Soft materials for wearable supercapacitors

Lili Jiang , Le Yuan , Wei Wang , Qinyong Zhang

Soft Science ›› 2021, Vol. 1 ›› Issue (1) : 5

PDF
Soft Science ›› 2021, Vol. 1 ›› Issue (1) :5 DOI: 10.20517/ss.2021.07
Review Article

Soft materials for wearable supercapacitors

Author information +
History +
PDF

Abstract

Along with the rapid progress of wearable and portable electronic devices including electrical sensors, flexible displays, and health monitors, there is an ever-growing demand for wearable power sources. Supercapacitors, as a new kind of energy storage device, have received considerable attention for decades due to their high power density, excellent cycling stability, and easy fabrication. To fulfill the demand of wearable power sources, wearable supercapacitors are also further developed and studied. New electrode materials that play a significant role in determining both the wearability and electrochemical performance of wearable supercapacitors are also extensively explored. Herein, the recent progress on wearable soft electrode/electrolyte materials and the structure design strategies for developing wearable supercapacitors are summarized. Additionally, the existing challenges in current technologies and research are highlighted and discussed with the hope of inspiring future studies.

Keywords

Soft materials / electrodes / electrolytes / structure design / wearable supercapacitors

Cite this article

Download citation ▾
Lili Jiang, Le Yuan, Wei Wang, Qinyong Zhang. Soft materials for wearable supercapacitors. Soft Science, 2021, 1(1): 5 DOI:10.20517/ss.2021.07

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xue Q,Huang Y.Recent progress on flexible and wearable supercapacitors.Small2017;13:1701827

[2]

Muralee gopi CV,Sambasivam S,Kim H.Recent progress of advanced energy storage materials for flexible and wearable supercapacitor: From design and development to applications.Journal of Energy Storage2020;27:101035

[3]

Fu Y,Wu H.Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage.Adv Mater2012;24:5713-8

[4]

Sumboja A,Zheng WG,Zhang H.Electrochemical energy storage devices for wearable technology: a rationale for materials selection and cell design.Chem Soc Rev2018;47:5919-45

[5]

Li H,Liu Z.Evaluating flexibility and wearability of flexible energy storage devices.Joule2019;3:613-9

[6]

Taube Navaraj W,Shakthivel D.Nanowire FET based neural element for robotic tactile sensing skin.Front Neurosci2017;11:501 PMCID:PMC5611376

[7]

Nazari A.Heat generation in lithium-ion batteries with different nominal capacities and chemistries.Appl Therm Eng2017;125:1501-17

[8]

Dong L,Li Y.Flexible electrodes and supercapacitors for wearable energy storage: a review by category.J Mater Chem A2016;4:4659-85

[9]

Yun TG,Kim DH.All-transparent stretchable electrochromic supercapacitor wearable patch device.ACS Nano2019;13:3141-50

[10]

Yu L.Ionic liquid-based electrolytes for supercapacitor and supercapattery.Front Chem2019;7:272 PMCID:PMC6482234

[11]

Zhong C,Hu W,Zhang L.A review of electrolyte materials and compositions for electrochemical supercapacitors.Chem Soc Rev2015;44:7484-539

[12]

Xu T,Zhang S,Zhang M.Antifreezing and stretchable all-gel-state supercapacitor with enhanced capacitances established by graphene/PEDOT-polyvinyl alcohol hydrogel fibers with dual networks.Carbon2021;171:201-10

[13]

Wang Y,Li X.A high-performance, tailorable, wearable, and foldable solid-state supercapacitor enabled by arranging pseudocapacitive groups and MXene flakes on textile electrode surface.Adv Funct Mater2021;31:2008185

[14]

Zhao J,Zhang Y.Direct coherent multi-ink printing of fabric supercapacitors.Sci Adv2021;7:eabd6978 PMCID:PMC7810385

[15]

Ji X,Yu M.All-in-one energy storage devices supported and interfacially cross-linked by gel polymeric electrolyte.Energy Storage Materials2021;37:587-97

[16]

Sheng H,Li B.A thin, deformable, high-performance supercapacitor implant that can be biodegraded and bioabsorbed within an animal body.Sci Adv2021;7:eabe3097 PMCID:PMC7793580

[17]

Jiang L,Gan D.Hybrid transition-metal oxide and nitride@N-doped reduced graphene oxide electrodes for high-performance, flexible, and all-solid-state supercapacitors.Chemistry2021;27:5761-8

[18]

Zhang L,Wang Z,Dorrell DG.A review of supercapacitor modeling, estimation, and applications: a control/management perspective.Renew Sust Energ Rev2018;81:1868-78

[19]

Jeong JW,Park SI,Xu L.Soft materials in neuroengineering for hard problems in neuroscience.Neuron2015;86:175-86

[20]

Raza W,Raza N.Recent advancements in supercapacitor technology.Nano Energy2018;52:441-73

[21]

Jiang L,Zhang Q.Electrochemical performance of free-standing and flexible graphene and TiO2 composites with different conductive polymers as electrodes for supercapacitors.Chemistry2019;25:7903-11

[22]

Zhang LL.Carbon-based materials as supercapacitor electrodes.Chem Soc Rev2009;38:2520-31

[23]

Da Silva LM,Moreira CM.Reviewing the fundamentals of supercapacitors and the difficulties involving the analysis of the electrochemical findings obtained for porous electrode materials.Energy Storage Materials2020;27:555-90

[24]

Chen Z,Xue B.Rice husk-based hierarchical porous carbon for high performance supercapacitors: the structure-performance relationship.Carbon2020;161:432-44

