Recent advances in flexible and soft gel-based pressure sensors

Guifen Sun , Peng Wang , Yongxiang Jiang , Hongchang Sun , Chuizhou Meng , Shijie Guo

Soft Science ›› 2022, Vol. 2 ›› Issue (4) : 17

PDF
Soft Science ›› 2022, Vol. 2 ›› Issue (4) :17 DOI: 10.20517/ss.2022.16
Review Article

Recent advances in flexible and soft gel-based pressure sensors

Author information +
History +
PDF

Abstract

Gels, as typical flexible and soft materials, possess the intrinsic merits of transparent bionic structures, superior mechanical properties and excellent elasticity and viscosity. Recently, gel-based materials have attracted significant attention as a result of their broad and promising applications in biomedical, energy storage, light emission, actuator, military and aerospace devices, especially the intelligent sensing for human-related applications. Among the various flexible and soft pressure sensors, gel-based ones have been gradually studied as an emerging hot research topic. This review focuses on the latest findings in the rapidly developing field of gel-based pressure sensors. Firstly, the classification and properties of the three types of gels and their corresponding fabrication methods are introduced. Secondly, the four basic working principles of pressure sensors are summarized with a comparison of their advantages and disadvantages, followed by an introduction to the construction of pressure sensors based on gel structures. Thirdly, the latest representative research on the three types of gel-based materials towards various wearable sensing applications, including electronic skin, human motion capture, healthcare and rehabilitation, physiological activity monitoring and human-machine interactions, is comprehensively reviewed. Finally, a summary of the remaining challenges and an outline of the development trend for this field are presented.

Keywords

Hydrogels / ionogels / aerogels / soft materials / pressure sensors / wearable electronics

Cite this article

Download citation ▾
Guifen Sun, Peng Wang, Yongxiang Jiang, Hongchang Sun, Chuizhou Meng, Shijie Guo. Recent advances in flexible and soft gel-based pressure sensors. Soft Science, 2022, 2(4): 17 DOI:10.20517/ss.2022.16

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Huang J,Zhao M.Flexible electrically conductive biomass-based aerogels for piezoresistive pressure/strain sensors.Chem Eng J2019;373:1357-66

[2]

Liu YF,Long JF.Bioinspired color-changeable organogel tactile sensor with excellent overall performance.ACS Appl Mater Inter2020;12:49866-75

[3]

Liu Z,Zhan Y.A soft yet device-level dynamically super-tough supercapacitor enabled by an energy-dissipative dual-crosslinked hydrogel electrolyte.Nano Energy2019;58:732-42

[4]

Chen ZH,Li W.Stretchable transparent conductors: from micro/macromechanics to applications.Adv Mater2019;31:e1900756

[5]

Wang P,Liu J.Tailorable capacitive tactile sensor based on stretchable and dissolvable porous silver nanowire/polyvinyl alcohol nanocomposite hydrogel for wearable human motion detection.Adv Mater Inter2021;8:2100998

[6]

Liao X,Lin P,Tian Y.Enhanced performance of ZnO piezotronic pressure sensor through electron-tunneling modulation of MgO nanolayer.ACS Appl Mater Inter2015;7:1602-7

[7]

Liao X,Zhang X.Hetero-contact microstructure to program discerning tactile interactions for virtual reality.Nano Energy2019;60:127-36

[8]

Doshi SM.Thin and flexible carbon nanotube-based pressure sensors with ultrawide sensing range.ACS Sens2018;3:1276-82 PMCID:PMC6286676

[9]

Tang X,Yin S.Controllable graphene wrinkle for a high-performance flexible pressure sensor.ACS Appl Mater Inter2021;13:20448-58

[10]

Sun G,Jiang Y,Meng C.Intrinsically flexible and breathable supercapacitive pressure sensor based on MXene and ionic gel decorating textiles for comfortable and ultrasensitive wearable healthcare monitoring.ACS Appl Electron Mater2022;4:1958-67

[11]

Zang X,Wang X,Ji J.Highly sensitive pressure sensors based on conducting polymer-coated paper.Sensors Actuat B Chem2018;273:1195-201

[12]

Liu J,Li M.Polydimethylsiloxane nanocomposite filled with 3D carbon nanosheet frameworks for tensile and compressive strain sensors.Compos Part B Eng2019;168:175-82

