Biomedical DNA hydrogels

Yong Hu

Soft Science ›› 2022, Vol. 2 ›› Issue (1) : 3

PDF
Soft Science ›› 2022, Vol. 2 ›› Issue (1) :3 DOI: 10.20517/ss.2021.20
Perspective

Biomedical DNA hydrogels

Author information +
History +
PDF

Abstract

Due to considerable progress in DNA nanotechnology, DNA is gaining significant attention as a programmable building block for the next generation of soft biomaterials. DNA has been used as either a single component to form all-DNA hydrogels or a crosslinker or functional entity to form hybrid DNA hydrogels through physical interactions or chemical reactions. The formed hydrogels exhibit adequate biocompatibility, convenient programmability, tunable multifunctionality and the capability of precise molecular recognition, making them an irreplaceable polymeric platform for interfacing with biology. Responsive DNA hydrogels that are prepared through the hybridization of DNA sticky ends, the formation of i-motifs, enzymatic ligation and enzymatic polymerization are commonly reported nowadays and can undergo disassembly induced by various triggers, including alterations in ionic strength, pH, temperature and biomolecules. These hydrogels are envisioned for applications in drug delivery and biosensing. This perspective assesses the most recent and important developments in this emerging class of biomedically useful DNA hydrogels.

Keywords

DNA polymers / DNA hydrogels / drug delivery / biosensing

Cite this article

Download citation ▾
Yong Hu. Biomedical DNA hydrogels. Soft Science, 2022, 2(1): 3 DOI:10.20517/ss.2021.20

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Niemeyer CM,Hazarika P.Oligofunctional DNA-gold nanoparticle conjugates.Angew Chem Int Ed Engl2003;42:5766-70

[2]

Erkelenz M,Niemeyer CM.DNA-mediated assembly of cytochrome P450 BM3 subdomains.J Am Chem Soc2011;133:16111-8

[3]

Zhou C,Liu N.DNA-nanotechnology-enabled chiral plasmonics: from static to dynamic.Acc Chem Res2017;50:2906-14

[4]

Stephanopoulos N.Hybrid nanostructures from the self-assembly of proteins and DNA.Chem2020;6:364-405

[5]

Hu Y.Self-assembly of DNA molecules: towards DNA nanorobots for biomedical applications.Cyborg and Bionic Systems2021;2021:1-3

[6]

Freeman R,Álvarez Z.Instructing cells with programmable peptide DNA hybrids.Nat Commun2017;8:15982 PMCID:PMC5508132

[7]

Niemeyer CM.Nanotechnology. Tools for the biomolecular engineer.Science2002;297:62-3

[8]

Roh YH,Peng S,Luo D.Engineering DNA-based functional materials.Chem Soc Rev2011;40:5730-44

[9]

Veneziano R,Zhang K.Designer nanoscale DNA assemblies programmed from the top down.Science2016;352:1534 PMCID:PMC5111087

[10]

Stafforst T.Photolyase-like repair of psoralen-crosslinked nucleic acids.Angew Chem Int Ed Engl2011;50:9483-6

[11]

Rajendran A,Katsuda Y,Sugiyama H.Photo-cross-linking-assisted thermal stability of DNA origami structures and its application for higher-temperature self-assembly.J Am Chem Soc2011;133:14488-91

[12]

Kosuri S.Large-scale de novo DNA synthesis: technologies and applications.Nat Methods2014;11:499-507 PMCID:PMC7098426

[13]

Praetorius F,Behler KL,Weuster-Botz D.Biotechnological mass production of DNA origami.Nature2017;552:84-7

[14]

Seeman NC.DNA nanotechnology.Nat Rev Mater2018;3:17068

[15]

Hu Y.From DNA nanotechnology to material systems engineering.Adv Mater2019;31:e1806294

[16]

Han J,Wang H,Yang D.Sustainable bioplastic made from biomass DNA and ionomers.J Am Chem Soc2021;143:19486-97

[17]

Seeman NC.Nucleic acid junctions and lattices.J Theor Biol1982;99:237-47

[18]

Seeman NC.DNA in a material world.Nature2003;421:427-31

[19]

Liu Y,Yan H.Self-assembly of symmetric finite-size DNA nanoarrays.J Am Chem Soc2005;127:17140-1

[20]

Rothemund PW.Folding DNA to create nanoscale shapes and patterns.Nature2006;440:297-302

[21]

Li F,Geng J,Yang D.Polymeric DNA hydrogel: design, synthesis and applications.Prog Polym Sci2019;98:101163

[22]

Shahbazi M,Santos HA.DNA hydrogel assemblies: bridging synthesis principles to biomedical applications.Adv Therap2018;1:1800042

[23]

Li J,Lu CH,Yang HH.Functional nucleic acid-based hydrogels for bioanalytical and biomedical applications.Chem Soc Rev2016;45:1410-31 PMCID:PMC4775362

[24]

Wang D,Liu P.Bioresponsive DNA hydrogels: beyond the conventional stimuli responsiveness.Acc Chem Res2017;50:733-9