[25]

Wang Y,Liu Z.A highly elastic and reversibly stretchable all-polymer supercapacitor.Angew Chem2019;131:15854-8

[26]

Liu R,Zhang X.Fundamentals, advances and challenges of transition metal compounds-based supercapacitors.Chem Eng J2021;412:128611

[27]

Nguyen T.Metal oxide and hydroxide-based aqueous supercapacitors: from charge storage mechanisms and functional electrode engineering to need-tailored devices.Adv Sci (Weinh)2019;6:1801797 PMCID:PMC6498138

[28]

Naskar P,Chakraborty P,Biswas B.Chemical supercapacitors: a review focusing on metallic compounds and conducting polymers.J Mater Chem A2021;9:1970-2017

[29]

Lim HR,Qazi R,Jeong JW.Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment.Adv Mater2020;32:e1901924

[30]

Kazem N,Majidi C.Soft multifunctional composites and emulsions with liquid metals.Adv Mater2017;29:1605985

[31]

Kim DH,Ma R.Epidermal electronics.Science2011;333:838-43

[32]

Song Y,Chen X.All-in-one piezoresistive-sensing patch integrated with micro-supercapacitor.Nano Energy2018;53:189-97

[33]

Yu C,Rong J,Jiang H.Stretchable supercapacitors based on buckled single-walled carbon-nanotube macrofilms.Adv Mater2009;21:4793-7

[34]

Lacour SP,Guck J.Materials and technologies for soft implantable neuroprostheses.Nat Rev Mater2016;1

[35]

Rivnay J,Fenno L,Malliaras GG.Next-generation probes, particles, and proteins for neural interfacing.Sci Adv2017;3:e1601649 PMCID:PMC5466371

[36]

Yang Z,Chen X,Peng H.A highly stretchable, fiber-shaped supercapacitor.Angew Chem2013;125:13695-9

[37]

An T.Recent progress in stretchable supercapacitors.J Mater Chem A2018;6:15478-94

[38]

Li X,Fan X,Liang J.3D-printed stretchable micro-supercapacitor with remarkable areal performance.Adv Energy Mater2020;10:1903794

[39]

Zheng Z,Dong JC.Unusual sonochemical assembly between carbon allotropes for high strain-tolerant conductive nanocomposites.ACS Nano2019;13:12062-9 PMCID:PMC6812068

[40]

Zhi J,Liu X,Liu Z.Highly conductive ordered mesoporous carbon based electrodes decorated by 3D graphene and 1D silver nanowire for flexible supercapacitor.Adv Funct Mater2014;24:2013-9

[41]

Javed MS,Hussain S.An ultra-high energy density flexible asymmetric supercapacitor based on hierarchical fabric decorated with 2D bimetallic oxide nanosheets and MOF-derived porous carbon polyhedra.J Mater Chem A2019;7:946-57

[42]

Sheberla D,Elias JS,Shao-Horn Y.Conductive MOF electrodes for stable supercapacitors with high areal capacitance.Nat Mater2017;16:220-4

[43]

Yan J,Maleski K.Flexible MXene/Graphene films for ultrafast supercapacitors with outstanding volumetric capacitance.Adv Funct Mater2017;27:1701264

[44]

Sim HJ,Lee DY.Biomolecule based fiber supercapacitor for implantable device.Nano Energy2018;47:385-92

[45]

He S,Wan J.Biocompatible carbon nanotube fibers for implantable supercapacitors.Carbon2017;122:162-7

[46]

Tian W,Zhou J.Implantable and biodegradable micro-supercapacitor based on a superassembled three-dimensional network Zn@PPy hybrid electrode.ACS Appl Mater Interfaces2021;13:8285-93

[47]

wu J,Zhang X.Hierarchical porous carbon derived from wood tar using crab as the template: performance on supercapacitor.J Power Sources2020;455:227982

[48]

Tan S,Li-oakey KD.Understanding the supercapacitor properties of electrospun carbon nanofibers from powder river basin coal.Fuel2019;245:148-59

[49]

Gopalakrishnan A.Sulfonated porous carbon nanosheets derived from oak nutshell based high-performance supercapacitor for powering electronic devices.Renewable Energy2020;161:173-83

[50]

Jiang L,Chen S.Bio-derived three-dimensional hierarchical carbon-graphene-TiO2 as electrode for supercapacitors.Sci Rep2018;8:4412 PMCID:PMC5849706

[51]

Pumera M.Graphene-based nanomaterials and their electrochemistry.Chem Soc Rev2010;39:4146-57

[52]

Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK. The electronic properties of graphene.Rev Mod Phys2009;81:109-62

[53]

Moon IK,Ruoff RS.Reduced graphene oxide by chemical graphitization.Nat Commun2010;1:73

[54]

Stoller MD,Zhu Y,Ruoff RS.Graphene-based ultracapacitors.Nano Lett2008;8:3498-502

[55]

Compton OC.Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials.Small2010;6:711-23

[56]

Chen H,Gilmore KJ,Li D.Mechanically strong, electrically conductive, and biocompatible graphene paper.Adv Mater2008;20:3557-61

[57]

Liu F,Xue D.Folded structured graphene paper for high performance electrode materials.Adv Mater2012;24:1089-94

[58]

Pei S,Du J,Cheng H.Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids.Carbon2010;48:4466-74

[59]

Xu Y,Huang X,Huang Y.Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films.ACS Nano2013;7:4042-9

[60]

Xiong Z,Han W.Mechanically tough large-area hierarchical porous graphene films for high-performance flexible supercapacitor applications.Adv Mater2015;27:4469-75

