Advanced technology for the conversion of waste into fuels and chemicals. In: Khan A, Pizzi A, Jawaid M, et al., editors. 16-Biopolymer-based waste for biomaterials thin film in piezoelectric application. Woodhead Publishing; 2021. pp. 355-81.

[39]

Bera S,Yuan H.Molecular engineering of piezoelectricity in collagen-mimicking peptide assemblies.Nat Commun2021;12:2634 PMCID:PMC8113556

[40]

Yucel T,Kaplan DL.Structural origins of silk piezoelectricity.Adv Funct Mater2011;21:779-85 PMCID:PMC3546528

[41]

Zhou Z,Minary-Jolandan M.Molecular Mechanism of polarization and piezoelectric effect in super-twisted collagen.ACS Biomater Sci Eng2016;2:929-36

[42]

Ghosh SK.High-performance bio-piezoelectric nanogenerator made with fish scale.Appl Phys Lett2016;109:103701

[43]

Yan Y,Ma X.Nanogenerators facilitated piezoelectric and flexoelectric characterizations for bioinspired energy harvesting materials.Nano Energy2021;81:105607

[44]

Liu Y,Zelisko M.Ferroelectric switching of elastin.Proc Natl Acad Sci USA2014;111:E2780-6 PMCID:PMC4103339

[45]

Wang R,Wang X.Natural piezoelectric biomaterials: a biocompatible and sustainable building block for biomedical devices.ACS Nano2022;16:17708-28

[46]

Stapleton A,Sweeney J.The direct piezoelectric effect in the globular protein lysozyme.Appl Phys Lett2017;111:142902

[47]

Karan SK,Kwon O.Nature driven spider silk as high energy conversion efficient bio-piezoelectric nanogenerator.Nano Energy2018;49:655-66

[48]

Kim D,Kim JH,Kim SW.Biomolecular piezoelectric materials: from amino acids to living tissues.Adv Mater2020;32:e1906989

[49]

Ghosh SK,Na S,Ko H.A fully biodegradable ferroelectric skin sensor from edible porcine skin gelatine.Adv Sci2021;8:2005010 PMCID:PMC8261503

[50]

Smith GP.Phage display.Chem Rev1997;97:391-410

[51]

Dogic Z.Smectic phase in a colloidal suspension of semiflexible virus particles.Phys Rev Lett1997;78:2417-20

[52]

Lee BY,Zueger C.Virus-based piezoelectric energy generation.Nat Nanotechnol2012;7:351-6

[53]

Shin D,Kim W.Bioinspired piezoelectric nanogenerators based on vertically aligned phage nanopillars.Energy Environ Sci2015;8:3198-203

[54]

Lee JH,Xiao J,Zhang X.Vertical self-assembly of polarized phage nanostructure for energy harvesting.Nano Lett2019;19:2661-7

[55]

Park IW,Hong Y.Recent developments and prospects of M13-bacteriophage based piezoelectric energy harvesting devices.Nanomaterials2020;10:93 PMCID:PMC7022932

[56]

Zhang J,Sato H.Crystal modifications and thermal behavior of poly(l-lactic acid) revealed by infrared spectroscopy.Macromolecules2005;38:8012-21

[57]

Wang H,Tashiro K.Phase transition mechanism of poly(l-lactic acid) among the α, δ, and β forms on the basis of the reinvestigated crystal structure of the β form.Macromolecules2017;50:3285-300

[58]

Shin DM,Hwang YH.Recent advances in organic piezoelectric biomaterials for energy and biomedical applications.Nanomaterials2020;10:123 PMCID:PMC7023025

[59]

Shao J,Bian X.Modified PLA homochiral crystallites facilitated by the confinement of PLA stereocomplexes.Macromolecules2013;46:6963-71

[60]

Cartier L,Ikada Y,Puiggali J.Epitaxial crystallization and crystalline polymorphism of polylactides.Polymer2000;41:8909-19

[61]

Ochiai T.Electromechanical properties of poly-L-lactic acid.Jpn J Appl Phys1998;37:3374

[62]

Babichuk IS,Qiu Y.Raman mapping of piezoelectric poly(l-lactic acid) films for force sensors.RSC Adv2022;12:27687-97 PMCID:PMC9516697

[63]

Mat Zin S,Furukawa T.Quantitative study on the face shear piezoelectricity and its relaxation in uniaxially-drawn and annealed poly-l-lactic acid.Polymer2022;254:125095

[64]