[13]

Han CJ,Suk Oh M,Kim J.Photo-induced fabrication of Ag nanowire circuitry for invisible, ultrathin, conformable pressure sensors.J Mater Chem C2017;5:9986-94

[14]

Kim SJ,Min BK.Highly sensitive and flexible strain-pressure sensors with cracked paddy-shaped MoS2/graphene foam/ecoflex hybrid nanostructures.ACS Appl Mater Inter2018;10:36377-84

[15]

Chen B,Li H,Zeng X.Skin-inspired flexible and high-performance MXene@polydimethylsiloxane piezoresistive pressure sensor for human motion detection.J Colloid Inter Sci2022;617:478-88

[16]

Zhu M,Tang F,Liu Y.Robust natural biomaterial based flexible artificial skin sensor with high transparency and multiple signals capture.Chem Eng J2020;394:124855

[17]

Keplinger C,Foo CC,Whitesides GM.Stretchable, transparent, ionic conductors.Science2013;341:984-7

[18]

Hwang BU,Trung TQ.Transparent stretchable self-powered patchable sensor platform with ultrasensitive recognition of human activities.ACS Nano2015;9:8801-10

[19]

Ahmed K,Khosla A,Thundat T.Review-recent progresses in 4D printing of gel materials.J Electrochem Soc2020;167:037563

[20]

Keshavarz L,Macelroy JD.A comprehensive review on the application of aerogels in CO2-adsorption: Materials and characterisation.Chem Eng J2021;412:128604

[21]

Zhang J,Li Y.Textile-based flexible pressure sensors: a review.Polym Rev2022;62:65-94 PMCID:PMC9103991

[22]

Xu F,Shi Y.Recent developments for flexible pressure sensors: a review.Micromachines2018;9:580 PMCID:PMC6266671

[23]

Chen W.Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: A review.J Mater Sci Technol2020;43:175-88

[24]

Ahmed EM.Hydrogel: Preparation, characterization, and applications: a review.J Adv Res2015;6:105-21 PMCID:PMC4348459

[25]

Zhang L,Dong T.Overview of Ionogels in flexible electronics.Chem Rec2020;20:948-67

[26]

Wang L,Li Y.An ionically conductive, self-powered and stable organogel for pressure sensing.Nanomaterials2022;12:714 PMCID:PMC8878061

[27]

Ma M,Liao Q.Self-powered artificial electronic skin for high-resolution pressure sensing.Nano Energy2017;32:389-96

[28]

Liao X,Zhong L,Zheng Y.Synergistic sensing of stratified structures enhancing touch recognition for multifunctional interactive electronics.Nano Energy2019;62:410-8

[29]

Liao X,Lin M,Wu H.Hierarchically distributed microstructure design of haptic sensors for personalized fingertip mechanosensational manipulation.Mater Horiz2018;5:920-31

[30]

Lv Q,Shen Y.Enhanced swelling ratio and water retention capacity for novel super-absorbent hydrogel.Colloid Surface A2019;583:123972

[31]

Zeng J,Sha W,Guo X.Highly stretchable, compressible and arbitrarily deformable all-hydrogel soft supercapacitors.Chem Eng J2020;383:123098

[32]

Wang Q,Hua Z.An oriented Fe3+-regulated lignin-based hydrogel with desired softness, conductivity, stretchability, and asymmetric adhesiveness towards anti-interference pressure sensors.Int J Biol Macromol2021;184:282-8

[33]

Gao Y,Chen J.Highly conductive organic-ionogels with excellent hydrophobicity and flame resistance.Chem Eng J2022;427:131057

[34]

Wang Y,Gao J.Highly conductive and thermally stable ion gels with tunable anisotropy and modulus.Adv Mater2016;28:2571-8

[35]

Gao Y,Lu S.Highly stretchable organogel ionic conductors with extreme-temperature tolerance.Chem Mater2019;31:3257-64

[36]

Li Y,Nie X.Multifunctional organic-inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material.Adv Funct Mater2019;29:1807624

[37]

Zhang S,Li T.3D MXene/PEDOT:PSS composite aerogel with a controllable patterning property for highly sensitive wearable physical monitoring and robotic tactile sensing.ACS Appl Mater Inter2022:23877-87