[61]

Xu Y,Huang X,Huang Y.Functionalized graphene hydrogel-based high-performance supercapacitors.Adv Mater2013;25:5779-84

[62]

Yuan S,Jin Y,Liu T.Free-standing flexible graphene-based aerogel film with high energy density as an electrode for supercapacitors.Nano Materials Science2021;3:68-74

[63]

Yu P,Huang Z,Zhang Q.Free-standing three-dimensional graphene and polyaniline nanowire arrays hybrid foams for high-performance flexible and lightweight supercapacitors.J Mater Chem A2014;2:14413-20

[64]

Guo X,Tian Y.Free-standing reduced graphene oxide/polypyrrole films with enhanced electrochemical performance for flexible supercapacitors.J Power Sources2018;408:51-7

[65]

Zou Z,Zhang Y,Hu C.High-performance flexible all-solid-state supercapacitor constructed by free-standing cellulose/reduced graphene oxide/silver nanoparticles composite film.Chem Eng J2019;357:45-55

[66]

Liu F,Wang L.Hierarchical porous RGO/PEDOT/PANI hybrid for planar/linear supercapacitor with outstanding flexibility and stability.Nanomicro Lett2020;12:17 PMCID:PMC7770803

[67]

Yu D.Self-assembled graphene/carbon nanotube hybrid films for supercapacitors.J Phys Chem Lett2010;1:467-70

[68]

Gao M,Jiang L.Power generation for wearable systems.Energy Environ Sci2021;14:2114-57

[69]

Manjakkal L,Núñez CG.Graphene-graphite polyurethane composite based high-energy density flexible supercapacitors.Adv Sci (Weinh)2019;6:1802251 PMCID:PMC6446598

[70]

Atta MM,Sallam OI.Gamma irradiation synthesis of wearable supercapacitor based on reduced graphene oxide/cotton yarn electrode.J Mater Sci: Mater Electron2021;32:3688-98

[71]

El-Kady MF,Dubin S.Laser scribing of high-performance and flexible graphene-based electrochemical capacitors.Science2012;335:1326-30

[72]

Afroj S,Abdelkader AM,Karim N.Highly conductive, scalable, and machine washable graphene-based E-textiles for multifunctional wearable electronic applications.Adv Funct Mater2020;30:2000293

[73]

Tran T, Dutta NK, Roy Choudhury N. Graphene-based inks for printing of planar micro-supercapacitors: a review.Materials (Basel)2019;12:978 PMCID:PMC6470754

[74]

Le LT,Qiu H,Lee WY.Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide.Electrochem Commun2011;13:355-8

[75]

Li H,Li X,Liang J.Screen-printing fabrication of high volumetric energy density micro-supercapacitors based on high-resolution thixotropic-ternary hybrid interdigital micro-electrodes.Mater Chem Front2019;3:626-35

[76]

Li G,Law W.3D printed graphene/nickel electrodes for high areal capacitance electrochemical storage.J Mater Chem A2019;7:4055-62

[77]

Liu L,Long X.3D printing of high-performance micro-supercapacitors with patterned exfoliated graphene/carbon nanotube/silver nanowire electrodes.Sci China Technol Sci2021;64:1065-73

[78]

Liu J,Pan F,Zhu Y.Solid-state yet flexible supercapacitors made by inkjet-printing hybrid ink of carbon quantum dots/graphene oxide platelets on paper.Sci China Mater2019;62:545-54

[79]

Sundriyal P.Inkjet-printed electrodes on A4 paper substrates for low-cost, disposable, and flexible asymmetric supercapacitors.ACS Appl Mater Interfaces2017;9:38507-21

[80]

Lee S,Kim S.Wearable supercapacitors printed on garments.Adv Funct Mater2018;28:1705571

[81]

Delekta S, Smith AD, Li J, Östling M. Inkjet printed highly transparent and flexible graphene micro-supercapacitors.Nanoscale2017;9:6998-7005

[82]

Pham M,Godbille-cardona G,Peppley B.Printing of graphene supercapacitors with enhanced capacitances induced by a leavening agent.J Energy Storage2020;28:101210

[83]

Hyun WJ,Kim C,Francis LF.Scalable, self-aligned printing of flexible graphene micro-supercapacitors.Adv Energy Mater2017;7:1700285

[84]

Yang B,Ma K,Tao X.Recent advances in wearable textile-based triboelectric generator systems for energy harvesting from human motion.EcoMat2020;2

[85]

Zhou Y,Lu W.Recent advances in fiber-shaped supercapacitors and lithium-ion batteries.Adv Mater2020;32:e1902779

[86]

Meng Y,Hu C.All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles.Adv Mater2013;25:2326-31

[87]

Liu L,Yan C,Zheng Z.Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene-metallic textile composite electrodes.Nat Commun2015;6:7260 PMCID:PMC4490556

[88]

Yuk H,Zhao X.Hydrogel bioelectronics.Chem Soc Rev2019;48:1642-67

[89]

Qu G,Li X.A Fiber Supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode.Adv Mater2016;28:3646-52

[90]

Zhang L.Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability.J Phys Chem C2011;115:17206-12

[91]

Chen P,Li S.Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor.Nano Energy2013;2:249-56

[92]

Lien C,Chen J.Optimization of acetonitrile/water content in hybrid deep eutectic solvent for graphene/MoS2 hydrogel-based supercapacitors.Chemical Engineering Journal2021;405:126706

[93]