Lovell CS,Park C.Decoupling the effects of crystallinity and orientation on the shear piezoelectricity of polylactic acid.J Polym Sci B Polym Phys2011;49:1555-62

[65]

Tajitsu Y.Development of environmentally friendly piezoelectric polymer film actuator having multilayer structure.Jpn J Appl Phys2016;55:04EA07

[66]

Mossi KM,Bryant RG.Thin-layer composite unimorph ferroelectric driver and sensor properties.Mater Lett1998;35:39-49

[67]

Curry EJ,Chorsi MT.Biodegradable piezoelectric force sensor.Proc Natl Acad Sci USA2018;115:909-14 PMCID:PMC5798324

[68]

Nalwa HS.Ferroelectric polymers: chemistry: physics, and applications. Nalwa HS: Boca Raton; 1995.

[69]

Lee SJ,Kim KJ.Piezoelectric properties of electrospun poly(l-lactic acid) nanofiber web.Mater Lett2015;148:58-62

[70]

Zhao G,Zhang J,Ren K.Electrospun poly(l-lactic acid) nanofibers for nanogenerator and diagnostic sensor applications.Macromol Mater Eng2017;302:1600476

[71]

Sultana A,Sencadas V.Human skin interactive self-powered wearable piezoelectric bio-e-skin by electrospun poly-l-lactic acid nanofibers for non-invasive physiological signal monitoring.J Mater Chem B2017;5:7352-9

[72]

Curry EJ,Das R.Biodegradable nanofiber-based piezoelectric transducer.Proc Natl Acad Sci USA2020;117:214-20 PMCID:PMC6955346

[73]

Imoto K,Fukada E.Piezoelectric motion of poly(l-lactic acid) film improved by supercritical CO2 treatment.Jpn J Appl Phys2009;48:09KE06

[74]

Sawano M,Orita Y,Tajitsu Y.New design of actuator using shear piezoelectricity of a chiral polymer, and prototype device: actuator using shear piezoelectricity of a chiral polymer.Polym Int2010;59:365-70

[75]

Fukada E.History and recent progress in piezoelectric polymers.IEEE Trans Ultrason Ferr2000;47:1277-90

[76]

Ribeiro C,Correia DM.Piezoelectric polymers as biomaterials for tissue engineering applications.Colloids Surf B2015;136:46-55

[77]

Fukada E.Piezoelectric properties of poly-β-hydroxybutyrate and copolymers of β-hydroxybutyrate and β-hydroxyvalerate.Int J Biol Macromol1986;8:361-6

[78]

Chernozem R,Surmeneva M.Diazonium chemistry surface treatment of piezoelectric polyhydroxybutyrate scaffolds for enhanced osteoblastic cell growth.Appl Mater Today2020;20:100758

[79]

Urakami T,Harada M,Tokiwa Y.Development of biodegradable plastic-poly-β-hydroxybutyrate/polycaprolactone blend polymer.Kobunshi Ronbunshu2000;57:263-70

[80]

García Y,Marrero-Ponce Y.Orthotropic piezoelectricity in 2D nanocellulose.Sci Rep2016;6:34616 PMCID:PMC5052617

[81]

Moon RJ,Nairn J,Youngblood J.Cellulose nanomaterials review: structure, properties and nanocomposites.Chem Soc Rev2011;40:3941-94

[82]

Csoka L,Rojas OJ,Pawlak JJ.Piezoelectric effect of cellulose nanocrystals thin films.ACS Macro Lett2012;1:867-70

[83]

Maiti S,Lee J,Bhusan Khatua B.Bio-waste onion skin as an innovative nature-driven piezoelectric material with high energy conversion efficiency.Nano Energy2017;42:282-93

[84]

Rajala S,Sarlin E.Cellulose nanofibril film as a piezoelectric sensor material.ACS Appl Mater Interfaces2016;8:15607-14

[85]

Sierra DL, Bdikin I, Tkach A, Vilarinho PM, Nunes C, Ferreira P. Flexible piezoelectric chitosan and barium titanate biocomposite films for sensor applications.Eur J Inorg Chem2021;2021:792-803

[86]

de Marzo G,Algieri L.Sustainable, flexible, and biocompatible enhanced piezoelectric chitosan thin film for compliant piezosensors for human health.Adv Electron Mater2022;2200069.