[38]

Garemark J,Rico Del Cerro D.Nanostructurally controllable strong wood aerogel toward efficient thermal insulation.ACS Appl Mater Inter2022;14:24697-707 PMCID:PMC9164199

[39]

Wang Z,Fu J.Stretchable and tough conductive hydrogels for flexible pressure and strain sensors.J Mater Chem B2020;8:3437-59

[40]

Sun H,Wang Z.An insight into skeletal networks analysis for smart hydrogels.Adv Funct Mater2022;32:2108489

[41]

Wang J,Sheng Z,Yan L.Solid-liquid-vapor triphase gel.Langmuir2021;37:13501-11

[42]

Scaffaro R,Citarrella MC.Ionic tactile sensors as promising biomaterials for artificial skin: Review of latest advances and future perspectives.Eur Polym J2021;151:110421

[43]

Kloxin CJ.Covalent adaptable networks: smart, reconfigurable and responsive network systems.Chem Soc Rev2013;42:7161-73

[44]

Lin J,Xiao R.Constitutive behaviors of tough physical hydrogels with dynamic metal-coordinated bonds.J Mech Phys Solids2020;139:103935

[45]

Bashir S,Iqbal J.Fundamental Concepts of hydrogels: synthesis, properties, and their applications.Polymers2020;12:2702 PMCID:PMC7697203

[46]

Hao Z,Wang Y.Supramolecular peptide nanofiber hydrogels for bone tissue engineering: from multihierarchical fabrications to comprehensive applications.Adv Sci2022;9:e2103820 PMCID:PMC9008438

[47]

Yokoyama E,Shimamura K,Monobe K.Morphology and structure of highly elastic poly(vinyl alcohol) hydrogel prepared by repeated freezing-and-melting.Colloid Polym Sci1986;264:595-601

[48]

Zhang K,Fang Z,Bian L.Structurally dynamic hydrogels for biomedical applications: pursuing a fine balance between macroscopic stability and microscopic dynamics.Chem Rev2021;121:11149-93

[49]

Tan H,Payne KA.Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering.Biomaterials2009;30:2499-506 PMCID:PMC2676686

[50]

Kimura A,Shimada A.Crosslinking of polysaccharides in room temperature ionic liquids by ionizing radiation.Radiat Phys Chem2016;124:130-4

[51]

Lee CL,Holbrook M.Sensitization of Vascular endothelial cells to ionizing radiation promotes the development of delayed intestinal injury in mice.Radiat Res2019;192:258-66 PMCID:PMC6776243

[52]

Ono K,Yura H.Photocrosslinkable chitosan as a biological adhesive.J Biomed Mater Res2000;49:289-95

[53]

Dinh Xuan H,Park HY.Super stretchable and durable electroluminescent devices based on double-network ionogels.Adv Mater2021;33:e2008849

[54]

Wang P,Yu W,Guo S.Color-customizable, stretchable, self-healable and degradable ionic gel for variable human-motion detection via strain, pressure, and torsion.Adv Mater Inter2022;9:2102426

[55]

Wang P,Liu J,Meng C.Flexible, freestanding, ultrasensitive, and iontronic tactile sensing textile.ACS Appl Electron Mater2021;3:2195-202

[56]

Wang P,Yu W,Guo S.Flexible pseudocapacitive iontronic tactile sensor based on microsphere-decorated electrode and microporous polymer electrolyte for ultrasensitive pressure detection.Adv Elect Mater2022;8:2101269

[57]

Hao S,Yang X,Song H.A novel strategy for fabricating highly stretchable and highly conductive photoluminescent ionogels via an in situ self-catalytic cross-linking reaction in ionic liquids.J Mater Chem C2021;9:5789-99

[58]

Zheng SY,Yuan J.Molecularly engineered zwitterionic hydrogels with high toughness and self-healing capacity for soft electronics applications.Chem Mater2021;33:8418-29

[59]

Winther-Jensen O,Sun J,MacFarlane DR.Self polymerising ionic liquid gel.Chem Commun2009;3041-3

[60]

Gesser HD.Aerogels and related porous materials.Chem Rev1989;89:765-88

[61]

Mahmoudpour M,Hasanzadeh M.Carbon-based aerogels for biomedical sensing: Advances toward designing the ideal sensor.Adv Colloid Inter Sci2021;298:102550