Kang J,Seong K,Ko D.Three-dimensional nanocomposite of graphene/MWCNT hydrogel grafted with Ni-Co hydroxide nanorods as high-performance electrode for asymmetric supercapacitor.Electrochimica Acta2020;346:136258

[94]

Khazaeli A,Barz DPJ.A novel flexible hybrid battery-supercapacitor based on a self-assembled vanadium-graphene hydrogel.Adv Funct Mater2020;30:1910738

[95]

Wu D.A new strategy for anchoring a functionalized graphene hydrogel in a carbon cloth network to support a lignosulfonate/polyaniline hydrogel as an integrated electrode for flexible high areal-capacitance supercapacitors.J Mater Chem A2019;7:5819-30

[96]

Zou Y,Zhong W.Hydrothermal direct synthesis of polyaniline, graphene/polyaniline and N-doped graphene/polyaniline hydrogels for high performance flexible supercapacitors.J Mater Chem A2018;6:9245-56

[97]

Ates M,Kaner RB.Three-dimensional design and fabrication of reduced graphene oxide/polyaniline composite hydrogel electrodes for high performance electrochemical supercapacitors.Nanotechnology2018;29:175402

[98]

Chen T.Flexible supercapacitors based on carbon nanomaterials.J Mater Chem A2014;2:10756

[99]

Chen H,Chen M,Li Q.Fabrication and functionalization of carbon nanotube films for high-performance flexible supercapacitors.Carbon2015;92:271-96

[100]

Senokos E,Santos C,Vilatela JJ.Controlled electrochemical functionalization of CNT fibers: structure-chemistry relations and application in current collector-free all-solid supercapacitors.Carbon2019;142:599-609

[101]

Lee JA,Kim SH.Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices.Nat Commun2013;4:1970

[102]

Patil B,Yu S.Electrochemical performance of a coaxial fiber-shaped asymmetric supercapacitor based on nanostructured MnO2/CNT-web paper and Fe2O3/carbon fiber electrodes.Carbon2018;134:366-75

[103]

Wang S,Zhuo W.Freestanding polypyrrole/carbon nanotube electrodes with high mass loading for robust flexible supercapacitors.Mater Chem Front2021;5:1324-9

[104]

Mirabedini A,Mostafavian S.Triaxial carbon nanotube/conducting polymer wet-spun fibers supercapacitors for wearable electronics.Nanomaterials (Basel)2020;11:3 PMCID:PMC7822024

[105]

Cao C,Ubnoske S.Highly stretchable supercapacitors via crumpled vertically aligned carbon nanotube forests.Adv Energy Mater2019;9:1900618

[106]

Liu L,Chen J.Design and integration of flexible planar micro-supercapacitors.Nano Res2017;10:1524-44

[107]

Zhang R,Palumbo A,Fu S.A stretchable and bendable all-solid-state pseudocapacitor with dodecylbenzenesulfonate-doped polypyrrole-coated vertically aligned carbon nanotubes partially embedded in PDMS.Nanotechnology2019;30:095401

[108]

Pu X,Liu M.Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators.Adv Mater2016;28:98-105

[109]

Niu Z,Zhang L,Chen X.Programmable nanocarbon-based architectures for flexible supercapacitors.Adv Energy Mater2015;5:1500677

[110]

Guo T,Liu W.Recent advances in all-in-one flexible supercapacitors.Sci China Mater2021;64:27-45

[111]

Wang Y,Guo X.Conductive polymers for stretchable supercapacitors.Nano Res2019;12:1978-87

[112]

Shi Y,Ding Y,Yu G.Nanostructured conductive polymers for advanced energy storage.Chem Soc Rev2015;44:6684-96

[113]

Wang G,Zhang J.A review of electrode materials for electrochemical supercapacitors.Chem Soc Rev2012;41:797-828

[114]

Wang L,Jiao X.Polypyrrole-based hybrid nanostructures grown on textile for wearable supercapacitors.Nano Res2019;12:1129-37

[115]

Chu X,Xiao X.Air-Stable conductive polymer ink for printed wearable micro-supercapacitors.Small2021;17:e2100956

[116]

Zhao J,Zhao X.Direct ink writing of adjustable electrochemical energy storage device with high gravimetric energy densities.Adv Funct Mater2019;29:1900809

[117]

Kayser LV.Stretchable conductive polymers and composites based on PEDOT and PEDOT:PSS.Adv Mater2019;31:e1806133 PMCID:PMC6401235

[118]

Yang J,Tang X.3D-printed highly stretchable conducting polymer electrodes for flexible supercapacitors.J Mater Chem A2021;

[119]

Wang K,Li C.Flexible solid-state supercapacitors based on a conducting polymer hydrogel with enhanced electrochemical performance.J Mater Chem A2014;2:19726-32

[120]

Shi Y,Liu B.Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes.J Mater Chem A2014;2:6086-91

[121]

Ghosh S.Conducting polymer hydrogels as 3D electrodes: applications for supercapacitors.Adv Mater1999;11:1214-8

[122]

Shown I,Chen L.Conducting polymer-based flexible supercapacitor.Energy Sci Eng2015;3:2-26

[123]

Pan L,Zhai D.Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity.Proc Natl Acad Sci U S A2012;109:9287-92 PMCID:PMC3386113

[124]

Green RA,Poole-Warren LA.Conducting polymer-hydrogels for medical electrode applications.Sci Technol Adv Mater2010;11:014107 PMCID:PMC5090549

[125]

Das S,Mondal S,Nandi AK.Enhancement of energy storage and photoresponse properties of folic acid-polyaniline hybrid hydrogel by in situ growth of Ag nanoparticles.ACS Appl Mater Interfaces2016;8:28055-67

