A systematic review of fused deposition modeling process parameters
NurFarrahain Nadia Ahmad , Yew Hoong Wong , Nik Nazri Nik Ghazali
Soft Science ›› 2022, Vol. 2 ›› Issue (3) : 11
A systematic review of fused deposition modeling process parameters
Fused deposition modeling (FDM) is an additive manufacturing technique with significant advantages, including cost effectiveness, applicability for a wide range of materials, user-friendliness and small equipment features. However, its poor resolution represents a hindrance for functional parts for commercial production. In this review, the key process parameters are presented with their factors and effects on the characteristics of FDM-printed polymeric products. Hence, better insights into the relationship between key parameters and three main printing characteristics, namely, surface roughness, mechanical strength and dimensional accuracy, in existing FDM research are provided. A conclusion that addresses the challenges and future research directions in this area is also presented.
Additive manufacturing / fused deposition modeling / process parameters / polymers / characteristics
| [1] |
|
| [2] |
Sheoran A, Kumar H. Fused deposition modeling process parameters optimization and effect on mechanical properties and part quality: review and reflection on present research.Mater Today Proc2020;21:1659-72 |
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
Balani S, Chabert F, Nassiet V, Cantarel A. Influence of printing parameters on the stability of deposited beads in fused filament fabrication of poly(lactic) acid.Addit Manuf2019;25:112-21 |
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
Prasada Rao V, Rajiv P, Navya Geethika V. Effect of fused deposition modelling (FDM) process parameters on tensile strength of carbon fibre PLA.Mater Today Proc2019;18:2012-8 |
| [80] |
Christiyan K, Chandrasekhar U, Rajesh Mathivanan N, Venkateswarlu K. Influence of manufacturing parameters on the strength of PLA parts using layered manufacturing technique: a statistical approach.IOP Conf Ser Mater Sci Eng2018;310:012134 |
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
|
| [108] |
|
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
Lalegani Dezaki M, Mohd Ariffin MKA, Baharuddin BTHT. Experimental study of drilling 3D printed polylactic acid (PLA) in FDM Process. In: Dave HK, Davim JP, editors. Fused Deposition Modeling Based 3D Printing. Cham: Springer International Publishing; 2021. pp. 85-106. |
| [115] |
|
| [116] |
|
| [117] |
|
| [118] |
|
| [119] |
|
| [120] |
|
| [121] |
|
| [122] |
|
| [123] |
|
| [124] |
|
| [125] |
|
| [126] |
|
| [127] |
|
| [128] |
|
| [129] |
|
| [130] |
|
| [131] |
|
| [132] |
|
| [133] |
|
| [134] |
|
| [135] |
|
| [136] |
|
| [137] |
|
| [138] |
|
| [139] |
|
| [140] |
|
| [141] |
Nayak P, Kumar Sahu A, Sankar Mahapatra S. Effect of process parameters on the mechanical behavior of FDM and DMLS build parts.Mater Today Proce2020;22:1443-51 |
| [142] |
|
| [143] |
|
| [144] |
|
| [145] |
|
| [146] |
|
/
| 〈 |
|
〉 |