[62]

Han X,Fukuda S,Wang S.Sodium alginate-silica composite aerogels from rice husk ash for efficient absorption of organic pollutants.Biomass Bioenergy2022;159:106424

[63]

Zhao C,Dong S,Qi H.Silicon-containing polyarylacetylene aerogel with heat resistance and ablative property for high-temperature insulation.J Appl Polym Sci2022;139

[64]

Freytag A,Naskar S.Versatile aerogel fabrication by freezing and subsequent freeze-drying of colloidal nanoparticle solutions.Angew Chem Int Ed Engl2016;55:1200-3

[65]

Yang J,Zheng Y.Versatile aerogels for sensors.Small2019;15:e1902826

[66]

Wan W,Ma M.Monolithic aerogel photocatalysts: a review.J Mater Chem A2018;6:754-75

[67]

Nadargi DY,Hirashima H.Studies on rheological properties of methyltriethoxysilane (MTES) based flexible superhydrophobic silica aerogels.Micropor Mesopor Mat2009;117:617-26

[68]

Shimizu T,Maeno A.Transparent, highly insulating polyethyl- and polyvinylsilsesquioxane aerogels: mechanical improvements by vulcanization for ambient pressure drying.Chem Mater2016;28:6860-8

[69]

Shimizu T,Maeno A,Nakanishi K.Transparent ethylene-bridged polymethylsiloxane aerogels and XErogels with improved bending flexibility.Langmuir2016;32:13427-34

[70]

Parale VG,Park H.Flexible and transparent silica aerogels: an overview.J Korean Ceram Soc2017;54:184-99

[71]

Jung SM,Fang W,Kong J.A facile methodology for the production of in situ inorganic nanowire hydrogels/aerogels.Nano Lett2014;14:1810-7

[72]

Cai Y,Ge G.Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range.ACS Nano2018;12:56-62

[73]

Guo Y,Wang Y.All-fiber hybrid piezoelectric-enhanced triboelectric nanogenerator for wearable gesture monitoring.Nano Energy2018;48:152-60

[74]

He Z,Liang B.Capacitive pressure sensor with high sensitivity and fast response to dynamic interaction based on graphene and porous nylon networks.ACS Appl Mater Inter2018;10:12816-23

[75]

Sun G,Jiang Y.Recent advances in flexible fiber-shaped tactile sensor.J Hebei Univ Technol2011;51:97-115

[76]

Duan L,Cardon L.Recent progress on flexible and stretchable piezoresistive strain sensors: From design to application.Prog Mater Sci2020;114:100617

[77]

Trung TQ.Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare.Adv Mater2016;28:4338-72

[78]

Qiu L,Li D.Multifunctional cellular materials based on 2D nanomaterials: prospects and challenges.Adv Mater2018;30:1704850

[79]

Shi X,Zhu Y.Pushing detectability and sensitivity for subtle force to new limits with shrinkable nanochannel structured aerogel.Nat Commun2022;13:1119 PMCID:PMC8891261

[80]

Yao B,Lou X.Wireless rehabilitation training sensor arrays made with hot screen-imprinted conductive hydrogels with a low percolation threshold.ACS Appl Mater Inter2022;14:12734-47

[81]

Liu Q,Li C.Highly transparent and flexible iontronic pressure sensors based on an opaque to transparent transition.Adv Sci2020;7:2000348 PMCID:PMC7237840

[82]

Nie B,Brandt JD.Droplet-based interfacial capacitive sensing.Lab Chip2012;12:1110-8

[83]

Li R,Zhu Z.Supercapacitive iontronic nanofabric sensing.Adv Mater2017;29:1700253

[84]

Li S,Zhu Z.All-in-one iontronic sensing paper.Adv Funct Mater2019;29:1807343

[85]

Bai N,Wang Q.Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity.Nat Commun2020;11:209 PMCID:PMC6954251

[86]

Zhu P,Hou X.Skin-electrode iontronic interface for mechanosensing.Nat Commun2021;12:4731 PMCID:PMC8342427

[87]

Lu C.Piezoionic strain sensors enabled by force-voltage coupling from ionogels.Chem Phys Lett2022;803:139872

[88]