[126]

Wang Y,Pan L.Dopant-enabled supramolecular approach for controlled synthesis of nanostructured conductive polymer hydrogels.Nano Lett2015;15:7736-41

[127]

Chen Z,Wang C.A three-dimensionally interconnected carbon nanotube-conducting polymer hydrogel network for high-performance flexible battery electrodes.Adv Energy Mater2014;4:1400207

[128]

Zhao Y,Yao B.Hierarchically structured stretchable conductive hydrogels for high-performance wearable strain sensors and supercapacitors.Matter2020;3:1196-210

[129]

Li L,Pan L,Yu G.Rational design and applications of conducting polymer hydrogels as electrochemical biosensors.J Mater Chem B2015;3:2920-30

[130]

Jiang L,Xie C,Zhang H.Flexible, free-standing TiO2 -graphene-polypyrrole composite films as electrodes for supercapacitors.J Phys Chem C2015;119:3903-10

[131]

Jiang L,Luo D.Freestanding RGO-Co3O4 -PPy Composite Films as Electrodes for Supercapacitors.Energy Technol2019;7:1800606

[132]

Jiang L,Luo D.Plant growth-inspired design of high-performance composite electrode nanostructures for supercapacitors.Materials Today Physics2020;12:100138

[133]

Jia Y,Ahmed A,Fan Q.Microfluidic-architected core-shell flower-like δ-MnO2@graphene fibers for high energy-storage wearable supercapacitors.Electrochimica Acta2021;372:137827

[134]

Karami Z,Raeissi K.An efficient textile-based electrode utilizing silver nanoparticles/reduced graphene oxide/cotton fabric composite for high-performance wearable supercapacitors.Electrochimica Acta2021;368:137647

[135]

Salman A,Kim IH.Tungsten nitride-coated graphene fibers for high-performance wearable supercapacitors.Nanoscale2020;12:20239-49

[136]

Yi Y,Tian Z.Biotemplated synthesis of transition metal nitride architectures for flexible printed circuits and wearable energy storages.Adv Funct Mater2018;28:1805510

[137]

Peng Z,He Q,Chen Y.Highly porous Mn3O4 nanosheets with in situ coated carbon enabling fully screen-printed planar supercapacitors with remarkable volumetric performance.J Mater Chem A2021;9:4273-80

[138]

Hoskins BF.Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments.J Am Chem Soc1989;111:5962-4

[139]

Hoskins BF.Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4',4'',4'''-tetracyanotetraphenylmethane]BF4.xC6H5NO2.J Am Chem Soc1990;112:1546-54

[140]

Shepherd ND.Structurally photo-active metal-organic frameworks: Incorporation methods, response tuning, and potential applications.Chem Phys Rev2021;2:011301

[141]

Gangu KK,Mukkamala SB.A review on contemporary metal-organic framework materials.Inorganica Chimica Acta2016;446:61-74

[142]

Fang Z,De Vos DE.Defect-engineered metal-organic frameworks.Angew Chem Int Ed Engl2015;54:7234-54 PMCID:PMC4510710

[143]

Dissegna S,Heinz WR,Fischer RA.Defective metal-organic frameworks.Adv Mater2018;30:e1704501

[144]

Zhou Z,Sun J.Metal-organic framework derived spindle-like carbon incorporated α-Fe2O3 grown on carbon nanotube fiber as anodes for high-performance wearable asymmetric supercapacitors.ACS Nano2018;12:9333-41

[145]

Zhou J,Tang J.Metal-organic frameworks governed well-aligned conducting polymer/bacterial cellulose membranes with high areal capacitance.Energy Storage Materials2019;23:594-601

[146]

Yang J,Zheng C,Wei M.Metal-organic frameworks: a new promising class of materials for a high performance supercapacitor electrode.J Mater Chem A2014;2:16640-4

[147]

Wang K,Huang M.Porous cobalt metal-organic frameworks as active elements in battery-supercapacitor hybrid devices.Inorg Chem2020;59:6808-14

[148]

Liu Y,Shao Z.Metal-organic frameworks derived porous carbon, metal oxides and metal sulfides-based compounds for supercapacitors application.Energy Storage Materials2020;26:1-22

[149]

Wang K,Zhang Q.Recent progress in metal-organic frameworks as active materials for supercapacitors.EnergyChem2020;2:100025

[150]

Cherusseri J,Sambath Kumar K,Zhai L.Flexible supercapacitor electrodes using metal-organic frameworks.Nanoscale2020;12:17649-62

[151]

Xu X,Qian H.Three-dimensional networked metal-organic frameworks with conductive polypyrrole tubes for flexible supercapacitors.ACS Appl Mater Interfaces2017;9:38737-44

[152]

Wang B,Liu L.MOF/PEDOT/HPMo-based polycomponent hierarchical hollow micro-vesicles for high performance flexible supercapacitors.J Mater Chem A2021;9:2948-58

[153]

Xie LS,Dincă M.Electrically conductive metal-organic frameworks.Chem Rev2020;120:8536-80 PMCID:PMC7453401

[154]

Hou R,Wang Q.Integrated conductive hybrid architecture of metal - organic framework nanowire array on polypyrrole membrane for all-solid-state flexible supercapacitors.Adv Energy Mater2019;10:1901892

[155]

Zhang W,Zheng H,Tang Y.Laser-assisted printing of electrodes using metal - organic frameworks for micro-supercapacitors.Adv Funct Mater2021;31:2009057

[156]