[25]

Kahn JS,Willner I.Stimuli-responsive DNA-based hydrogels: from basic principles to applications.Acc Chem Res2017;50:680-90

[26]

Shao Y,Cao T.Supramolecular hydrogels based on DNA self-assembly.Acc Chem Res2017;50:659-68

[27]

Um SH,Park N,Umbach CC.Enzyme-catalysed assembly of DNA hydrogel.Nat Mater2006;5:797-801

[28]

Xing Y,Yang Y.Self-assembled DNA hydrogels with designable thermal and enzymatic responsiveness.Adv Mater2011;23:1117-21

[29]

Cheng E,Chen P.A pH-triggered, fast-responding DNA hydrogel.Angew Chem Int Ed Engl2009;48:7660-3

[30]

Hartman MR,Tran TN.Thermostable branched DNA nanostructures as modular primers for polymerase chain reaction.Angew Chem Int Ed Engl2013;52:8699-702

[31]

Lee JB,Yang D.A mechanical metamaterial made from a DNA hydrogel.Nat Nanotechnol2012;7:816-20

[32]

Nagahara S.Hydrogel formation via hybridization of oligonucleotides derivatized in water-soluble vinyl polymers.Polymer Gels and Networks1996;4:111-27

[33]

Peng L,Yuan Q.Macroscopic volume change of dynamic hydrogels induced by reversible DNA hybridization.J Am Chem Soc2012;134:12302-7 PMCID:PMC3407576

[34]

Li J.Semiconducting polymer nanomaterials as near-infrared photoactivatable protherapeutics for cancer.Acc Chem Res2020;53:752-62

[35]

Li J,Pu K.Nanotransducers for near-infrared photoregulation in biomedicine.Adv Mater2019;31:e1901607

[36]

Guo W,Orbach R.pH-stimulated DNA hydrogels exhibiting shape-memory properties.Adv Mater2015;27:73-8

[37]

Lu CH,Orbach R.Switchable catalytic acrylamide hydrogels cross-linked by hemin/G-quadruplexes.Nano Lett2013;13:1298-302

[38]

Yang H,Kang H.Engineering target-responsive hydrogels based on aptamer-target interactions.J Am Chem Soc2008;130:6320-1 PMCID:PMC2757630

[39]

Battig MR,Wang Y.Programmable release of multiple protein drugs from aptamer-functionalized hydrogels via nucleic acid hybridization.J Am Chem Soc2012;134:12410-3

[40]

Soontornworajit B,Shaw MT,Wang Y.Hydrogel functionalization with DNA aptamers for sustained PDGF-BB release.Chem Commun (Camb)2010;46:1857-9

[41]

Lai J,Shi X.Displacement and hybridization reactions in aptamer-functionalized hydrogels for biomimetic protein release and signal transduction.Chem Sci2017;8:7306-11 PMCID:PMC5672785

[42]

Zhang Z,Li S,Wang Y.Programmable hydrogels for controlled cell catch and release using hybridized aptamers and complementary sequences.J Am Chem Soc2012;134:15716-9

[43]

Li S,Chen N.Molecular encryption and reconfiguration for remodeling of dynamic hydrogels.Angew Chem Int Ed Engl2015;54:5957-61

[44]

Huang Y,Chen Y.Target-responsive DNAzyme cross-linked hydrogel for visual quantitative detection of lead.Anal Chem2014;86:11434-9

[45]

Dave N,Huang PJ,Liu J.Regenerable DNA-functionalized hydrogels for ultrasensitive, instrument-free mercury(II) detection and removal in water.J Am Chem Soc2010;132:12668-73

[46]

Li J.Designing hydrogels for controlled drug delivery.Nat Rev Mater2016;1:16071 PMCID:PMC5898614

[47]

Song J,Im K.Light-responsible DNA hydrogel-gold nanoparticle assembly for synergistic cancer therapy.J Mater Chem B2015;3:1537-43

[48]

Liao WC,Kahn JS.pH- and ligand-induced release of loads from DNA-acrylamide hydrogel microcapsules.Chem Sci2017;8:3362-73 PMCID:PMC5416914

[49]

Soontornworajit B,Zhang Z.Aptamer-functionalized in situ injectable hydrogel for controlled protein release.Biomacromolecules2010;11:2724-30

[50]

Soontornworajit B,Snipes MP,Wang Y.Affinity hydrogels for controlled protein release using nucleic acid aptamers and complementary oligonucleotides.Biomaterials2011;32:6839-49

[51]

Stejskalová A,England FJ.Biologically inspired, cell-selective release of aptamer-trapped growth factors by traction forces.Adv Mater2019;31:e1806380 PMCID:PMC6375388

[52]

Zhang Z,Yang C.Aptamer-patterned hydrogel films for spatiotemporally programmable capture and release of multiple proteins.ACS Appl Mater Interfaces2018;10:8546-54

[53]