Fan F,Lin Wang Z.Flexible triboelectric generator.Nano Energy2012;1:328-34

[89]

Gao Q,Wang ZL.Triboelectric mechanical sensors-progress and prospects.Extreme Mech Lett2021;42:101100

[90]

Claver U, Zhao G. Recent progress in flexible pressure sensors based electronic skin.Adv Eng Mater2021;23:2001187

[91]

Tao K,Yu J.Ultra-sensitive, deformable, and transparent triboelectric tactile sensor based on micro-pyramid patterned ionic hydrogel for interactive human-machine interfaces.Adv Sci2022;9:e2104168 PMCID:PMC8981453

[92]

Li F,Geng J,Yang D.Polymeric DNA hydrogel: design, synthesis and applications.Prog Polym Sci2019;98:101163

[93]

Li J,Lu CH,Yang HH.Functional nucleic acid-based hydrogels for bioanalytical and biomedical applications.Chem Soc Rev2016;45:1410-31 PMCID:PMC4775362

[94]

Li J,Bai S.Recent advances of self-assembling peptide-based hydrogels for biomedical applications.Soft Matter2019;15:1704-15

[95]

Yan C.Rheological properties of peptide-based hydrogels for biomedical and other applications.Chem Soc Rev2010;39:3528-40 PMCID:PMC3104857

[96]

Alvarez-Lorenzo C,Puga AM.Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery.Adv Drug Deliv Rev2013;65:1148-71

[97]

Peers S,Ladavière C.Chitosan hydrogels for sustained drug delivery.J Control Release2020;326:150-63

[98]

Zhu J.Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering.Biomaterials2010;31:4639-56 PMCID:PMC2907908

[99]

Kamoun EA,Chen X.A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings.J Adv Res2017;8:217-33 PMCID:PMC5315442

[100]

Yang D,Derrien TL.DNA materials: bridging nanotechnology and biotechnology.Acc Chem Res2014;47:1902-11

[101]

Li F,Zhang Z.A recyclable biointerface based on cross-linked branched DNA nanostructures for ultrasensitive nucleic acid detection.Biosens Bioelectron2018;117:562-6

[102]

Li J,Huang Y,Tian L.Highly stable and multiemissive silver nanoclusters synthesized in situ in a DNA hydrogel and their application for hydroxyl radical sensing.ACS Appl Mater Inter2018;10:26075-83

[103]

Liao R,Wu W,Yang D.A DNA tracer system for hydrological environment investigations.Environ Sci Technol2018;52:1695-703

[104]

Mondal S,Nandi AK.A review on recent advances in polymer and peptide hydrogels.Soft Matter2020;16:1404-54

[105]

Dai L,Li W.A green all-polysaccharide hydrogel platform for sensing and electricity harvesting/storage.J Power Sources2021;493:229711

[106]

Nordqvist D.Rheological study of the gelation process of agarose-based solutions.Food Biophys2011;6:450-60

[107]

Han Q,Song W.Fabrication of agarose hydrogel with patterned silver nanowires for motion sensor.Bio-des Manuf2019;2:269-77

[108]

Hu Y,Chen K.Resilient and self-healing hyaluronic acid/chitosan hydrogel with ion conductivity, low water loss, and freeze-tolerance for flexible and wearable strain sensor.Front Bioeng Biotechnol2022;10:837750

[109]

Lu J,Li W.A biodegradable and recyclable piezoelectric sensor based on a molecular ferroelectric embedded in a bacterial cellulose hydrogel.ACS Nano2022;16:3744-55

[110]

Li Y,Gong Q.Facile preparation of stretchable and self-healable conductive hydrogels based on sodium alginate/polypyrrole nanofibers for use in flexible supercapacitor and strain sensors.Int J Biol Macromol2021;172:41-54

[111]

Baumberger T.Cooperative effect of stress and ion displacement on the dynamics of cross-link unzipping and rupture of alginate gels.Biomacromolecules2010;11:1571-8

[112]

Li T,Lacey SD.Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting.Nat Mater2019;18:608-13

[113]

Lu X,Zhang H,Wang ZL.Stretchable, transparent triboelectric nanogenerator as a highly sensitive self-powered sensor for driver fatigue and distraction monitoring.Nano Energy2020;78:105359

[114]