Naguib M,Presser V.Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2.Adv Mater2011;23:4248-53

[157]

Wang L,Yang B,Ding X.Recent advances in multidimensional (1D, 2D, and 3D) composite sensors derived from MXene: synthesis, structure, application, and perspective.Small Methods2021;5:2100409

[158]

Hu M,Hu T,Wang X.Emerging 2D MXenes for supercapacitors: status, challenges and prospects.Chem Soc Rev2020;49:6666-93

[159]

Deysher G,Hantanasirisakul K.Synthesis of Mo4VAlC4 MAX phase and two-dimensional Mo4VC4 MXene with five atomic layers of transition metals.ACS Nano2020;14:204-17

[160]

Ibrahim Y,Abdelgawad AM,Abdullah AM.The recent advances in the mechanical properties of self-standing two-dimensional MXene-based nanostructures: deep insights into the supercapacitor.Nanomaterials (Basel)2020;10:1916 PMCID:PMC7599584

[161]

Lei J,Zhou Z.Recent advances in MXene: preparation, properties, and applications.Front Phys2015;10:276-86

[162]

Shuck CE,Anayee M.Scalable synthesis of Ti3 C2 Tx MXene.Adv Eng Mater2020;22:1901241

[163]

Zhan X,Zhou J.MXene and MXene-based composites: synthesis, properties and environment-related applications.Nanoscale Horiz2020;5:235-58

[164]

Shen S,Rajavel K,Lin D.Dispersibility and photochemical stability of delaminated MXene flakes in water.Small2020;16:e2002433

[165]

Akuzum B,Anasori B.Rheological characteristics of 2D titanium carbide (MXene) dispersions: a guide for processing MXenes.ACS Nano2018;12:2685-94

[166]

Li Y,Xin B,Cui Y.All-solid-state flexible supercapacitor of carbonized MXene/Cotton fabric for wearable energy storage.Appl Surf Sci2020;528:146975

[167]

Hu M,Li G,Zhang C.All-solid-state flexible fiber-based mxene supercapacitors.Adv Mater Technol2017;2:1700143

[168]

Yu C,Chen R.A solid-state fibriform supercapacitor boosted by host-guest hybridization between the carbon nanotube scaffold and MXene nanosheets.Small2018;e1801203

[169]

Li H,Ali M,Ko MJ.In Situ Grown MWCNTs/MXenes Nanocomposites on carbon cloth for high-performance flexible supercapacitors.Adv Funct Mater2020;30:2002739

[170]

Ling Z,Zhao MQ.Flexible and conductive MXene films and nanocomposites with high capacitance.Proc Natl Acad Sci U S A2014;111:16676-81 PMCID:PMC4250111

[171]

Hasan MM,Chowdhury HK.Two-dimensional MXene-based flexible nanostructures for functional nanodevices: a review.J Mater Chem A2021;9:3231-69

[172]

Zhang CJ,Kremer MP.Additive-free MXene inks and direct printing of micro-supercapacitors.Nat Commun2019;10:1795 PMCID:PMC6470171

[173]

Wen D,Liu L.Inkjet printing transparent and conductive MXene (Ti3C2Tx) films: a strategy for flexible energy storage devices.ACS Appl Mater Interfaces2021;13:17766-80

[174]

Zhu M,Deng Q.Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene.Adv Energy Mater2016;6:1600969

[175]

Qin L,El Ghazaly A.High-performance ultrathin flexible solid-state supercapacitors based on solution processable Mo1.33 C MXene and PEDOT:PSS.Adv Funct Mater2018;28:1703808

[176]

Zhou T,Wang Y.Super-tough MXene-functionalized graphene sheets.Nat Commun2020;11:2077 PMCID:PMC7190721

[177]

Wang R,Xiao C.MXene-carbon nanotubes layer-by-layer assembly based on-chip micro-supercapacitor with improved capacitive performance.Electrochimica Acta2021;386:138420

[178]

Yu L,Anasori B.MXene-bonded activated carbon as a flexible electrode for high-performance supercapacitors.ACS Energy Lett2018;3:1597-603

[179]

Zheng X,Hu Q.Vapor phase polymerized conducting polymer/MXene textiles for wearable electronics.Nanoscale2021;13:1832-41

[180]

Ma Y,Dou W.Fe2O3 nanoparticles anchored on the Ti3C2Tx MXene paper for flexible supercapacitors with ultrahigh volumetric capacitance.ACS Appl Mater Interfaces2020;12:41410-8

[181]

Patil AM,An X.Fabrication of a high-energy flexible all-solid-state supercapacitor using pseudocapacitive 2D-Ti3C2Tx-MXene and battery-type reduced graphene oxide/nickel-cobalt bimetal oxide electrode materials.ACS Appl Mater Interfaces2020;12:52749-62

[182]

Xie W,Zhou J.MOF-derived CoFe2O4 nanorods anchored in MXene nanosheets for all pseudocapacitive flexible supercapacitors with superior energy storage.Applied Surface Science2020;534:147584

[183]

Choudhury NA,Shukla AK.Hydrogel-polymer electrolytes for electrochemical capacitors: an overview.Energy Environ Sci2009;2:55-67

[184]

Huang Y,Shi F.An intrinsically stretchable and compressible supercapacitor containing a polyacrylamide hydrogel electrolyte.Angew Chem Int Ed Engl2017;56:9141-5

[185]

Han L,Fu X.A flexible, high-voltage and safe zwitterionic natural polymer hydrogel electrolyte for high-energy-density zinc-ion hybrid supercapacitor.Chem Eng J2020;392:123733