[87]

Jacob J,Kalia K.Piezoelectric smart biomaterials for bone and cartilage tissue engineering.Inflamm Regen2018;38:2 PMCID:PMC5828134

[88]

Hoque NA,Biswas P.Biowaste crab shell-extracted chitin nanofiber-based superior piezoelectric nanogenerator.J Mater Chem A2018;6:13848-58

[89]

Zhukov S,Seggern HV.Biodegradable cellular polylactic acid ferroelectrets with strong longitudinal and transverse piezoelectricity.Appl Phys Lett2020;117:112901

[90]

Gao X,Wang B.Natural materials assembled, biodegradable, and transparent paper-based electret nanogenerator.ACS Appl Mater Interfaces2016;8:35587-92

[91]

Mohebbi A,Ajji A.Cellular polymer ferroelectret: a review on their development and their piezoelectric properties.Adv Polym Technol2018;37:468-83

[92]

Ouassim H,Denis R.Piezoelectric cellular polymer films: fabrication, properties and applications.AIMS Mater Sci2018;5:845-69

[93]

Felig P.Amino acid metabolism in man.Annu Rev Biochem1975;44:933-55

[94]

Tóthová L,Celec P.Phage survival: the biodegradability of M13 phage display library in vitro.Biotechnol Appl Biochem2012;59:490-4

[95]

Merzlyak A,Lee SW.Genetically engineered nanofiber-like viruses for tissue regenerating materials.Nano Lett2009;9:846-52

[96]

Hajitou A,Lilley CE.A hybrid vector for ligand-directed tumor targeting and molecular imaging.Cell2006;125:385-98

[97]

Walton M.Long-term in vivo degradation of poly-L-lactide (PLLA) in bone.J Biomater Appl2007;21:395-411

[98]

Bos RR,Boering G.Degradation of and tissue reaction to biodegradable poly(L-lactide) for use as internal fixation of fractures: a study in rats.Biomaterials1991;12:32-6

[99]

Bergsma JE,Rozema FR,Boering G.Late degradation tissue response to poly(L-lactide) bone plates and screws.Biomaterials1995;16:25-31

[100]

Beguin P.The biological degradation of cellulose.FEMS Microbiol Rev1994;13:25-58

[101]

Helenius G,Bodin A,Gatenholm P.In vivo biocompatibility of bacterial cellulose.J Biomed Mater Res A2006;76:431-8

[102]

Zhou H,Qiu Y.Stretchable piezoelectric energy harvesters and self-powered sensors for wearable and implantable devices.Biosens Bioelectron2020;168:112569

[103]

Marino A,Sinibaldi E.Piezoelectric effects of materials on bio-interfaces.ACS Appl Mater Interfaces2017;9:17663-80

[104]

Jenkins K,Nguyen V,Yang R.Piezoelectric diphenylalanine peptide for greatly improved flexible nanogenerators.Nano Energy2018;51:317-23

[105]

Lee JH,Schulz-Schönhagen K.Diphenylalanine peptide nanotube energy harvesters.ACS Nano2018;12:8138-44

[106]

Zhao C,Wang ZL.A poly(l-lactic acid) polymer-based thermally stable cantilever for vibration energy harvesting applications.Adv Sustain Syst2017;1:1700068

[107]

Hu D,Fan Y,Fan M.Strategies to achieve high performance piezoelectric nanogenerators.Nano Energy2019;55:288-304

[108]

Wu C,Ding W,Wang ZL.Triboelectric nanogenerator: a foundation of the energy for the new era.Adv Energy Mater2019;9:1802906

[109]

Xu Q,Zhao S.Construction of bio-piezoelectric platforms: from structures and synthesis to applications.Adv Mater2021;33:e2008452

[110]

Olvera D.Electroactive material-based biosensors for detection and drug delivery.Adv Drug Deliv Rev2021;170:396-424

[111]

Mahapatra SD,Aria AI.Piezoelectric materials for energy harvesting and sensing applications: roadmap for future smart materials.Adv Sci2021;8:e2100864 PMCID:PMC8425885

[112]

Tajitsu Y.Development of electric control catheter and tweezers for thrombosis sample in blood vessels using piezoelectric polymeric fibers.Polym Adv Technol2006;17:907-13

[113]

Liu J,Jia J.Structure-regenerated silk fibroin with boosted piezoelectricity for disposable and biodegradable oral healthcare device.Nano Energy2022;103:107787

[114]

Kim K,Choi B.Biodegradable, electro-active chitin nanofiber films for flexible piezoelectric transducers.Nano Energy2018;48:275-83

[115]

Ben Dali O,Rutsch M.Biodegradable 3D-printed ferroelectret ultrasonic transducer with large output pressure.IEEE Int Ultra Sym2021;1-4