Li R,Cai L,he M.Highly stretchable ionic conducting hydrogels for strain/tactile sensors.Polymer2019;167:154-8

[115]

Wang Z,Zhao G.Stretchable unsymmetrical piezoelectric BaTiO3 composite hydrogel for triboelectric nanogenerators and multimodal sensors.ACS Nano2022:1661-70

[116]

Hao XP,Zhang CW.Self-shaping soft electronics based on patterned hydrogel with stencil-printed liquid metal.Adv Funct Mater2021;31:2105481

[117]

Zhou H,Jin X.Capacitive pressure sensors containing reliefs on solution-processable hydrogel electrodes.ACS Appl Mater Inter2021;13:1441-51

[118]

Gu J,Chen G.Multifunctional Poly(vinyl alcohol) nanocomposite organohydrogel for flexible strain and temperature sensor.ACS Appl Mater Inter2020;12:40815-27

[119]

Gao Y,Zhou M.A multi-model, large range and anti-freezing sensor based on a multi-crosslinked poly(vinyl alcohol) hydrogel for human-motion monitoring.J Mater Chem B2020;8:11010-20

[120]

Cai J,Zhou Y.Polyethylene glycol grafted chitin nanocrystals enhanced, stretchable, freezing-tolerant ionic conductive organohydrogel for strain sensors.Compos Part A2022;155:106813-23

[121]

Yan J,Lai J.Stretchable and thermally responsive semi-interpenetrating nanocomposite hydrogel for wearable strain sensors and thermal switch.Macro Mater Eng2022;307:2100765

[122]

Sohail M,Minhas MU.Natural and synthetic polymer-based smart biomaterials for management of ulcerative colitis: a review of recent developments and future prospects.Drug Deliv Transl Res2019;9:595-614

[123]

Bashir S,Ramesh S.Synthesis, characterization, properties of N-succinyl chitosan-g-poly (methacrylic acid) hydrogels and in vitro release of theophylline.Polymer2016;92:36-49

[124]

Wei Y,Zhu P,Zhao B.Multifunctional organohydrogel-based ionic skin for capacitance and temperature sensing toward intelligent skin-like devices.Chem Mater2021;33:8623-34

[125]

Yang Y,Cao Y.Anti-freezing, resilient and tough hydrogels for sensitive and large-range strain and pressure sensors.Chem Eng J2021;403:126431

[126]

Zhao L,Liu X,Li Z.A multifunctional, self-healing, self-adhesive, and conductive sodium alginate/poly(vinyl alcohol) composite hydrogel as a flexible strain sensor.ACS Appl Mater Inter2021;13:11344-55

[127]

He F,Gong H.Stretchable, biocompatible, and multifunctional silk fibroin-based hydrogels toward wearable strain/pressure sensors and triboelectric nanogenerators.ACS Appl Mater Inter2020;12:6442-50

[128]

Yang D.Recent advances in hydrogels.Chem Mater2022;34:1987-9

[129]

Zhao X,Li Y,Zhang N.Bioinspired ultra-stretchable and anti-freezing conductive hydrogel fibers with ordered and reversible polymer chain alignment.Nat Commun2018;9:3579 PMCID:PMC6123392

[130]

Blackman LD,Cass P.An introduction to zwitterionic polymer behavior and applications in solution and at surfaces.Chem Soc Rev2019;48:757-70

[131]

Morelle XP,Tian K,Suo Z.Highly Stretchable and tough hydrogels below water freezing temperature.Adv Mater2018;30:e1801541

[132]

Chodankar NR,Lokhande AC.Ionically conducting PVA-LiClO4 gel electrolyte for high performance flexible solid state supercapacitors.J Colloid Inter Sci2015;460:370-6

[133]

Duan J,Guo J,Zhang L.Ultra-stretchable and force-sensitive hydrogels reinforced with chitosan microspheres embedded in polymer networks.Adv Mater2016;28:8037-44

[134]

Bideau J, Viau L, Vioux A. Ionogels, ionic liquid based hybrid materials.Chem Soc Rev2011;40:907-25

[135]

Sun H,Jiao S.Environment tolerant conductive nanocomposite organohydrogels as flexible strain sensors and power sources for sustainable electronics.Adv Funct Mater2021;31:2101696

[136]