[186]

Shi X,Qin J.Graphene-based linear tandem micro-supercapacitors with metal-free current collectors and high-voltage output.Adv Mater2017;29:1703034

[187]

Wu ZS,Parvez K,Müllen K.Ultrathin printable graphene supercapacitors with AC line-filtering performance.Adv Mater2015;27:3669-75

[188]

Xiong G,Huang B,Bo Z.Graphene nanopetal wire supercapacitors with high energy density and thermal durability.Nano Energy2017;38:127-36

[189]

Nguyen PT,Lee Y,In JB.Laser-assisted fabrication of flexible monofilament fiber supercapacitors.J Mater Chem A2021;9:4841-50

[190]

Zhang X,Huang H,Guo X.Silver-quantum-dot-modified MoO3 and MnO2 paper-like freestanding films for flexible solid-state asymmetric supercapacitors.Small2019;15:e1805235

[191]

Kim JW,Lee G.Paper-like, thin, foldable, and self-healable electronics based on PVA/CNC nanocomposite film.Adv Funct Mater2019;29:1905968

[192]

Liu Z,Liu J.Highly compressible and superior low temperature tolerant supercapacitors based on dual chemically crosslinked PVA hydrogel electrolytes.J Mater Chem A2020;8:6219-28

[193]

Peng H,Wei G.A flexible and self-healing hydrogel electrolyte for smart supercapacitor.J Power Sources2019;431:210-9

[194]

Alipoori S,Aboutalebi SH.Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: opportunities and challenges.J Energy Storage2020;27:101072

[195]

Wei JS,Zhang P.Robust negative electrode materials derived from carbon dots and porous hydrogels for high-performance hybrid supercapacitors.Adv Mater2019;31:e1806197

[196]

Zhao C,Yue Z,Wallace GG.Intrinsically stretchable supercapacitors composed of polypyrrole electrodes and highly stretchable gel electrolyte.ACS Appl Mater Interfaces2013;5:9008-14

[197]

Fang C.A large areal capacitance structural supercapacitor with a 3D rGO@MnO2 foam electrode and polyacrylic acid-Portland cement - KOH electrolyte.J Mater Chem A2020;8:12586-93

[198]

Cevik E.Redox active polymer metal chelates for use in flexible symmetrical supercapacitors: cobalt-containing poly(acrylic acid) polymer electrolytes.J Energy Chem2021;55:145-53

[199]

Huang Y,Huang Y.A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte.Nat Commun2015;6:10310 PMCID:PMC4703889

[200]

Choudhury NA,Shukla AK.Gelatin hydrogel electrolytes and their application to electrochemical supercapacitors.J Electrochem Soc2008;155:A74

[201]

Yun TG,Cheong JY.Organism epidermis/plant-root inspired ultra-stable supercapacitor for large-scale wearable energy storage applications.Nano Energy2021;82:105776

[202]

Liu J,Wang Z,Zhang J.Stretchable, self-healable, and reprocessable chemical cross-linked ionogels electrolytes based on gelatin for flexible supercapacitors.J Mater Sci2020;55:3991-4004

[203]

Park JH,Lee JY.Renewable flexible supercapacitors based on all-lignin-based hydrogel electrolytes and nanofiber electrodes.J Mater Chem A2019;7:16962-8

[204]

Peng Z,Xu S,Yang W.High-performance biomass-based flexible solid-state supercapacitor constructed of pressure-sensitive lignin-based and cellulose hydrogels.ACS Appl Mater Interfaces2018;10:22190-200

[205]

Yang L,Feng Y.Zinc ion trapping in a cellulose hydrogel as a solid electrolyte for a safe and flexible supercapacitor.J Mater Chem A2020;8:12314-8

[206]

Li X,Liu R.Engineering textile electrode and bacterial cellulose nanofiber reinforced hydrogel electrolyte to enable high-performance flexible all-solid-state supercapacitors.Adv Energy Mater2021;11:2003010

[207]

Wang C,Someya T.Natural biopolymer-based biocompatible conductors for stretchable bioelectronics.Chem Rev2021;121:2109-46

[208]

Chen M,Zhou W,Yao Y.Realizing an all-round hydrogel electrolyte toward environmentally adaptive dendrite-free aqueous Zn-MnO2 batteries.Adv Mater2021;33:e2007559

[209]

Huang H,Fu X.A powder self-healable hydrogel electrolyte for flexible hybrid supercapacitors with high energy density and sustainability.Small2021;17:e2006807

[210]

Wang J,Tao F.Rationally designed self-healing hydrogel electrolyte toward a smart and sustainable supercapacitor.ACS Appl Mater Interfaces2017;9:27745-53

[211]

Tao F,Wang Z.Self-healable and cold-resistant supercapacitor based on a multifunctional hydrogel electrolyte.ACS Appl Mater Interfaces2017;9:15541-8

[212]

Yu H,Qiu A.Hydrogen bonding-reinforced hydrogel electrolyte for flexible, robust, and all-in-one supercapacitor with excellent low-temperature tolerance.ACS Appl Mater Interfaces2020;12:37977-85

[213]

Yang P,Liu Y.Thermal self-protection of zinc-ion batteries enabled by smart hygroscopic hydrogel electrolytes.Adv Energy Mater2020;10:2002898

[214]

Peng H,Sun K.Physically cross-linked dual-network hydrogel electrolyte with high self-healing behavior and mechanical strength for wide-temperature tolerant flexible supercapacitor.Chemical Engineering Journal2021;422:130353

[215]