[116]

Whited JL.Bioelectrical controls of morphogenesis: from ancient mechanisms of cell coordination to biomedical opportunities.Curr Opin Genet Dev2019;57:61-9 PMCID:PMC6815261

[117]

Goonoo N.Piezoelectric polymeric scaffold materials as biomechanical cellular stimuli to enhance tissue regeneration.Mater Today Commun2022;31:103491

[118]

Kapat K,Zhou M.Piezoelectric nano-biomaterials for biomedicine and tissue regeneration.Adv Funct Mater2020;30:1909045

[119]

Khare D,Dubey AK.Electrical stimulation and piezoelectric biomaterials for bone tissue engineering applications.Biomaterials2020;258:120280

[120]

Shimono T,Fukada E,Shikinami Y.The effects of piezoelectric poly-L-lactic acid films in promoting ossification in vivo.In Vivo1996;10:471-6

[121]

Chen Y,Wang M,Wong M.PLLA scaffolds with biomimetic apatite coating and biomimetic apatite/collagen composite coating to enhance osteoblast-like cells attachment and activity.Surf Coat Technol2006;201:575-80

[122]

Prabhakaran MP,Ramakrishna S.Electrospun nanostructured scaffolds for bone tissue engineering.Acta Biomater2009;5:2884-93

[123]

Kramp B,Schumacher WA.[Poly-beta-hydroxybutyric acid (PHB) films and plates in defect covering of the osseus skull in a rabbit model].Laryngorhinootologie2002;81:351-6

[124]

Wang YW,Chen GQ.Attachment, proliferation and differentiation of osteoblasts on random biopolyester poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds.Biomaterials2004;25:669-75

[125]

Ye C,Ma MX,Liu RG.PHB/PHBHHx scaffolds and human adipose-derived stem cells for cartilage tissue engineering.Biomaterials2009;30:4401-6

[126]

Rocha LB,Rossi MA.Biocompatibility of anionic collagen matrix as scaffold for bone healing.Biomaterials2002;23:449-56

[127]

Moreira PL,Santos AR Jr.In vitro analysis of anionic collagen scaffolds for bone repair.J Biomed Mater Res B Appl Biomater2004;71:229-37

[128]

Amaral IF,Sampaio P.Attachment, spreading and short-term proliferation of human osteoblastic cells cultured on chitosan films with different degrees of acetylation.J Biomater Sci Polym Ed2007;18:469-85

[129]

Das R,Le TT.Biodegradable nanofiber bone-tissue scaffold as remotely-controlled and self-powering electrical stimulator.Nano Energy2020;76:105028

[130]

Liu Y,Le TT.Exercise-induced piezoelectric stimulation for cartilage regeneration in rabbits.Sci Transl Med2022;14:eabi7282

[131]

Liu L,Liu K.Wireless manipulation of magnetic/piezoelectric micromotors for precise neural stem-like cell stimulation.Adv Funct Mater2020;30:1910108

[132]

Zhao D,Liu JH.Electromagnetized-nanoparticle-modulated neural plasticity and recovery of degenerative dopaminergic neurons in the mid-brain.Adv Mater2020;32:e2003800

[133]

Du L,Jin F.Design of high conductive and piezoelectric poly(3,4-ethylenedioxythiophene)/chitosan nanofibers for enhancing cellular electrical stimulation.J Colloid Interface Sci2020;559:65-75

[134]

Zuo KJ,Chan KM.Electrical stimulation to enhance peripheral nerve regeneration: update in molecular investigations and clinical translation.Exp Neurol2020;332:113397

[135]

Huang J,Hu X,Luo Z.Electrical stimulation induces calcium-dependent release of NGF from cultured Schwann cells.Glia2010;58:622-31

[136]

Wu P,Xu C.Ultrasound-driven in vivo electrical stimulation based on biodegradable piezoelectric nanogenerators for enhancing and monitoring the nerve tissue repair.Nano Energy2022;102:107707

[137]

Chen P,Wu P.Wirelessly powered electrical-stimulation based on biodegradable 3D piezoelectric scaffolds promotes the spinal cord injury repair.ACS Nano2022;16:16513-28

[138]

Yang F,Ramakrishna S,Ma YX.Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering.Biomaterials2004;25:1891-900

[139]

Yang F,Wang S.Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering.Biomaterials2005;26:2603-10

[140]