Xiang S,Yao M,Lu Q.Strain sensor based on a flexible polyimide ionogel for application in high- and low-temperature environments.J Mater Chem C2019;7:9625-32

[137]

Li W,Zheng S.Recyclable, healable, and tough ionogels insensitive to crack propagation.Adv Mater2022;34:e2203049

[138]

Lee Y,Song WJ.Triboresistive touch sensing: grid-free touch-point recognition based on monolayered ionic power generators.Adv Mater2022;34:e2108586

[139]

Rossiter J.Spinning artificial spiderwebs.Sci Robot2020;5:eabd0290

[140]

Chun KY,Han CS.A wearable all-gel multimodal cutaneous sensor enabling simultaneous single-site monitoring of cardiac-related biophysical signals.Adv Mater2022;34:e2110082

[141]

Tamate R.Recent progress in self-healable ion gels.Sci Technol Adv Mater2020;21:388-401 PMCID:PMC7476529

[142]

Watanabe T,Ono T.Preparation of tough, thermally stable, and water-resistant double-network ion gels consisting of silica nanoparticles/poly(ionic liquid)s through photopolymerisation of an ionic monomer and subsequent solvent removal.Soft Matter2020;16:1572-81

[143]

Crump MR,Chai D.Monolithic 3D printing of embeddable and highly stretchable strain sensors using conductive ionogels.Nanotechnology2019;30:364002

[144]

Lee JH,Lee JC,Hwang SS.Multifunctional mesoporous ionic gels and scaffolds derived from polyhedral oligomeric silsesquioxanes.ACS Appl Mater Inter2017;9:3616-23

[145]

Song H,Zhao H.High tensile strength and high ionic conductivity bionanocomposite ionogels prepared by gelation of cellulose/ionic liquid solutions with nano-silica.RSC Adv2013;3:11665

[146]

Du A,Zhang Z.A special material or a new state of matter: a review and reconsideration of the aerogel.Materials2013;6:941-68

[147]

Han S,Granlöf L.A multiparameter pressure-temperature-humidity sensor based on mixed ionic-electronic cellulose aerogels.Adv Sci2019;6:1802128 PMCID:PMC6468975

[148]

Zhang L,Wang YC.Cellulose II aerogel-based triboelectric nanogenerator.Adv Funct Mater2020;30:2001763 PMCID:PMC7357570

[149]

Zhang H,Xu K.Metallic Sandwiched-aerogel hybrids enabling flexible and stretchable intelligent sensor.Nano Lett2020;20:3449-58

[150]

An B,Li W,Li F.Three-dimensional multi-recognition flexible wearable sensor via graphene aerogel printing.Chem Commun2016;52:10948-51

[151]

Ma Y,Zhang H.3D Synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor.ACS Nano2018;12:3209-16

[152]

Shimizu T,Nakanishi K.Silicone-based organic-inorganic hybrid aerogels and Xerogels.Chemistry2017;23:5176-87

[153]

Wang L,He Y.Ultralight conductive and elastic aerogel for skeletal muscle atrophy regeneration.Adv Funct Mater2019;29:1806200

[154]

Yu ZL,Apostolopoulou-Kalkavoura V.Fire-Retardant and thermally insulating phenolic-silica aerogels.Angew Chem Int Ed Engl2018;57:4538-42

[155]

Zhu L,Wu X.Shapeable fibrous aerogels of metal-organic-frameworks templated with nanocellulose for rapid and large-capacity adsorption.ACS Nano2018;12:4462-8

[156]

Huang L,Long C.Regenerated silk fibroin-modified soft graphene aerogels for supercapacitive stress sensors.J Electrochem Soc2021;168:117511

[157]

Wu J,Lai X,Zeng X.Conductive and superhydrophobic F-rGO@CNTs/chitosan aerogel for piezoresistive pressure sensor.Chem Eng J2020;386:123998

[158]

Yu J,Deng Y.Recent progress in pressure and temperature tactile sensors: Principle, classification, integration and outlook.Soft Science2021;1:6-29

[159]

Jang J,Seo H,Park JU.Motion detection using tactile sensors based on pressure-sensitive transistor arrays.Sensors2020;20:3624 PMCID:PMC7374490

AI Summary AI Mindmap
PDF

93

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/