Yin B,Ke K.Advanced deformable all-in-one hydrogel supercapacitor based on conducting polymer: toward integrated mechanical and capacitive performance.Journal of Alloys and Compounds2019;805:1044-51

[216]

Guo L,Wang Y.A chemically crosslinked hydrogel electrolyte based all-in-one flexible supercapacitor with superior performance.J Alloys Compd2020;843:155895

[217]

Guo Y,Wan P.A flexible stretchable hydrogel electrolyte for healable all-in-one configured supercapacitors.Small2018;14:e1704497

[218]

Hu M,Liu J,Ma X.An intrinsically compressible and stretchable all-in-one configured supercapacitor.Chem Commun (Camb)2018;54:6200-3

[219]

Wang K,Li C.Chemically crosslinked hydrogel film leads to integrated flexible supercapacitors with superior performance.Adv Mater2015;27:7451-7

[220]

Jin X,Yang H.Stretchable supercapacitor at -30 °C.Energy Environ Sci2021;14:3075-85

[221]

Hsu HH,Wang Y.Mussel-inspired autonomously self-healable all-in-one supercapacitor with biocompatible hydrogel.ACS Sustainable Chem Eng2020;8:6935-48

[222]

Zeng J,Sha W,Guo X.Highly stretchable, compressible and arbitrarily deformable all-hydrogel soft supercapacitors.Chem Eng J2020;383:123098

[223]

Han J,Yue Y.A self-healable and highly flexible supercapacitor integrated by dynamically cross-linked electro-conductive hydrogels based on nanocellulose-templated carbon nanotubes embedded in a viscoelastic polymer network.Carbon2019;149:1-18

[224]

Wen N,Wang X.Overview of polyvinyl alcohol nanocomposite hydrogels for electro-skin, actuator, supercapacitor and fuel cell.Chem Rec2020;20:773-92

[225]

Hua M,Ma Y.Strong tough hydrogels via the synergy of freeze-casting and salting out.Nature2021;590:594-9

[226]

Ben J,Liu X,Li X.Fabrication and electrochemical performance of PVA/CNT/PANI flexible films as electrodes for supercapacitors.Nanoscale Res Lett2020;15:151 PMCID:PMC7376789

[227]

Jia Z,Zeng Y.Bioinspired conductive silk microfiber integrated bioelectronic for diagnosis and wound healing in diabetes.Adv Funct Mater2021;31:2010461

[228]

Jia Z,Hou Y.Mussel-inspired nanozyme catalyzed conductive and self-setting hydrogel for adhesive and antibacterial bioelectronics.Bioact Mater2021;6:2676-87 PMCID:PMC7895678

[229]

Gan D,Wang X.Mussel-inspired redox-active and hydrophilic conductive polymer nanoparticles for adhesive hydrogel bioelectronics.Nanomicro Lett2020;12:169 PMCID:PMC7770971

[230]

Han L,Wang M.Mussel-inspired adhesive and conductive hydrogel with long-lasting moisture and extreme temperature tolerance.Adv Funct Mater2018;28:1704195

[231]

Gan D,Wang X.Graphene oxide-templated conductive and redox-active nanosheets incorporated hydrogels for adhesive bioelectronics.Adv Funct Mater2019;30:1907678

[232]

Han L,Wang M.A mussel-inspired conductive, self-adhesive, and self-healable tough hydrogel as cell stimulators and implantable bioelectronics.Small2017;13:1601916

[233]

Zhang C,Zhou Y,Liu W.Mussel-inspired hydrogels: from design principles to promising applications.Chem Soc Rev2020;49:3605-37

[234]

Xie C,He H,Lu X.Mussel-inspired hydrogels for self-adhesive bioelectronics.Adv Funct Mater2020;30:1909954

[235]

Son EJ,Kim K.Quinone and its derivatives for energy harvesting and storage materials.J Mater Chem A2016;4:11179-202

[236]

Han C,Shi R.Organic quinones towards advanced electrochemical energy storage: recent advances and challenges.J Mater Chem A2019;7:23378-415

[237]

Katsuyama Y,Oizumi K,Kobayashi H.Quinone-based redox supercapacitor using highly conductive hard carbon derived from oak wood.Adv Sustainable Syst2019;3:1900083

[238]

Sumboja A,Wang X.Large areal mass, flexible and free-standing reduced graphene oxide/manganese dioxide paper for asymmetric supercapacitor device.Adv Mater2013;25:2809-15

[239]

Wang S,Su J.Highly stretchable and self-healable supercapacitor with reduced graphene oxide based fiber springs.ACS Nano2017;11:2066-74

[240]

Yang JC,Kwon SY,Bao Z.Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics.Adv Mater2019;31:e1904765

[241]

Lee Y,Cho S.Bioinspired gradient conductivity and stiffness for ultrasensitive electronic skins.ACS Nano2021;15:1795-804

[242]

Hua Q,Liu H.Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing.Nat Commun2018;9:244 PMCID:PMC5770430

[243]

Liu Z,Shi B,Wang ZL.Wearable and implantable triboelectric nanogenerators.Adv Funct Mater2019;29:1808820

[244]

Liu W,Wang G.Integrated charge excitation triboelectric nanogenerator.Nat Commun2019;10:1426 PMCID:PMC6440990

[245]

Zang X,Zhen Z.Flexible, temperature-tolerant supercapacitor based on hybrid carbon film electrodes.Nano Energy2017;40:224-32

[246]

Rong Q,Huang J.Low temperature tolerant organohydrogel electrolytes for flexible solid-state supercapacitors.Adv Energy Mater2018;8:1801967

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/