Wang Z,Cai F.Aptamer-functionalized hydrogel as effective anti-cancer drugs delivery agents.Colloids Surf B Biointerfaces2015;134:40-6

[54]

Ma Y,Mou Q,Zhu X.Floxuridine-containing nucleic acid nanogels for anticancer drug delivery.Nanoscale2018;10:8367-71

[55]

Zhu Z,Jia S.Au@Pt nanoparticle encapsulated target-responsive hydrogel with volumetric bar-chart chip readout for quantitative point-of-care testing.Angew Chem Int Ed Engl2014;53:12503-7

[56]

Wei X,Jia S.Microfluidic distance readout sweet hydrogel integrated paper-based analytical device (μDiSH-PAD) for visual quantitative point-of-care testing.Anal Chem2016;88:2345-52

[57]

Wang C,Li J.Conformal electrodes for on-skin digitalization.SmartMat2021;2:252-62

[58]

Jonášová EP.Bioresponsive DNA-co-polymer hydrogels for fabrication of sensors.Curr Opin Colloid Interface Sci2016;26:1-8

[59]

Mao Y,Yan J.A portable visual detection method based on a target-responsive DNA hydrogel and color change of gold nanorods.Chem Commun (Camb)2017;53:6375-8

[60]

Lin H,Huang Y.DNAzyme crosslinked hydrogel: a new platform for visual detection of metal ions.Chem Commun (Camb)2011;47:9312-4

[61]

Bai W,Spivak DA.Macromolecular amplification of binding response in superaptamer hydrogels.J Am Chem Soc2013;135:6977-84

[62]

Bai W.A double-imprinted diffraction-grating sensor based on a virus-responsive super-aptamer hydrogel derived from an impure extract.Angew Chem Int Ed Engl2014;53:2095-8

[63]

Ma Y,An Y.Target-responsive DNA hydrogel for non-enzymatic and visual detection of glucose.Analyst2018;143:1679-84

[64]

Zhu Z,Liu H.An aptamer cross-linked hydrogel as a colorimetric platform for visual detection.Angew Chem Int Ed Engl2010;49:1052-6

[65]

Liu S,Li Y,Ding X.Manufacturing of an electrochemical biosensing platform based on hybrid DNA hydrogel: taking lung cancer-specific miR-21 as an example.Biosens Bioelectron2018;103:1-5

[66]

Mao X,Wang Z,Zhu X.Surface-immobilized and self-shaped DNA hydrogels and their application in biosensing.Chem Sci2018;9:811-8 PMCID:PMC5873223

[67]

Zhong R,Wang S.Self-assembly of enzyme-like nanofibrous G-molecular hydrogel for printed flexible electrochemical sensors.Adv Mater2018;30:e1706887

[68]

Shao Y,Wang Y,Liu D.Designable immune therapeutical vaccine system based on DNA supramolecular hydrogels.ACS Appl Mater Interfaces2018;10:9310-4

[69]

Yao C,Wu W.Double rolling circle amplification generates physically cross-linked DNA network for stem cell fishing.J Am Chem Soc2020;142:3422-9

[70]

Yao C,Tang J,Zhang R.T lymphocyte-captured DNA network for localized immunotherapy.J Am Chem Soc2021;143:19330-40

[71]

Hu Y,Bauer J.Carbon-nanotube reinforcement of DNA-silica nanocomposites yields programmable and cell-instructive biocoatings.Nat Commun2019;10:5522 PMCID:PMC6892801

[72]

Hu Y.Designer DNA-silica/carbon nanotube nanocomposites for traceable and targeted drug delivery.J Mater Chem B2020;8:2250-5

[73]

Hu Y,Klein E,Niemeyer CM.Cultivation of exoelectrogenic bacteria in conductive DNA nanocomposite hydrogels yields a programmable biohybrid materials system.ACS Appl Mater Interfaces2020;12:14806-13

[74]

Hu Y,Christ S.Postsynthetic functionalization of DNA-nanocomposites with proteins yields bioinstructive matrices for cell culture applications.Angew Chem Int Ed Engl2020;59:19016-20 PMCID:PMC7589387

[75]

Hu Y,Sheshachala S.Bottom-up assembly of DNA-silica nanocomposites into micrometer-sized hollow spheres.Angew Chem Int Ed Engl2019;58:17269-72 PMCID:PMC6900086

[76]

Tang J,Zhu C,Yang D.Flash synthesis of DNA hydrogel via supramacromolecular assembly of DNA chains and upconversion nanoparticles for cell engineering.Adv Funct Materials

[77]

Yao C,Zhu C.A signal processor made from DNA assembly and upconversion nanoparticle for pharmacokinetic study.Nano Today2022;42:101352

[78]

Creusen G,Schumann K.Scalable one-pot-liquid-phase oligonucleotide synthesis for model network hydrogels.J Am Chem Soc2020;142:16610-21

[79]

Jia Y,Liu J,Gu H.DNA-catalyzed efficient production of single-stranded DNA nanostructures.Chem2021;7:959-81

AI Summary AI Mindmap
PDF

82

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/