Chen W.PHBV microspheres as neural tissue engineering scaffold support neuronal cell growth and axon-dendrite polarization.Acta Biomater2012;8:540-8

[141]

Naseri-Nosar M,Hojjati-Emami S.Cellulose acetate/poly lactic acid coaxial wet-electrospun scaffold containing citalopram-loaded gelatin nanocarriers for neural tissue engineering applications.Int J Biol Macromol2017;103:701-8

[142]

Rinaudo M.Chitin and chitosan: properties and applications.Prog Polym Sci2006;31:603-32

[143]

Kuo YC,Yang JT.Differentiation of bone marrow stromal cells in poly(lactide-co-glycolide)/chitosan scaffolds.Biomaterials2009;30:6604-13

[144]

Wang S,Guan S.Chitosan/gelatin porous scaffolds assembled with conductive poly(3,4-ethylenedioxythiophene) nanoparticles for neural tissue engineering.J Mater Chem B2017;5:4774-88

[145]

Eltom A,Muhammad A.Scaffold techniques and designs in tissue engineering functions and purposes: a review.Adv Mater Sci Eng2019;2019:1-13

[146]

Ceballos D,Dubey N,Kennedy WR.Magnetically aligned collagen gel filling a collagen nerve guide improves peripheral nerve regeneration.Exp Neurol1999;158:290-300

[147]

Bian YZ,Aibaidoula G,Wu Q.Evaluation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) conduits for peripheral nerve regeneration.Biomaterials2009;30:217-25

[148]

Yucel D,Hasirci V.Polyester based nerve guidance conduit design.Biomaterials2010;31:1596-603

[149]

Niu Y,Fu M.Biomimetic electrospun tubular PLLA/gelatin nanofiber scaffold promoting regeneration of sciatic nerve transection in SD rat.Mater Sci Eng C Mater Biol Appl2021;121:111858

[150]

Jiang Z,Qiao J.Rat sciatic nerve regeneration across a 10-mm defect bridged by a chitin/CM-chitosan artificial nerve graft.Int J Biol Macromol2019;129:997-1005

[151]

Cafarelli A,Vannozzi L.Piezoelectric nanomaterials activated by ultrasound: the pathway from discovery to future clinical adoption.ACS Nano2021;15:11066-86 PMCID:PMC8397402

[152]

Genchi GG,Marino A.P(VDF-TrFE)/BaTiO3 nanoparticle composite films mediate piezoelectric stimulation and promote differentiation of SH-SY5Y neuroblastoma cells.Adv Healthc Mater2016;5:1808-20

[153]

Hoop M,Ferrari A.Ultrasound-mediated piezoelectric differentiation of neuron-like PC12 cells on PVDF membranes.Sci Rep2017;7:4028 PMCID:PMC5481323

[154]

Zaszczynska A,Gradys A.Piezoelectric scaffolds as smart materials for neural tissue engineering.Polymers2020;12:161

[155]

Ashrafi M,Baguneid M.The efficacy of electrical stimulation in experimentally induced cutaneous wounds in animals.Vet Dermatol2016;27:235-e257

[156]

Park YR,Park HJ.NF-κB signaling is key in the wound healing processes of silk fibroin.Acta Biomater2018;67:183-95

[157]

Chen Y,Song L.Piezoelectric and photothermal dual functional film for enhanced dermal wound regeneration via upregulation of Hsp90 and HIF-1α.Appl Mater Today2020;20:100756

[158]

Deng Q,Sharma P.Flexoelectricity in soft materials and biological membranes.J Mech Phys Solids2014;62:209-27

[159]

Grasinger M,Sharma P.Flexoelectricity in soft elastomers and the molecular mechanisms underpinning the design and emergence of giant flexoelectricity.Proc Natl Acad Sci USA2021;118 PMCID:PMC8166132

[160]

Wang B,Sharma P.Flexoelectricity as a universal mechanism for energy harvesting from crumpling of thin sheets.Phys Rev B2019;100

[161]

Rahmati AH,Bauer S.Nonlinear bending deformation of soft electrets and prospects for engineering flexoelectricity and transverse d(31) piezoelectricity.Soft Matter2018;15:127-48

[162]

Jiang X,Zhang S.Flexoelectric nano-generator: materials, structures and devices.Nano Energy2013;2:1079-92

[163]

Abdollahi A.Constructive and destructive interplay between piezoelectricity and flexoelectricity in flexural sensors and actuators.J Appl Mech2015;82:121003

AI Summary AI Mindmap
PDF

334

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/